1
|
Liu Y, Tang H. CXCR Family and Hematologic Malignancies in the Bone Marrow Microenvironment. Biomolecules 2025; 15:716. [PMID: 40427609 PMCID: PMC12109521 DOI: 10.3390/biom15050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/30/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Malignant hematologic diseases, also referred to as hematologic tumors, encompass a series of malignant proliferative disorders of the lymphopoietic system, including leukemia, lymphoma, multiple myeloma, and myeloproliferative neoplasms. The dysregulation of inflammatory factors or chronic inflammatory responses plays an indispensable role in the onset and progression of these tumors. The C-X-C motif chemokine receptor (CXCR) serves as a key mediator of immune-inflammatory responses. Through its specific regulatory mechanisms, CXCR is involved in the transduction and activation of various signaling pathways, thereby mediating the malignant biological characteristics of blood tumor cells, such as uncontrolled proliferation, differentiation, invasion, migration, autophagy, and apoptosis. In the bone marrow microenvironment, CXCR plays a pivotal role. This review systematically analyzes and elucidates the roles and mechanisms of the CXCR family in hematologic malignancies, aiming to provide new insights into the biological mechanisms and clinical significance of these diseases. The CXCR family holds great potential as a molecular marker for both fundamental research and the clinical diagnosis and treatment of hematologic malignancies.
Collapse
Affiliation(s)
- Yanquan Liu
- Department of Hematology, The First Dongguan Affiliated Hospital of Guangdong Medical University, The First School of Clinical Medicine, Guangdong Medical University, Dongguan 523808, China;
- Key Laboratory on Leukemia of Jiangxi Provincial Health Commission, Department of Hematology, The Affiliated Ganzhou Hospital of Nanchang University (Ganzhou People’s Hospital), Ganzhou 341000, China
- National Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Huanwen Tang
- Department of Hematology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| |
Collapse
|
2
|
Du J, Luo H, Ye S, Zhang H, Zheng Z, Liu K. Unraveling IFI44L's biofunction in human disease. Front Oncol 2024; 14:1436576. [PMID: 39737399 PMCID: PMC11682996 DOI: 10.3389/fonc.2024.1436576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/26/2024] [Indexed: 01/01/2025] Open
Abstract
Interferon-induced protein 44-like (IFI44L) is regarded as an immune-related gene and is a member of interferon-stimulated genes (ISGs). They participate in network transduction, and its own epigenetic modifications, apoptosis, cell-matrix formation, and many other pathways in tumors, autoimmune diseases, and viral infections. The current review provides a comprehensive overview of the onset and biological mechanisms of IFI44L and its potential clinical applications in malignant tumors and non-neoplastic diseases.
Collapse
|
3
|
Zhi R, Fan F. SLC1A3 is a novel prognostic biomarker associated with immunity and EMT in hepatocellular carcinoma. Discov Oncol 2024; 15:676. [PMID: 39560677 DOI: 10.1007/s12672-024-01561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
PURPOSE Solute carrier family 1 member 3(SLC1A3), a member of the glutamate transporter family, is implicated in the progression of gastric carcinoma and the renewal of thyroid carcinoma stem cells. The purpose of this work is to use experimental validation and bioinformatics analysis to look at the possible involvement of SLC1A3 in hepatocellular carcinoma (HCC). MATERIALS AND METHODS We examined the levels of SLC1A3 within HCC and its implications on immunological and epithelial-mesenchymal transition (EMT) features using the TCGA, ImmPort, and Molecular Signatures databases. The relationship between drug sensitivity and SLC1A3 expression was investigated using the GDSC database. Real-time quantitative polymerase chain reaction (qRT-PCR), Western blotting (WB), and cellular function assays were performed to assess SLC1A3 expression and its carcinogenic effects in HCC. RESULTS According to our research, SLC1A3 overexpression in HCC is associated with a poor prognosis. Elevated levels of SLC1A3 promote HCC cell motility and invasion and can affect the prognosis of HCC by modifying immune responses and epithelial-mesenchymal transition. SLC1A3 has emerged as a novel prognostic marker in HCC and is associated with resistance to certain antitumor drugs. CONCLUSION SLC1A3 functions as a cancer-promoting factor contributing to poor HCC prognosis by affecting immune cell infiltration and regulating the EMT process. Elevated SLC1A3 expression may also serve as a predictor of treatment response to specific antitumor drugs.
Collapse
Affiliation(s)
- Renhou Zhi
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Fan Fan
- Department of Gastroenterology, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
4
|
Duan L, He Y, Guo W, Du Y, Yin S, Yang S, Dong G, Li W, Chen F. Machine learning-based pathomics signature of histology slides as a novel prognostic indicator in primary central nervous system lymphoma. J Neurooncol 2024; 168:283-298. [PMID: 38557926 PMCID: PMC11147825 DOI: 10.1007/s11060-024-04665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE To develop and validate a pathomics signature for predicting the outcomes of Primary Central Nervous System Lymphoma (PCNSL). METHODS In this study, 132 whole-slide images (WSIs) of 114 patients with PCNSL were enrolled. Quantitative features of hematoxylin and eosin (H&E) stained slides were extracted using CellProfiler. A pathomics signature was established and validated. Cox regression analysis, receiver operating characteristic (ROC) curves, Calibration, decision curve analysis (DCA), and net reclassification improvement (NRI) were performed to assess the significance and performance. RESULTS In total, 802 features were extracted using a fully automated pipeline. Six machine-learning classifiers demonstrated high accuracy in distinguishing malignant neoplasms. The pathomics signature remained a significant factor of overall survival (OS) and progression-free survival (PFS) in the training cohort (OS: HR 7.423, p < 0.001; PFS: HR 2.143, p = 0.022) and independent validation cohort (OS: HR 4.204, p = 0.017; PFS: HR 3.243, p = 0.005). A significantly lower response rate to initial treatment was found in high Path-score group (19/35, 54.29%) as compared to patients in the low Path-score group (16/70, 22.86%; p < 0.001). The DCA and NRI analyses confirmed that the nomogram showed incremental performance compared with existing models. The ROC curve demonstrated a relatively sensitive and specific profile for the nomogram (1-, 2-, and 3-year AUC = 0.862, 0.932, and 0.927, respectively). CONCLUSION As a novel, non-invasive, and convenient approach, the newly developed pathomics signature is a powerful predictor of OS and PFS in PCNSL and might be a potential predictive indicator for therapeutic response.
Collapse
Affiliation(s)
- Ling Duan
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China
| | - Yongqi He
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China
| | - Wenhui Guo
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China
| | - Yanru Du
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China
| | - Shuo Yin
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China
| | - Shoubo Yang
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China
| | - Gehong Dong
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China.
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China.
| | - Feng Chen
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, No.119 West Nansihuan Road, Beijing, 100070, China.
| |
Collapse
|
5
|
Hamano M, Ichinose T, Yasuda T, Ishijima T, Okada S, Abe K, Tashiro K, Furuya S. Bioinformatics Analysis of the Molecular Networks Associated with the Amelioration of Aberrant Gene Expression by a Tyr-Trp Dipeptide in Brains Treated with the Amyloid-β Peptide. Nutrients 2023; 15:2731. [PMID: 37375635 DOI: 10.3390/nu15122731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Short-chain peptides derived from various protein sources have been shown to exhibit diverse bio-modulatory and health-promoting effects in animal experiments and human trials. We recently reported that the oral administration of the Tyr-Trp (YW) dipeptide to mice markedly enhances noradrenaline metabolism in the brain and ameliorates the working-memory deficits induced by the β-amyloid 25-35 peptide (Aβ25-35). In the current study, we performed multiple bioinformatics analyses of microarray data from Aβ25-35/YW-treated brains to determine the mechanism underlying the action of YW in the brain and to infer the molecular mechanisms and networks involved in the protective effect of YW in the brain. We found that YW not only reversed inflammation-related responses but also activated various molecular networks involving a transcriptional regulatory system, which is mediated by the CREB binding protein (CBP), EGR-family proteins, ELK1, and PPAR, and the calcium-signaling pathway, oxidative stress tolerance, and an enzyme involved in de novo l-serine synthesis in brains treated with Aβ25-35. This study revealed that YW has a neuroprotective effect against Aβ25-35 neuropathy, suggesting that YW is a new functional-food-material peptide.
Collapse
Affiliation(s)
- Momoko Hamano
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan
- Laboratory of Functional Genomics and Metabolism, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Takashi Ichinose
- Laboratory of Functional Genomics and Metabolism, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Tokio Yasuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Tomoko Ishijima
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinji Okada
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Keiko Abe
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC), 3-25-13 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Kanagawa, Japan
| | - Kosuke Tashiro
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| | - Shigeki Furuya
- Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka 820-8502, Fukuoka, Japan
- Laboratory of Functional Genomics and Metabolism, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
- Innovative Bio-Architecture Center, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Fukuoka, Japan
| |
Collapse
|