1
|
Ainiwaer A, Sun S, Bohetiyaer A, Liu Y, Jiang Y, Zhang W, Zhang J, Xu T, Chen H, Yao X, Jia C, Yan Y. Application of raman spectroscopy in the non-invasive diagnosis of urological diseases via urine. Photodiagnosis Photodyn Ther 2025; 52:104477. [PMID: 39814328 DOI: 10.1016/j.pdpdt.2025.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
OBJECTIVES The objective of this review is to provide a comprehensive overview of the utilization of Raman spectroscopy in urinary system diseases, highlighting its potential in non-invasive diagnostic methodologies for early diagnosis and prognostic assessment of urinary ailments. METHODS We searched PubMed, Web of Science, and Google Scholar using 'raman,' 'bladder,' 'kidney,' 'prostate,' 'cancer,' 'infection,' 'stone or urinary calculi,' and 'urine or urinary,' along with 'AND' and 'OR' to refine our search. We excluded irrelevant articles and screened potential ones based on titles and abstracts before assessing the full texts for relevance and quality. FINDINGS The findings indicate that RS can furnish data on biomolecules in urine, which is significant for non-invasive diagnostic approaches. It has shown potential within non-invasive diagnostic methodologies and is expected to play a pivotal role in the early diagnosis and prognostic assessment of urinary system diseases, such as malignancies, urinary tract infections, kidney diseases, urolithiasis, and other urinary conditions. CONCLUSIONS Raman spectroscopy has demonstrated significant potential in providing precise and rapid diagnostic approaches for clinical use in the context of urinary system diseases. Its ability to analyze biomolecules non-invasively positions it as an increasingly important tool in the early diagnosis and prognostic assessment of these conditions.
Collapse
Affiliation(s)
- Ailiyaer Ainiwaer
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China; Department of Urology, Kashgar Prefecture Second People's Hospital, Kashgar, Xinjiang Uyghur, PR China
| | - ShuWen Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| | - Ayinuer Bohetiyaer
- Department of Nephrology, Kashgar Prefecture First People's Hospital, Kashgar, Xinjiang Uyghur, PR China
| | - Yuchao Liu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China
| | - Yufeng Jiang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China
| | - JingCheng Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China
| | - Tianyuan Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China
| | - Hanyang Chen
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China.
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China; Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, PR China.
| | - Yang Yan
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China.
| |
Collapse
|
2
|
Buhas BA, Toma V, Beauval JB, Andras I, Couți R, Muntean LAM, Coman RT, Maghiar TA, Știufiuc RI, Lucaciu CM, Crisan N. Label-Free SERS of Urine Components: A Powerful Tool for Discriminating Renal Cell Carcinoma through Multivariate Analysis and Machine Learning Techniques. Int J Mol Sci 2024; 25:3891. [PMID: 38612705 PMCID: PMC11011951 DOI: 10.3390/ijms25073891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The advent of Surface-Enhanced Raman Scattering (SERS) has enabled the exploration and detection of small molecules, particularly in biological fluids such as serum, blood plasma, urine, saliva, and tears. SERS has been proposed as a simple diagnostic technique for various diseases, including cancer. Renal cell carcinoma (RCC) ranks as the sixth most commonly diagnosed cancer in men and is often asymptomatic, with detection occurring incidentally. The onset of symptoms typically aligns with advanced disease, aggressive histology, and unfavorable prognosis, and therefore new methods for an early diagnosis are needed. In this study, we investigated the utility of label-free SERS in urine, coupled with two multivariate analysis approaches: Principal Component Analysis combined with Linear Discriminant Analysis (PCA-LDA) and Support Vector Machine (SVM), to discriminate between 50 RCC patients and 44 healthy donors. Employing LDA-PCA, we achieved a discrimination accuracy of 100% using 13 principal components, and an 88% accuracy in discriminating between different RCC stages. The SVM approach yielded a training accuracy of 100%, a validation accuracy of 99% for discriminating between RCC and controls, and an 80% accuracy for discriminating between stages. The comparative analysis of raw and normalized SERS spectral data shows that while raw data disclose relative concentration variations in urine metabolites between the two classes, the normalization of spectral data significantly improves the accuracy of discrimination. Moreover, the selection of principal components with markedly distinct scores between the two classes serves to alleviate overfitting risks and reduces the number of components employed for discrimination. We obtained the accuracy of the discrimination between the RCC patients cases and healthy donors of 90% for three PCs and a linear discrimination function, and a 88% accuracy of discrimination between stages using six PCs, mitigating practically the risk of overfitting and increasing the robustness of our analysis. Our findings underscore the potential of label-free SERS of urine in conjunction with chemometrics for non-invasive and early RCC detection.
Collapse
Affiliation(s)
- Bogdan Adrian Buhas
- Department of Urology, La Croix du Sud Hospital, 52 Chemin de Ribaute St., 31130 Quint Fonsegrives, France; (B.A.B.); (J.-B.B.)
- Department of Urology, Clinical Municipal Hospital, 11 Tabacarilor St., 400139 Cluj-Napoca, Romania; (I.A.); (N.C.)
- Faculty of Medicine and Pharmacy, University of Oradea, 1 Universitatii St., 410087 Oradea, Romania; (R.C.); (T.A.M.)
| | - Valentin Toma
- Department of Nanobiophysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur St., 400337 Cluj-Napoca, Romania;
| | - Jean-Baptiste Beauval
- Department of Urology, La Croix du Sud Hospital, 52 Chemin de Ribaute St., 31130 Quint Fonsegrives, France; (B.A.B.); (J.-B.B.)
| | - Iulia Andras
- Department of Urology, Clinical Municipal Hospital, 11 Tabacarilor St., 400139 Cluj-Napoca, Romania; (I.A.); (N.C.)
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes St., 400347 Cluj-Napoca, Romania
| | - Răzvan Couți
- Faculty of Medicine and Pharmacy, University of Oradea, 1 Universitatii St., 410087 Oradea, Romania; (R.C.); (T.A.M.)
| | - Lucia Ana-Maria Muntean
- Department of Medical Education, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes St., 400347 Cluj-Napoca, Romania;
| | - Radu-Tudor Coman
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes St., 400347 Cluj-Napoca, Romania
| | - Teodor Andrei Maghiar
- Faculty of Medicine and Pharmacy, University of Oradea, 1 Universitatii St., 410087 Oradea, Romania; (R.C.); (T.A.M.)
| | - Rareș-Ionuț Știufiuc
- Department of Nanobiophysics, MedFuture Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 4-6 Pasteur St., 400337 Cluj-Napoca, Romania;
- Department of Pharmaceutical Physics–Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
- Nanotechnology Laboratory, TRANSCEND Research Center, Regional Institute of Oncology, 700483 Iași, Romania
| | - Constantin Mihai Lucaciu
- Department of Pharmaceutical Physics–Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 6 Pasteur St., 400349 Cluj-Napoca, Romania
| | - Nicolae Crisan
- Department of Urology, Clinical Municipal Hospital, 11 Tabacarilor St., 400139 Cluj-Napoca, Romania; (I.A.); (N.C.)
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes St., 400347 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Li S, Chen Y, Cao X, Yang C, Li W, Shen B. The application of nanotechnology in kidney transplantation. Nanomedicine (Lond) 2024; 19:413-429. [PMID: 38275168 DOI: 10.2217/nnm-2023-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
Kidney transplantation is a crucial treatment option for end-stage renal disease patients, but challenges related to graft function, rejection and immunosuppressant side effects persist. This review highlights the potential of nanotechnology in addressing these challenges. Nanotechnology offers innovative solutions to enhance organ preservation, evaluate graft function, mitigate ischemia-reperfusion injury and improve drug delivery for immunosuppressants. The integration of nanotechnology holds promise for improving outcomes in kidney transplantation.
Collapse
Affiliation(s)
- Shengzhou Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Yiming Chen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Xiangqian Cao
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Chenkai Yang
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
| | - Wei Li
- Department of Nanomedicine & Shanghai Key Lab of Cell Engineering, Naval Medical University, 200433, Shanghai, China
| | - Bing Shen
- Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 200080, Shanghai, China
- Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| |
Collapse
|
4
|
Kong X, Liang H, An W, Bai S, Miao Y, Qiang J, Wang H, Zhou Y, Zhang Q. Rapid identification of early renal damage in asymptomatic hyperuricemia patients based on urine Raman spectroscopy and bioinformatics analysis. Front Chem 2023; 11:1045697. [PMID: 36762194 PMCID: PMC9905717 DOI: 10.3389/fchem.2023.1045697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Objective: The issue of when to start treatment in patients with hyperuricemia (HUA) without gout and chronic kidney disease (CKD) is both important and controversial. In this study, Raman spectroscopy (RS) was used to analyze urine samples, and key genes expressed differentially CKD were identified using bioinformatics. The biological functions and regulatory pathways of these key genes were preliminarily analyzed, and the relationship between them as well as the heterogeneity of the urine components of HUA was evaluated. This study provides new ideas for the rapid evaluation of renal function in patients with HUA and CKD, while providing an important reference for the new treatment strategy of HUA disease. Methods: A physically examined population in 2021 was recruited as the research subjects. There were 10 cases with normal blood uric acid level and 31 cases with asymptomatic HUA diagnosis. The general clinical data were collected and the urine samples were analyzed by Raman spectroscopy. An identification model was also established by using the multidimensional multivariate method of orthogonal partial least squares discriminant analysis (OPLS-DA) model for statistical analysis of the data, key genes associated with CKD were identified using the Gene Expression Omnibus (GEO) database, and key biological pathways associated with renal function damage in CKD patients with HUA were analyzed. Results: The Raman spectra showed significant differences in the levels of uric acid (640 cm-1), urea, creatinine (1,608, 1,706 cm-1), proteins/amino acids (642, 828, 1,556, 1,585, 1,587, 1,596, 1,603, 1,615 cm-1), and ketone body (1,643 cm-1) (p < 0.05). The top 10 differentially expressed genes (DEGs) associated with CKD (ALB, MYC, IL10, FOS, TOP2A, PLG, REN, FGA, CCNA2, and BUB1) were identified. Compared with the differential peak positions analyzed by the OPLS-DA model, it was found that the peak positions of glutathione, tryptophan and tyrosine may be important markers for the diagnosis and progression of CKD. Conclusion: The progression of CKD was related to the expression of the ALB, MYC, IL10, PLG, REN, and FGA genes. Patients with HUA may have abnormalities in glutathione, tryptophan, tyrosine, and energy metabolism. The application of Raman spectroscopy to analyze urine samples and interpret the heterogeneity of the internal environment of asymptomatic HUA patients can be combined with the OPLS-DA model to mine the massive clinical and biochemical examination information on HUA patients. The results can also provide a reference for identifying the right time for intervention for uric acid as well as assist the early detection of changes in the internal environment of the body. Finally, this approach provides a useful technical supplement for exploring a low-cost, rapid evaluation and improving the timeliness of screening. Precise intervention of abnormal signal levels of internal environment and energy metabolism may be a potential way to delay renal injury in patients with HUA.
Collapse
Affiliation(s)
- Xiaodong Kong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Haoyue Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wei An
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Sheng Bai
- Department of Ultrasound, Xiangya Hospital Central South University, Changsha, Hunan, China
| | | | - Junlian Qiang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Haoyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China,*Correspondence: Qiang Zhang, ; Yuan Zhou,
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China,*Correspondence: Qiang Zhang, ; Yuan Zhou,
| |
Collapse
|
5
|
Delrue C, Speeckaert MM. The Potential Applications of Raman Spectroscopy in Kidney Diseases. J Pers Med 2022; 12:jpm12101644. [PMID: 36294783 PMCID: PMC9604710 DOI: 10.3390/jpm12101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 12/23/2022] Open
Abstract
Raman spectroscopy (RS) is a spectroscopic technique based on the inelastic interaction of incident electromagnetic radiation (from a laser beam) with a polarizable molecule, which, when scattered, carries information from molecular vibrational energy (the Raman effect). RS detects biochemical changes in biological samples at the molecular level, making it an effective analytical technique for disease diagnosis and prognosis. It outperforms conventional sample preservation techniques by requiring no chemical reagents, reducing analysis time even at low concentrations, and working in the presence of interfering agents or solvents. Because routinely utilized biomarkers for kidney disease have limitations, there is considerable interest in the potential use of RS. RS may identify and quantify urinary and blood biochemical components, with results comparable to reference methods in nephrology.
Collapse
Affiliation(s)
- Charlotte Delrue
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marijn M. Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
- Research Foundation-Flanders (FWO), 1000 Brussels, Belgium
- Correspondence: ; Tel.: +32-9-332-4509
| |
Collapse
|
6
|
Bratchenko LA, Al-Sammarraie SZ, Tupikova EN, Konovalova DY, Lebedev PA, Zakharov VP, Bratchenko IA. Analyzing the serum of hemodialysis patients with end-stage chronic kidney disease by means of the combination of SERS and machine learning. BIOMEDICAL OPTICS EXPRESS 2022; 13:4926-4938. [PMID: 36187246 PMCID: PMC9484439 DOI: 10.1364/boe.455549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 05/29/2023]
Abstract
The aim of this paper is a multivariate analysis of SERS characteristics of serum in hemodialysis patients, which includes constructing classification models (PLS-DA, CNN) by the presence/absence of end-stage chronic kidney disease (CKD) with dialysis and determining the most informative spectral bands for identifying dialysis patients by variable importance distribution. We found the spectral bands that are informative for detecting the hemodialysis patients: the 641 cm-1, 724 cm-1, 1094 cm-1 and 1393 cm-1 bands are associated with the degree of kidney function inhibition; and the 1001 cm-1 band is able to demonstrate the distinctive features of hemodialysis patients with end-stage CKD.
Collapse
Affiliation(s)
- Lyudmila A Bratchenko
- Department of Laser and Biotechnical Systems, Samara University, 34 Moskovskoe Shosse, Samara, 443086, Russia
| | - Sahar Z Al-Sammarraie
- Department of Laser and Biotechnical Systems, Samara University, 34 Moskovskoe Shosse, Samara, 443086, Russia
| | - Elena N Tupikova
- Department of Chemistry, Samara University, 34 Moskovskoe Shosse, Samara, 443086, Russia
| | - Daria Y Konovalova
- Department of Internal Medicine, Samara State Medical University, 159 Tashkentskaya Street, Samara, 443095, Russia
| | - Peter A Lebedev
- Department of Internal Medicine, Samara State Medical University, 159 Tashkentskaya Street, Samara, 443095, Russia
| | - Valery P Zakharov
- Department of Laser and Biotechnical Systems, Samara University, 34 Moskovskoe Shosse, Samara, 443086, Russia
| | - Ivan A Bratchenko
- Department of Laser and Biotechnical Systems, Samara University, 34 Moskovskoe Shosse, Samara, 443086, Russia
| |
Collapse
|
7
|
Paluszkiewicz P, Martuszewski A, Zaręba N, Wala K, Banasik M, Kepinska M. The Application of Nanoparticles in Diagnosis and Treatment of Kidney Diseases. Int J Mol Sci 2021; 23:ijms23010131. [PMID: 35008556 PMCID: PMC8745391 DOI: 10.3390/ijms23010131] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomedicine is currently showing great promise for new methods of diagnosing and treating many diseases, particularly in kidney disease and transplantation. The unique properties of nanoparticles arise from the diversity of size effects, used to design targeted nanoparticles for specific cells or tissues, taking renal clearance and tubular secretion mechanisms into account. The design of surface particles on nanoparticles offers a wide range of possibilities, among which antibodies play an important role. Nanoparticles find applications in encapsulated drug delivery systems containing immunosuppressants and other drugs, in imaging, gene therapies and many other branches of medicine. They have the potential to revolutionize kidney transplantation by reducing and preventing ischemia-reperfusion injury, more efficiently delivering drugs to the graft site while avoiding systemic effects, accurately localizing and visualising the diseased site and enabling continuous monitoring of graft function. So far, there are known nanoparticles with no toxic effects on human tissue, although further studies are still needed to confirm their safety.
Collapse
Affiliation(s)
- Patrycja Paluszkiewicz
- Department of Emergency Medical Service, Wroclaw Medical University, Bartla 5, 50-367 Wroclaw, Poland;
| | - Adrian Martuszewski
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368 Wroclaw, Poland;
| | - Natalia Zaręba
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland;
| | - Kamila Wala
- Faculty of Medicine, Wroclaw Medical University, Pasteura 1, 50-367 Wroclaw, Poland;
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
- Correspondence: (M.B.); (M.K.); Tel.: +48-71-733-2500 (M.B.); +48-71-784-0171 (M.K.)
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wrocław, Poland;
- Correspondence: (M.B.); (M.K.); Tel.: +48-71-733-2500 (M.B.); +48-71-784-0171 (M.K.)
| |
Collapse
|
8
|
Zhao XY, Wang J, Hao HG, Yang H, Yang QS, Zhao WY. A water-stable europium-MOF sensor for the selective, sensitive ratiometric fluorescence detection of anthrax biomarker. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Zong M, Zhou L, Guan Q, Lin D, Zhao J, Qi H, Harriman D, Fan L, Zeng H, Du C. Comparison of Surface-Enhanced Raman Scattering Properties of Serum and Urine for the Detection of Chronic Kidney Disease in Patients. APPLIED SPECTROSCOPY 2021; 75:412-421. [PMID: 33031004 PMCID: PMC8027936 DOI: 10.1177/0003702820966322] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Chronic kidney disease (CKD) affects more than 10% of the global population and is associated with significant morbidity and mortality. In most cases, this disease is developed silently, and it can progress to the end-stage renal failure. Therefore, early detection becomes critical for initiating effective interventions. Routine diagnosis of CKD requires both blood test and urinalyses in a clinical laboratory, which are time-consuming and have low sensitivity and specificity. Surface-enhanced Raman scattering (SERS) is an emerging method for rapidly assessing kidney function or injury. This study was designed to compare the differences between the SERS properties of the serum and urine for easy and simple detection of CKD. Enrolled for this study were 126 CKD patients (Stages 2-5) and 97 healthy individuals. SERS spectra of both the serum and urine samples were acquired using a Raman spectrometer (785 nm excitation). The correlation of chemical parameters of kidney function with the spectra was examined using prinicpal component analysis (PCA) combined with linear discriminant analysis (LDA) and partial least squares (PLS) analysis. Here, we showed that CKD was discriminated from non-CKD controls using PCA-LDA with a sensitivity of 74.6% and a specificity of 93.8% for the serum spectra, and 78.0% and 86.0 % for the urine spectra. The integration area under the receiver operating characteristic curve was 0.937 ± 0.015 (p < 0.0001) for the serum and 0.886 ± 0.025 (p < 0.0001) for the urine. The different stages of CKD were separated with the accuracy of 78.0% and 75.4% by the serum and urine spectra, respectively. PLS prediction (R2) of the serum spectra was 0.8540 for the serum urea (p < 0.001), 0.8536 for the serum creatinine (p < 0.001), 0.7500 for the estimated glomerular filtration rate (eGFR) (p < 0.001), whereas the prediction (R2) of urine spectra was 0.7335 for the urine urea (p < 0.001), 0.7901 for the urine creatinine (p < 0.001), 0.4644 for the eGFR (p < 0.001) and 0.6579 for the urine microalbumin (p < 0.001). In conclusion, the accuracy of associations between SERS findings of the serum and urine samples with clinical conclusions of CKD diagnosis in this limited number of patients is similar, suggesting that SERS may be used as a rapid and easy-to-use method for early screening of CKD, which however needs further evaluation in a large cohort study.
Collapse
Affiliation(s)
- Ming Zong
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Lan Zhou
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Duo Lin
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Center, Vancouver, Canada
| | - Jianhua Zhao
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Center, Vancouver, Canada
| | - Hualin Qi
- Department of Nephrology, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| | - David Harriman
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Lieying Fan
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Lieying Fan, Tongji University School of Medicine, Shanghai East Hospital, Shanghai 200092, China. Haishan Zeng, Imaging Unit, Integrative Oncology Department, BC Cancer Research Center, 675 W 10th Ave, Vancouver V5Z 1L3, Canada. Caigan Du, The University of British Columbia Jack Bell Research Centre, Vancouver, V6T 1Z4 Canada.
| | - Haishan Zeng
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Center, Vancouver, Canada
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
10
|
Huang Z, Feng S, Guan Q, Lin T, Zhao J, Nguan CYC, Zeng H, Harriman D, Li H, Du C. Correlation of surface-enhanced Raman spectroscopic fingerprints of kidney transplant recipient urine with kidney function parameters. Sci Rep 2021; 11:2463. [PMID: 33510308 PMCID: PMC7843595 DOI: 10.1038/s41598-021-82113-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/06/2021] [Indexed: 02/05/2023] Open
Abstract
Routine monitoring of kidney transplant function is required for the standard care in post-transplantation management, including frequent measurements of serum creatinine with or without kidney biopsy. However, the invasiveness of these methods with potential for clinically significant complications makes them less than ideal. The objective of this study was to develop a non-invasive tool to monitor the kidney transplant function by using Surface-Enhanced Raman Spectroscopy (SERS). Urine and blood samples were collected from kidney transplant recipients after surgery. Silver nanoparticle-based SERS spectra of the urine were measured and evaluated using partial least squires (PLS) analysis. The SERS spectra were compared with conventional chemical markers of kidney transplant function to assess its predictive ability. A total of 110 kidney transplant recipients were included in this study. PLS results showed significant correlation with urine protein (R2 = 0.4660, p < 0.01), creatinine (R2 = 0.8106, p < 0.01), and urea (R2 = 0.7808, p < 0.01). Furthermore, the prediction of the blood markers of kidney transplant function using the urine SERS spectra was indicated by R2 = 0.7628 (p < 0.01) for serum creatinine and R2 = 0.6539 (p < 0.01) for blood urea nitrogen. This preliminary study suggested that the urine SERS spectral analysis could be used as a convenient method for rapid assessment of kidney transplant function.
Collapse
Affiliation(s)
- Zhongli Huang
- Department of Urology, Institute of Urology, Organ Transplantation Center, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China.,Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Shijian Feng
- Department of Urology, Institute of Urology, Organ Transplantation Center, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China.,Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Qiunong Guan
- Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Tao Lin
- Department of Urology, Institute of Urology, Organ Transplantation Center, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China
| | - Jianhua Zhao
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Center, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Christopher Y C Nguan
- Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Haishan Zeng
- Imaging Unit, Integrative Oncology Department, BC Cancer Research Center, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - David Harriman
- Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada
| | - Hong Li
- Department of Urology, Institute of Urology, Organ Transplantation Center, West China Hospital, Sichuan University, 37 Guoxuexiang, Chengdu, 610041, China.
| | - Caigan Du
- Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
| |
Collapse
|