1
|
Samare-Najaf M, Kouchaki H, Moein Mahini S, Saberi Rounkian M, Tavakoli Y, Samareh A, Karim Azadbakht M, Jamali N. Prostate cancer: Novel genetic and immunologic biomarkers. Clin Chim Acta 2024; 555:117824. [PMID: 38316287 DOI: 10.1016/j.cca.2024.117824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Prostate cancer (PCa) is considered one of the most prevalent male malignancies worldwide with a global burden estimated to increase over the next two decades. Due to significant mortality and debilitation of survival, early diagnosis has been described as key. Unfortunately, current diagnostic serum-based strategies have low specificity and sensitivity. Histologic examination is invasive and not useful for treatment and monitoring purposes. Hence, a plethora of studies have been conducted to identify and validate an efficient noninvasive approach in the diagnosis, staging, and prognosis of PCa. These investigations may be categorized as genetic (non-coding biomarkers and gene markers), immunologic (immune cells, interleukins, cytokines, antibodies, and auto-antibodies), and heterogenous (PSA-related markers, PHI-related indices, and urinary biomarkers) subgroups. This review examines current approaches and potential strategies using biomarker panels in PCa.
Collapse
Affiliation(s)
- Mohammad Samare-Najaf
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Hosein Kouchaki
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Moein Mahini
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoumeh Saberi Rounkian
- Student Research Committee, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Yasaman Tavakoli
- Department of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Ali Samareh
- Department of Clinical Biochemistry, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Navid Jamali
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran.
| |
Collapse
|
2
|
Qiu C, Wang X, Batson SA, Wang B, Casiano CA, Francia G, Zhang JY. A Luminex Approach to Develop an Anti-Tumor-Associated Antigen Autoantibody Panel for the Detection of Prostate Cancer in Racially/Ethnically Diverse Populations. Cancers (Basel) 2023; 15:4064. [PMID: 37627091 PMCID: PMC10452333 DOI: 10.3390/cancers15164064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Autoantibodies to tumor-associated antigens (TAAs) have emerged as promising cancer biomarkers. Luminex technology offers a powerful approach for the simultaneous detection of multiple anti-TAA autoantibodies. (2) Methods: We aimed to utilize Luminex technology to evaluate and optimize a panel of anti-TAAs autoantibodies for detecting prostate cancer (PCa), which included autoantibodies to fourteen TAAs. A total of 163 serum samples (91 PCa, 72 normal controls) were screened to determine the levels of the autoantibodies using the Luminex assay. (3) Results: Twelve autoantibodies exhibited significantly high frequencies ranging from 19.8% to 51.6% in the PCa group. Receiver operating characteristic (ROC) curve analysis revealed area under the curve (AUC) values ranging from 0.609 to 0.868 for the twelve autoantibodies individually. We further confirmed the performance of the HSP60 autoantibody by using an enzyme-linked immunosorbent assay (ELISA) in a larger sample comprising 200 PCa sera, 20 benign prostatic hyperplasia (BPH) sera, and 137 normal control sera. The results obtained from the Luminex assay were consistent with the ELISA findings. We developed a panel consisting of three autoantibodies (p16, IMP2, and HSP60) which achieved an impressive AUC of 0.910 with a sensitivity of 71.4% and a specificity of 95.8%. The panel was also evaluated in PCa patients from different races/ethnicities with the best performance observed in distinguishing the Hispanic American patients with PCa from normal controls. (4) Conclusions: We developed an anti-TAA autoantibody panel for the detection of PCa that exhibits promising performance. This panel holds significant potential as a high-throughput tool to facilitate PCa detection.
Collapse
Affiliation(s)
- Cuipeng Qiu
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (C.Q.); (X.W.); (S.A.B.); (B.W.)
| | - Xiao Wang
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (C.Q.); (X.W.); (S.A.B.); (B.W.)
| | - Serina A. Batson
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (C.Q.); (X.W.); (S.A.B.); (B.W.)
| | - Bofei Wang
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (C.Q.); (X.W.); (S.A.B.); (B.W.)
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA;
| | - Giulio Francia
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (C.Q.); (X.W.); (S.A.B.); (B.W.)
| | - Jian-Ying Zhang
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (C.Q.); (X.W.); (S.A.B.); (B.W.)
| |
Collapse
|
3
|
Chen Q, Zhu S, Jiao N, Zhang Z, Gao G, Zheng W, Feng G, Han W. Improvement in the performance of an autoantibody panel in combination with heat shock protein 90a for the detection of early‑stage lung cancer. Exp Ther Med 2023; 25:82. [PMID: 36741915 PMCID: PMC9852419 DOI: 10.3892/etm.2023.11781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/09/2022] [Indexed: 01/04/2023] Open
Abstract
The early diagnosis of lung cancer is closely associated with the decline of mortality. A panel consisting of seven lung cancer-related autoantibodies (7-AABs) has been shown to be a reliable and specific indicator for the early detection of lung cancer, with a specificity of ~90% and a positive predictive value of ~85%. However, its low sensitivity and negative predictive value limit its wide application. To improve its diagnostic value, the diagnostic efficiencies of 7-AABs in combination with non-specific tumor markers were retrospectively investigated for the detection of early-stage lung cancer. A total of 217 patients with small lung nodules who presented with ground-glass opacity or solid nodules as well as 30 healthy controls were studied. The concentrations of 7-AABs and heat shock protein 90a (HSP90a) were assessed using ELISA. Automated flow fluorescence immune analysis was used for the assessment of CEA, CYFRA21-1, CA199 and CA125 levels. The results showed that 7-AABs + HSP90a possessed a remarkably improved diagnostic efficiency for patients with small pulmonary nodules or for patients with lung nodules of different types, which suggested that 7-AABs in combination with HSP90a could have a high clinical value for the improvement of the diagnostic efficiency of early-stage lung cancer.
Collapse
Affiliation(s)
- Qing Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Shaojin Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Nanlin Jiao
- Department of Pathology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Ziyu Zhang
- The First Clinical College, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Guangjian Gao
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Wenqiang Zheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Gang Feng
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China,Correspondence to: Dr Wenzheng Han or Dr Gang Feng, Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, Anhui 241001, P.R. China
| | - Wenzheng Han
- Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui 241001, P.R. China,Correspondence to: Dr Wenzheng Han or Dr Gang Feng, Clinical Laboratory, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
4
|
Jin H, Qin S, He J, Xiao J, Li Q, Mao Y, Zhao L. Systematic pan-cancer analysis identifies RALA as a tumor targeting immune therapeutic and prognostic marker. Front Immunol 2022; 13:1046044. [PMID: 36466919 PMCID: PMC9713825 DOI: 10.3389/fimmu.2022.1046044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION RALA is a member of the small GTPase Ras superfamily and has been shown to play a role in promoting cell proliferation and migration in most tumors, and increase the resistance of anticancer drugs such as imatinib and cisplatin. Although many literatures have studied the cancer-promoting mechanism of RALA, there is a lack of relevant pan-cancer analysis. METHODS This study systematically analyzed the differential expression and mutation of RALA in pan-cancer, including different tissues and cancer cell lines, and studied the prognosis and immune infiltration associated with RALA in various cancers. Next, based on the genes co-expressed with RALA in pan-cancer, we selected 241 genes with high correlation for enrichment analysis. In terms of pan-cancer, we also analyzed the protein-protein interaction pathway of RALA and the application of small molecule drug Guanosine-5'-Diphosphate. We screened hepatocellular cancer (HCC) to further study RALA. RESULTS The results indicated that RALA was highly expressed in most cancers. RALA was significantly correlated with the infiltration of B cells and macrophages, as well as the expression of immune checkpoint molecules such as CD274, CTLA4, HAVCR2 and LAG3, suggesting that RALA can be used as a kind of new pan-cancer immune marker. The main functions of 241 genes are mitosis and protein localization to nucleosome, which are related to cell cycle. For HCC, the results displayed that RALA was positively correlated with common intracellular signaling pathways such as angiogenesis and apoptosis. DISCUSSION In summary, RALA was closely related to the clinical prognosis and immune infiltration of various tumors, and RALA was expected to become a broad-spectrum molecular immune therapeutic target and prognostic marker for pan-cancer.
Collapse
Affiliation(s)
- Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Sha Qin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juxiong Xiao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|