1
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2019-2020. MASS SPECTROMETRY REVIEWS 2022:e21806. [PMID: 36468275 DOI: 10.1002/mas.21806] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This review is the tenth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2020. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. The review is basically divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of arrays. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other areas such as medicine, industrial processes and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. The reported work shows increasing use of incorporation of new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented nearly 40 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show little sign of diminishing.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, UK
- Department of Chemistry, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
2
|
Harrington C, Krishnan S, Mack CL, Cravedi P, Assis DN, Levitsky J. Noninvasive biomarkers for the diagnosis and management of autoimmune hepatitis. Hepatology 2022; 76:1862-1879. [PMID: 35611859 PMCID: PMC9796683 DOI: 10.1002/hep.32591] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/07/2023]
Abstract
Autoimmune hepatitis (AIH) is a rare disease of unclear etiology characterized by loss of self-tolerance that can lead to liver injury, cirrhosis, and acute liver failure. First-line treatment consists of systemic corticosteroids, or budesonide, and azathioprine, to which most patients are initially responsive, although predictors of response are lacking. Relapses are very common, correlate with histological activity despite normal serum transaminases, and increase hepatic fibrosis. Furthermore, current regimens lead to adverse effects and reduced quality of life, whereas medication titration is imprecise. Biomarkers that can predict the clinical course of disease, identify patients at elevated risk for relapse, and improve monitoring and medication dosing beyond current practice would have high clinical value. Herein, we review novel candidate biomarkers in adult and pediatric AIH based on prespecified criteria, including gene expression profiles, proteins, metabolites, and immune cell phenotypes in different stages of AIH. We also discuss biomarkers relevant to AIH from other immune diseases. We conclude with proposed future directions in which biomarker implementation into clinical practice could lead to advances in personalized therapeutic management of AIH.
Collapse
Affiliation(s)
- Claire Harrington
- Division of Gastroenterology & HepatologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Swathi Krishnan
- Medicine DepartmentYale School of MedicineNew HavenConnecticutUSA
| | - Cara L. Mack
- Section of Pediatric Gastroenterology, Hepatology & Nutrition, Children's Hospital ColoradoUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Paolo Cravedi
- Division of NephrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - David N. Assis
- Section of Digestive DiseasesYale School of MedicineNew HavenConnecticutUSA
| | - Josh Levitsky
- Division of Gastroenterology & HepatologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
3
|
Levitsky J, Kandpal M, Guo K, Zhao L, Kurian S, Whisenant T, Abecassis M. Prediction of Liver Transplant Rejection With a Biologically Relevant Gene Expression Signature. Transplantation 2022; 106:1004-1011. [PMID: 34342962 PMCID: PMC9301991 DOI: 10.1097/tp.0000000000003895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Noninvasive biomarkers distinguishing early immune activation before acute rejection (AR) could more objectively inform immunosuppression management in liver transplant recipients (LTRs). We previously reported a genomic profile distinguishing LTR with AR versus stable graft function. This current study includes key phenotypes with other causes of graft dysfunction and uses a novel random forest approach to augment the specificity of predicting and diagnosing AR. METHODS Gene expression results in LTRs with AR versus non-AR (combination of other causes of graft dysfunction and normal function) were analyzed from single and multicenter cohorts. A 70:30 approach (61 ARs; 162 non-ARs) was used for training and testing sets. Microarray data were normalized using a LT-specific vector. RESULTS Random forest modeling on the training set generated a 59-probe classifier distinguishing AR versus non-AR (area under the curve 0.83; accuracy 0.78, sensitivity 0.70, specificity 0.81, positive predictive value 0.54, negative predictive value [NPV] 0.89; F-score 0.61). Using a locked threshold, the classifier performed well on the testing set (accuracy 0.72, sensitivity 0.67, specificity 0.73, positive predictive value 0.48, NPV 0.86; F-score 0.56). Probability scores increased in samples preceding AR versus non-AR, when liver function tests were normal, and decreased following AR treatment (P < 0.001). Ingenuity pathway analysis of the genes revealed a high percentage related to immune responses and liver injury. CONCLUSIONS We have developed a blood-based biologically relevant biomarker that can be detected before AR-associated graft injury distinct from LTR never developing AR. Given its high NPV ("rule out AR"), the biomarker has the potential to inform precision-guided immunosuppression minimization in LTRs.
Collapse
Affiliation(s)
- Josh Levitsky
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
- Division of Gastroenterology and Hepatology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Manoj Kandpal
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Preventive Medicine, Biostatistics Collaboration Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Kexin Guo
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Preventive Medicine, Biostatistics Collaboration Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Lihui Zhao
- Comprehensive Transplant Center, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Preventive Medicine, Biostatistics Collaboration Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sunil Kurian
- Scripps Clinic Bio-Repository and Bio-Informatics Core, Scripps Green Hospital, La Jolla, CA
| | - Thomas Whisenant
- Center for Computational Biology and Bioinformatics, School of Medicine, University of California San Diego, San Diego, CA
| | | |
Collapse
|
4
|
McQuiston A, Scott D, Nord D, Langerude L, Pelaez A, Machuca T, Mehta A, Chrisie JD, Angel P, Atkinson C. Pro-inflammatory IgG1 N-glycan signature correlates with primary graft dysfunction onset in COPD patients. Transpl Immunol 2021; 71:101491. [PMID: 34767945 DOI: 10.1016/j.trim.2021.101491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/25/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. The pathogenesis of COPD is complex; however, recent studies suggest autoimmune changes, characterized by the presence of autoantibodies to elastin and collagen, may contribute to disease status. COPD patients make up approximately 30% of all lung transplants (LTx) annually, however, little is known regarding the relationship between COPD-related autoantibodies and LTx outcomes. We hypothesized that COPD patients that undergo LTx and develop primary graft dysfunction (PGD) have altered circulating autoantibody levels and phenotypic changes as compared those COPD-LTx recipients that do not develop PGD. We measured total immunoglobulin and circulating elastin and collagen autoantibody levels in a cohort of COPD lung transplant recipients pre- and post-LTx. No significant differences were seen in total, elastin, or collagen IgM, IgG, IgG1, IgG2, IgG3, and IgG4 antibodies between PGD+ and PGD- recipients. Antibody function can be greatly altered by glycosylation changes to the antibody Fc region and recent studies have reported altered IgG glycosylation profiles in COPD patients. We therefore utilized a novel mass spectrometry-based multiplexed N-glycoprotein imaging approach and measured changes in IgG-specific antibody N-glycan structures. COPD-LTx recipients who developed PGD had significantly increased IgG1 N-glycan signatures as compared PGD- recipients. In conclusion, we show that immunoglobulin and autoreactive antibody levels are not significantly different in COPD LTx recipients that develop PGD. However, using a novel IgG glycomic analysis we were able to demonstrate multiple significant increases in IgG1 specific N-glycan signatures that were predictive of PGD development. Taken together, these data represent a potential novel method for identifying COPD patients at risk for PGD development and may provide clues to mechanisms by which antibody N-glycan signatures could contribute to antibody-mediated PGD pathogenesis.
Collapse
Affiliation(s)
- Alexander McQuiston
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Danielle Scott
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Dianna Nord
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Logan Langerude
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Andres Pelaez
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Tiago Machuca
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Anand Mehta
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Jason D Chrisie
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peggi Angel
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
| | - Carl Atkinson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Hatakeyama S, Yoneyama T, Tobisawa Y, Yamamoto H, Ohyama C. Narrative review of urinary glycan biomarkers in prostate cancer. Transl Androl Urol 2021; 10:1850-1864. [PMID: 33968674 PMCID: PMC8100853 DOI: 10.21037/tau-20-964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men worldwide. The application of the prostate-specific antigen (PSA) test has improved the diagnosis and treatment of PC. However, the PSA test has become associated with overdiagnosis and overtreatment. Therefore, there is an unmet need for novel diagnostic, prognostic, and predictive biomarkers of PC. Urinary glycoproteins and exosomes are a potential source of PC glycan biomarkers. Urinary glycan profiling can provide noninvasive monitoring of tumor heterogeneity and aggressiveness throughout a treatment course. However, urinary glycan profiling is not popular due to technical disadvantages, such as complicated structural analysis that requires specialized expertise. The technological development of glycan analysis is a rapidly advancing field. A lectin-based microarray can detect aberrant glycoproteins in urine, including PSA glycoforms and exosomes. Glycan enrichment beads can enrich the concentration of N-linked glycans specifically. Capillary electrophoresis, liquid chromatography-tandem mass spectrometry, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry can detect glycans directory. Many studies suggest potential of urinary glycoproteins, exosomes, and glycosyltransferases as a biomarker of PC. Although further technological challenges remain, urinary glycan analysis is one of the promising approaches for cancer biomarker discovery.
Collapse
Affiliation(s)
- Shingo Hatakeyama
- Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tohru Yoneyama
- Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuki Tobisawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hayato Yamamoto
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Chikara Ohyama
- Department of Advanced Blood Purification Therapy, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Glycotechnology, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
6
|
Levitsky J, Asrani SK, Schiano T, Moss A, Chavin K, Miller C, Guo K, Zhao L, Kandpal M, Bridges N, Brown M, Armstrong B, Kurian S, Demetris AJ, Abecassis M. Discovery and validation of a novel blood-based molecular biomarker of rejection following liver transplantation. Am J Transplant 2020; 20:2173-2183. [PMID: 32356368 PMCID: PMC7496674 DOI: 10.1111/ajt.15953] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/28/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023]
Abstract
Noninvasive biomarker profiles of acute rejection (AR) could affect the management of liver transplant (LT) recipients. Peripheral blood was collected following LT for discovery (Northwestern University [NU]) and validation (National Institute of Allergy and Infectious Diseases Clinical Trials in Organ Transplantation [CTOT]-14 study). Blood gene profiling was paired with biopsies showing AR or ADNR (acute dysfunction no rejection) as well as stable graft function samples (Transplant eXcellent-TX). CTOT-14 subjects had serial collections prior to AR, ADNR, TX, and after AR treatment. NU cohort gene expression (46 AR, 45 TX) was analyzed using random forest models to generate a classifier training set (36 gene probe) distinguishing AR vs TX (area under the curve 0.92). The algorithm and threshold were locked and tested on the CTOT-14 validation cohort (14 AR, 50 TX), yielding an accuracy of 0.77, sensitivity 0.57, specificity 0.82, positive predictive value (PPV) 0.47, and negative predictive value (NPV) 0.87 for AR vs TX. The probability score line slopes were positive preceding AR, and negative preceding TX and non-AR (TX + ADNR) (P ≤ .001) and following AR treatment. In conclusion, we have developed a blood biomarker diagnostic for AR that can be detected prior to AR-associated graft injury as well a normal graft function (non-AR). Further studies are needed to evaluate its utility in precision-guided immunosuppression optimization following LT.
Collapse
Affiliation(s)
- Josh Levitsky
- Comprehensive Transplant CenterNorthwestern University Feinberg School of MedicineChicagoIllinois,Division of Gastroenterology and HepatologyDepartment of MedicineNorthwestern University Feinberg School of MedicineChicagoIllinois
| | - Sumeet K. Asrani
- Annette C. and Harold C. Simmons Transplant InstituteBaylor University Medical CenterDallasTexas
| | | | | | | | | | - Kexin Guo
- Comprehensive Transplant CenterNorthwestern University Feinberg School of MedicineChicagoIllinois,Biostatistics Collaboration CenterDepartment of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinois
| | - Lihui Zhao
- Comprehensive Transplant CenterNorthwestern University Feinberg School of MedicineChicagoIllinois,Biostatistics Collaboration CenterDepartment of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinois
| | - Manoj Kandpal
- Comprehensive Transplant CenterNorthwestern University Feinberg School of MedicineChicagoIllinois,Biostatistics Collaboration CenterDepartment of Preventive MedicineNorthwestern University Feinberg School of MedicineChicagoIllinois
| | - Nancy Bridges
- Division of Allergy, Immunology, and TransplantationNational Institute of Allergy and Infectious DiseasesBethesdaMaryland
| | - Merideth Brown
- Division of Allergy, Immunology, and TransplantationNational Institute of Allergy and Infectious DiseasesBethesdaMaryland
| | | | - Sunil Kurian
- The Scripps Research InstituteLa JollaCalifornia
| | | | | | | |
Collapse
|
7
|
Recent Advances on Biomarkers of Early and Late Kidney Graft Dysfunction. Int J Mol Sci 2020; 21:ijms21155404. [PMID: 32751357 PMCID: PMC7432796 DOI: 10.3390/ijms21155404] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
New biomarkers of early and late graft dysfunction are needed in renal transplant to improve management of complications and prolong graft survival. A wide range of potential diagnostic and prognostic biomarkers, measured in different biological fluids (serum, plasma, urine) and in renal tissues, have been proposed for post-transplant delayed graft function (DGF), acute rejection (AR), and chronic allograft dysfunction (CAD). This review investigates old and new potential biomarkers for each of these clinical domains, seeking to underline their limits and strengths. OMICs technology has allowed identifying many candidate biomarkers, providing diagnostic and prognostic information at very early stages of pathological processes, such as AR. Donor-derived cell-free DNA (ddcfDNA) and extracellular vesicles (EVs) are further promising tools. Although most of these biomarkers still need to be validated in multiple independent cohorts and standardized, they are paving the way for substantial advances, such as the possibility of accurately predicting risk of DGF before graft is implanted, of making a “molecular” diagnosis of subclinical rejection even before histological lesions develop, or of dissecting etiology of CAD. Identification of “immunoquiescent” or even tolerant patients to guide minimization of immunosuppressive therapy is another area of active research. The parallel progress in imaging techniques, bioinformatics, and artificial intelligence (AI) is helping to fully exploit the wealth of information provided by biomarkers, leading to improved disease nosology of old entities such as transplant glomerulopathy. Prospective studies are needed to assess whether introduction of these new sets of biomarkers into clinical practice could actually reduce the need for renal biopsy, integrate traditional tools, and ultimately improve graft survival compared to current management.
Collapse
|
8
|
Hamano I, Hatakeyama S, Fujita T, Murakami R, Hamaya T, Togashi K, Suzuki Y, Yamamoto H, Yoneyama T, Yoneyama T, Hashimoto Y, Narumi S, Tomita H, Ohyama C. Living Kidney Transplantation From Marginal Donors Presents Feasible Donor Renal Function Despite Inferior Recipient Renal Function. Transplant Proc 2020; 52:1723-1728. [DOI: 10.1016/j.transproceed.2020.01.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
|
9
|
Outcome of ABO Blood Type-Incompatible Living-Related Donor Kidney Transplantation Under a Contemporary Immunosuppression Strategy in Japan. Transplant Proc 2020; 52:1700-1704. [PMID: 32448659 DOI: 10.1016/j.transproceed.2020.01.152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/22/2020] [Indexed: 11/23/2022]
Abstract
BACKGROUND Because of the serious donor shortage in Japan, there is an increasing need for ABO blood type-incompatible kidney transplantation (ABOi-KT) in living-related donor kidney transplantation. We evaluated the outcomes of ABOi-KT performed at our hospitals using a contemporary immunosuppression strategy with low-dose rituximab. PATIENTS AND METHODS Between June 2006 and April 2019, 107 patients underwent living-related donor kidney transplantation at our hospitals. The patients were divided into ABO-compatible (ABOc) and ABOi groups. The basic immunosuppression regimen differed between the 2 groups in the use of low-dose rituximab and therapeutic apheresis in the ABOi group. We compared graft survival, patient survival, rejection, viral infection, and posttransplant renal function between the 2 groups. RESULTS Of 107 recipients, 37 (35%) underwent ABOi-KT. The 5-year graft survival rates in the ABOc and ABOi group were 91% and 100%, respectively. The Kaplan-Meier analyses showed no difference in graft survival (P = .168) or patient survival (P = .873) between the groups. Biopsy-proven rejection in the ABOc and ABOi groups was observed in 13 (19%) and 7 (19%) patients, respectively (P = .965), and viral infection was observed in 21 (30%) and 10 (27%) patients (P = .747), respectively. Renal function by estimated glomerular filtration rate from 1 week to 5 years after transplantation was similar in both groups. CONCLUSIONS The outcomes of ABOi-KT with low-dose rituximab were comparable with those of ABOc-KT at our hospitals. ABOi-KT with proper immunosuppression may be an option to help resolve the severe donor shortage in Japan.
Collapse
|