1
|
Karaboğa İ, Okuyan HM, Doğan S, Ayçiçek ŞÖ, Çakıroğlu H. Ebselen Alleviates Sepsis-Induced Acute Kidney Injury by Regulating Endoplasmic Reticulum Stress, Apoptosis, and Oxidative Stress. Vet Med Sci 2025; 11:e70318. [PMID: 40116632 PMCID: PMC11927017 DOI: 10.1002/vms3.70318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/18/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025] Open
Abstract
Acute kidney injury (AKI) is one of the most serious complications of sepsis, with substantial morbidity and mortality, and no effective treatment exists. Ebselen is of pharmacological significance in the treatment and prevention of a variety of human diseases, such as cancer and cardiovascular disorders. Nevertheless, the role of Ebselen in the pathogenesis of sepsis-induced AKI remains unknown. Therefore, we aimed to elucidate the impact of Ebselen, an active seleno-organic compound, on AKI induced by lipopolysaccharide (LPS) and the associated molecular mechanisms, including endoplasmic reticulum (ER) stress, apoptosis, and oxidative stress. We established the sepsis-induced AKI rat model by injecting 5 mg/kg of LPS intraperitoneally. The rats were given Ebselen (5 and 10 mg/kg, orally) before receiving the LPS injection. Ebselen treatment alleviated renal tubular injury and reduced the levels of blood urea nitrogen (BUN) and creatinine (CREA) in LPS-induced sepsis model. Immunohistochemical and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) analyses revealed that Ebselen reduced caspase-3 expressions and apoptotic cells triggered by LPS in kidney tissues. LPS-induced sepsis caused ER stress, and Ebselen treatment alleviated the ER stress by regulating eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3) and GRP78 in kidney tissue, as well as activating transcription factor 4 (ATF4) and activating transcription factor 6 (ATF6) in serum. Ebselen decreased malondialdehyde (MDA) levels induced by LPS. Ebselen alleviated LPS-induced oxidative stress by modulating MDA and superoxide dismutase (SOD) levels in kidney tissues and SOD, glutathione peroxidase (GPx) and serum total antioxidant status (TAS) levels in serum. In conclusion, we report for the time that Ebselen might alleviate sepsis-induced AKI through the regulation of ER stress apoptosis and oxidative stress.
Collapse
Affiliation(s)
- İhsan Karaboğa
- Department of Histology and Embryology, Faculty of MedicineKırklareli UniversityKırklareliTürkiye
| | - Hamza Malik Okuyan
- Department of Physiotherapy and Rehabilitation—Faculty of Health Sciences, Biomedical Technologies Application and Research Center, Physiotherapy and Rehabilitation Application and Research CenterSakarya University of Applied SciencesSakaryaTürkiye
| | - Serdar Doğan
- Department of Biochemistry, Faculty of MedicineHatay Mustafa Kemal UniversityHatayTürkiye
| | - Şeyda Öznur Ayçiçek
- Department of Physiotherapy and Rehabilitation—Faculty of Health Sciences, Biomedical Technologies Application and Research Center, Physiotherapy and Rehabilitation Application and Research CenterSakarya University of Applied SciencesSakaryaTürkiye
| | - Hüseyin Çakıroğlu
- Experimental Medicine Application and Research CenterSakarya UniversitySakaryaTürkiye
| |
Collapse
|
2
|
He X, Li H. Role of LncRNA in Pathogenesis, Diagnosis and Treatment of Chronic Kidney Disease. Cell Biochem Biophys 2025:10.1007/s12013-025-01698-2. [PMID: 40000585 DOI: 10.1007/s12013-025-01698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Chronic kidney disease (CKD) is a clinical syndrome of metabolic disorder caused by progressive kidney impairment for more than 3 months. CKD has become a global public health problem due to its high morbidity and mortality, which is difficult to be cured for most patients. The pathogenesis of CKD is still unclear, which is closely related to glomerulosclerosis, kidney tubular injury and kidney fibrosis. LncRNA is a non-coding RNA with a length of more than 200 nucleotides. It not only participates in intracellular transcriptional regulation, post-transcriptional regulation and epigenetic activities, but also forms a regulatory network together with miRNA and mRNA, to further conduct the reticular regulation in cells. Recently, it has been found that lncRNA participates in pathophysiological mechanism of CKD by regulating glomerulosclerosis, kidney tubular injury and kidney fibrosis. This has also become a new direction of lncRNA in early diagnosis and targeted therapy of CKD.
Collapse
Affiliation(s)
- Xin He
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Han Li
- Department of Nephrology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Jiang H, Shen H, Xu X, Liu Y, Dong Y, Jiang J. Clinical diagnostic value and potential regulatory mechanisms of lncRNA NOP14-AS1 in chronic kidney disease. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2025:1-18. [PMID: 39862153 DOI: 10.1080/15257770.2025.2456794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/02/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
In the early stages, chronic kidney disease (CKD) can be asymptomatic, marking diagnosis difficult. This study aimed to investigate the diagnostic role and potential regulatory mechanisms of nucleolar protein 14 (NOP14) -antisense RNA 1 (AS1) in patients with CKD. Herein, 68 patients with CKD, 65 patients with CKD undergoing peridialysis, and 80 healthy adults were included. The real-time reverse transcription-quantitative polymerase chain reaction was performed to assess NOP14-AS1 levels, and its diagnostic value was evaluated using receiver operating characteristic curves. Additionally, cell proliferation and apoptosis were assessed by Cell Counting Kit-8 assay. and flow cytometry, respectively. Oxidative stress levels were determined using superoxide dismutase and malondialdehyde MDA kits, and the dual-luciferase reporter assay was performed to determine the relationship between NOP14-AS1 and microRNA-326 (miR-326) target binding. Lastly, the potential mechanism underlying miR-326 target gene regulation in CKD progression were explored utilizing Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. Notably, patients with CKD exhibited decreasedNOP14-AS1 levels and upregulated miR-326 levels. NOP14-AS1 and miR-326 exhibited combined effects on cell proliferation, apoptosis, inflammatory factors, and oxidative stress levels. Furthermore, the target genes of miR-326 showed enrichment in CKD-associated rat sarcoma and phosphoinositide 3-kinase protein kinase B pathways. Altogether, the findings of this study show the potential of NOP14-AS1 as a diagnostic marker in CKD. Overall, NOP14-AS1 regulates the miR-326 expression, which, in turn, regulates various miR-326 target gene-associated signaling pathways, thereby affecting the occurrence and development of CKD.
Collapse
Affiliation(s)
- Hongfang Jiang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Huajuan Shen
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Xiujun Xu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yanna Liu
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Yongze Dong
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| | - Jiaxiang Jiang
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
4
|
Puri B, Majumder S, Gaikwad AB. Novel dysregulated long non-coding RNAs in the acute kidney injury-to-chronic kidney diseases transition unraveled by transcriptomic analysis. Pharmacol Res Perspect 2024; 12:e70036. [PMID: 39549026 PMCID: PMC11568611 DOI: 10.1002/prp2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/18/2024] Open
Abstract
Acute kidney injury (AKI)-to-chronic kidney disease (CKD) transition involves a complex pathomechanism, including inflammation, apoptosis, and fibrosis where long non-coding RNAs (lncRNAs) play a crucial role in their regulation. However, to date, only a few lncRNAs have been discovered to be involved in the AKI-to-CKD transition. Therefore, this study aims to investigate the dysregulated lncRNAs in the AKI-to-CKD transition in vitro and in vivo. To mimic AKI-to-CKD transition both in vivo and in vitro, bilateral ischemia-reperfusion (IR) kidney injury was performed in Wistar rats (male), and normal rat kidney epithelial cell (NRK52E) cells were treated with exogenous transforming growth factor-β1 (TGF-β1). Further processing and analysis of samples collected from these studies (e.g., biochemical, histopathology, immunofluorescence, and RNA isolation) were also performed, and transcriptomic analysis was performed to identify the dysregulated lncRNAs. Rats subjected to IR showed a significant increase in kidney injury markers (creatinine, blood urea nitrogen (BUN), kidney injury molecule-1(KIM-1), and neutrophil gelatinase-associated lipocalin (NGAL) along with altered cell morphology). Apoptosis, inflammation, and fibrosis markers were markedly increased during the AKI-to-CKD transition. Furthermore, transcriptomic analysis revealed 62 and 84 unregulated and 95 and 92 downregulated lncRNAs in vivo and in vitro, respectively. Additionally, functional enrichment analysis revealed their involvement in various pathways, including the tumor necrosis factor (TNF), wingless-related integration site (Wnt), and hypoxia-inducible factor-1 (HIF-1) signaling pathways. These identified dysregulated lncRNAs significantly contribute to AKI-to-CKD transition, and their knockin/out can aid in developing targeted therapeutic interventions against AKI-to-CKD transition.
Collapse
Affiliation(s)
- Bhupendra Puri
- Department of PharmacyBirla Institute of Technology and Science PilaniPilaniRajasthanIndia
| | - Syamantak Majumder
- Department of Biological SciencesBirla Institute of Technology and Science PilaniPilaniRajasthanIndia
| | - Anil Bhanudas Gaikwad
- Department of PharmacyBirla Institute of Technology and Science PilaniPilaniRajasthanIndia
| |
Collapse
|
5
|
Vij P, Hussain MS, Satapathy SK, Cobos E, Tripathi MK. The Emerging Role of Long Noncoding RNAs in Sorafenib Resistance Within Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:3904. [PMID: 39682093 PMCID: PMC11639815 DOI: 10.3390/cancers16233904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/01/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a liver cancer originating from hepatocytes, is a major health concern and among the most common malignancies worldwide. Sorafenib, approved by the U.S. F.D.A., is the primary first-line treatment for patients with advanced HCC. While the preferred first-line systemic regimen for HCC is immunotherapy with Atezolizumab plus bevacizumab or Tremelimumab-actl + durvalumab, Sorafenib is still an alternative recommended regimen. While some patients with advanced HCC may benefit from Sorafenib treatment, most eventually develop resistance, leading to poor prognosis. Long noncoding RNAs (lncRNAs) have been found to play a critical role in tumorigenesis and the development of HCC, as well as other cancers. They are also key players in tumor drug resistance, though the mechanisms of lncRNAs in Sorafenib resistance in HCC remain poorly understood. This review summarizes the molecular mechanisms contributing to Sorafenib resistance in HCC with their potential correlation with lncRNAs, including the roles of transporters, receptors, cell death regulation, and other influencing factors.
Collapse
Affiliation(s)
- Puneet Vij
- Department of Pharmaceutical Sciences, St. John’s University, Queens, NY 11439, USA;
| | - Mohammad Shabir Hussain
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.H.); (E.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Sanjaya K. Satapathy
- Department of Medicine, Donald and Barbara Zucker School of Medicine at Hofstra, Northwell Health Center for Liver Diseases & Transplantation, Northshore University Hospital, Manhasset, NY 11030, USA;
| | - Everardo Cobos
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.H.); (E.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| | - Manish K. Tripathi
- Medicine and Oncology ISU, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA; (M.S.H.); (E.C.)
- South Texas Center of Excellence in Cancer Research, School of Medicine, The University of Texas Rio Grande Valley, McAllen, TX 78504, USA
| |
Collapse
|
6
|
Segmen F, Aydemir S, Küçük O, Doğu C, Dokuyucu R. Comparison of Oxidative Stress Markers with Clinical Data in Patients Requiring Anesthesia in an Intensive Care Unit. J Clin Med 2024; 13:6979. [PMID: 39598124 PMCID: PMC11595426 DOI: 10.3390/jcm13226979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Objectives: The aim of this study is to assess the oxidative stress status in patients requiring intensive care unit (ICU) admission before initiating ICU treatment, by measuring the total oxidant level (TOS) and total antioxidant level (TAS) and oxidative stress index (OSI) levels. Additionally, we aim to explore the correlation between these oxidative stress markers and biochemical and hematological parameters. Materials and Methods: A total of 153 patients treated in intensive care units were included in the study. Patients who met the patient admission criteria of the ethics committee of the intensive care medicine association were included in the study. Blood samples were taken at the first moment the patients were admitted to the intensive care unit (before starting treatment). In total, 60 healthy volunteers who were compatible with the patient group in terms of age and gender were included in the study as a control group. Patients who had previously received antioxidant treatment and cancer patients were excluded from the study. Results: The TOS was significantly higher in the patient group (13.4 ± 7.5) compared to controls (1.8 ± 4.4) (p = 0.021). TOS > 12.00 means a "very high oxidant level". OSI was significantly higher in the patient group (689.8 ± 693.9) compared to the control group (521.7 ± 546.6) (p = 0.035). Ferritin levels were significantly higher in the patient group (546.5 ± 440.8 ng/mL) compared to controls (45.5 ± 46.5 ng/mL) (p < 0.001). Patients had significantly higher levels of C-reactive protein (CRP), procalcitonin (PCT), white blood cells (WBCs), immature granulocytes (IGs), zinc, and copper compared to the control group, indicating elevated inflammation and oxidative stress. CRP levels were 76.6 ± 85.9 mg/L in patients versus 5.6 ± 15.1 mg/L in controls (p < 0.001). PCT levels were 15.8 ± 8.6 ng/L in patients versus 2.3 ± 7.2 ng/L in controls (p = 0.012). Zinc and copper were also significantly elevated (p = 0.012 and p = 0.002, respectively). Conclusions: Our study provides valuable insights into the relationship between oxidative stress, inflammation, and trace elements, contributing to the growing understanding of oxidative stress as a prognostic tool in critical care. This could help to tailor therapeutic strategies aimed at reducing oxidative damage in ICU patients, enhancing patient outcomes.
Collapse
Affiliation(s)
- Fatih Segmen
- Department of Intensive Care Unit, Ankara City Hospital, Ankara 06800, Türkiye;
| | - Semih Aydemir
- Department of Anesthesiology and Reanimation, Yenimahalle Training and Research Hospital, University of Yıldırım Beyazit, Ankara 06800, Türkiye;
| | - Onur Küçük
- Department of Anesthesiology and Reanimation, Ankara Atatürk Sanatorium Training and Research Hospital, University of Health Sciences, Ankara 06290, Türkiye;
| | - Cihangir Doğu
- Department of Anesthesiology and Reanimation, Ankara Bilkent City Hospital Department of Intensive Carei, Ankara 06800, Türkiye;
| | - Recep Dokuyucu
- Department of Physiology, Medical Specialization Training Center (TUSMER), Ankara 06800, Türkiye
| |
Collapse
|
7
|
Rajendran P, Sekar R, Abdallah BM, Fathima JH S, Ali EM, Jayaraman S, Abdelsalam SA, Veeraraghavan V. Epigenetic modulation of long noncoding RNA H19 in oral squamous cell carcinoma-A narrative review. Noncoding RNA Res 2024; 9:602-611. [PMID: 38532798 PMCID: PMC10963247 DOI: 10.1016/j.ncrna.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 03/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) showed a seemingly increasing incidence in the last decade. In India, despite the use of tobacco decreased rapidly, in the past five years, the incidence pattern of OSCC over gender and age showed a drastic shift. About 51 % of the head and neck cancers are not associated with habits. Studies exploring various contributing factors in the incidence of this malignancy have documented. Recently, the epigenetic factors associated with the induction and progression of OSCC were explored. More than 90 % of the human genome is made up of non-coding transcriptome, which believed to be noises. However, these non-coding RNAs were identified to be the major epigenetic modulators, which raises concern over incidence of carcinoma in non-habit patients. H19 is a long non coding RNA which proved to be an effective biomarker in various carcinoma. Its role in oral squamous cell cancer was not investigated in depth. This review discusses in detail the various epigenetic role of H19 in inducing oral carcinogenesis.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Ramya Sekar
- Department of Oral Pathology & Microbiology, Meenakshi Ammal Dental College & Hospital, Alapakkam Main Road, Maduravoyal, Chennai, 95, TN, India
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Basem M. Abdallah
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Shazia Fathima JH
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
- Department of Oral Pathology and Microbiology, Ragas Dental College and Hospitals, Chennai, 600119, Tamil Nadu, India
| | - Enas M. Ali
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, 12613, Egypt
| | - Selvaraj Jayaraman
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| | - Salaheldin Abdelraouf Abdelsalam
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Vishnupriya Veeraraghavan
- COMManD, Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600 077, Tamil Nadu, India
| |
Collapse
|
8
|
Puri B, Majumder S, Gaikwad AB. Significance of LncRNAs in AKI-to-CKD transition: A therapeutic and diagnostic viewpoint. Life Sci 2024; 342:122509. [PMID: 38387702 DOI: 10.1016/j.lfs.2024.122509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Acute kidney injury to chronic kidney disease (AKI-to-CKD) transition is a complex intermingling of characteristics of both AKI and CKD. Pathophysiologically, the transition lasts seven days after the AKI episode and thereafter silently progresses towards CKD. Growing reports confirm that the AKI-to-CKD transition is heavily regulated by epigenetic modifiers. Long non-coding RNAs (lncRNAs) share a diverse role in gene regulation at transcriptional and translational levels and have been reported to be involved in the regulation and progression of AKI-to-CKD transition. Several lncRNAs have been considered potential biomarkers for diagnosing kidney disease, including AKI and CKD. Targeting lncRNAs gives a promising therapeutic strategy against kidney diseases. The primitive role of lncRNA in the progression of the AKI-to-CKD transition is yet to be fully understood. As known, the lncRNAs could be used as a biomarker and a therapeutic target to halt the CKD development and progression after AKI. This review aims to deepen our understanding of the current knowledge regarding the involvement of lncRNAs in the AKI-to-CKD transition. This review primarily discusses the role of lncRNAs and the change in their mechanisms during different stages of kidney disease, such as in AKI, AKI-to-CKD transition, and CKD. Further, we have discussed the potential diagnostic and pharmacological outcomes of targeting lncRNAs to prevent or slow the progression of AKI-to-CKD transition.
Collapse
Affiliation(s)
- Bhupendra Puri
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Anil Bhanudas Gaikwad
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India.
| |
Collapse
|
9
|
Wu J, Wan M, Jiang Z, Gong W, Zhou X. lncRNA FAS-AS1 served as a diagnostic biomarker of end-stage renal disease and mediated vascular calcification via regulating oxidative stress and inflammation. Gene 2024; 896:148035. [PMID: 38013128 DOI: 10.1016/j.gene.2023.148035] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
PURPOSE Vascular calcification is a frequently occurring complication of end-stage renal disease (ESRD). This study focused on the significance of long non-coding RNA Fas cell surface death receptor-antisense 1(lncRNA FAS-AS1) in ESRD-related vascular calcification aiming to explore a potential biomarker for the detection. METHODS The study enrolled 65 healthy individuals, 79 ESRD patients (48 patients with vascular calcification), and 93 early-stage (I-IV) chronic kidney disease (CKD) patients. The expression of FAS-AS1 in serum was evaluated by real-time quantitative polymerase chain reaction (PCR). The diagnostic potential of FAS-AS1 was assessed in discriminating ESRD patients, vascular calcification, and the severity of vascular calcification. In vitro, the vascular smooth muscle cells (VSMCs) were treated with a hyperphosphatemia medium to evaluate the effect of FAS-AS1 on VSMCs calcification. RESULTS Elevated serum FAS-AS1 was observed in ESRD patients, which could discriminate from healthy individuals and early-stage CKD patients. FAS-AS1 was associated with the development of ESRD and the occurrence of vascular calcification. FAS-AS1 was also upregulated in vascular calcification patients, especially the patients with severe calcification, which showed diagnostic significance in evaluating vascular calcification degrees. Calcified VSMCs showed significantly increased levels of Ca2+, reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6), which was attenuated by silencing FAS-AS1. CONCLUSIONS FAS-AS1 discriminated ERSD patients and was associated with the occurrence of vascular calcification. The knockdown of FAS-AS1 suppressed hyperphosphatemia-induced vascular calcification via alleviating oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jiaqi Wu
- Department of In-Patient Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Ming Wan
- Department of In-Patient Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Zhaopeng Jiang
- Department of In-Patient Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Wushuang Gong
- Department of In-Patient Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xianli Zhou
- Department of In-Patient Ultrasound, The 2nd Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
10
|
Wu Q, Huang F. LncRNA H19: a novel player in the regulation of diabetic kidney disease. Front Endocrinol (Lausanne) 2023; 14:1238981. [PMID: 37964955 PMCID: PMC10641825 DOI: 10.3389/fendo.2023.1238981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Diabetic kidney disease (DKD), one of the most severe complications of diabetes mellitus (DM), has received considerable attention owing to its increasing prevalence and contribution to chronic kidney disease (CKD) and end-stage kidney disease (ESRD). However, the use of drugs targeting DKD remains limited. Recent data suggest that long non-coding RNAs (lncRNAs) play a vital role in the development of DKD. The lncRNA H19 is the first imprinted gene, which is expressed in the embryo and down-regulated at birth, and its role in tumors has long been a subject of controversy, however, in recent years, it has received increasing attention in kidney disease. The LncRNA H19 is engaged in the pathological progression of DKD, including glomerulosclerosis and tubulointerstitial fibrosis via the induction of inflammatory responses, apoptosis, ferroptosis, pyroptosis, autophagy, and oxidative damage. In this review, we highlight the most recent research on the molecular mechanism and regulatory forms of lncRNA H19 in DKD, including epigenetic, post-transcriptional, and post-translational regulation, providing a new predictive marker and therapeutic target for the management of DKD.
Collapse
Affiliation(s)
| | - Fengjuan Huang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Balikci Cicek I, Colak C, Yologlu S, Kucukakcali Z, Ozhan O, Taslidere E, Danis N, Koc A, Parlakpinar H, Akbulut S. Nephrotoxicity Development of a Clinical Decision Support System Based on Tree-Based Machine Learning Methods to Detect Diagnostic Biomarkers from Genomic Data in Methotrexate-Induced Rats. APPLIED SCIENCES 2023; 13:8870. [DOI: 10.3390/app13158870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Background: The purpose of this study was to carry out the bioinformatic analysis of lncRNA data obtained from the genomic analysis of kidney tissue samples taken from rats with nephrotoxicity induced by methotrexate (MTX) and from rats without pathology and modeling with the tree-based machine learning method. Another aim of the study was to identify potential biomarkers for the diagnosis of nephrotoxicity and to provide a better understanding of the nephrotoxicity formation process by providing the interpretability of the model with explainable artificial intelligence methods as a result of the modeling. Methods: To identify potential indicators of drug-induced nephrotoxicity, 20 female Wistar albino rats were separated into two groups: MTX-treated and the control. Kidney tissue samples were collected from the rats, and genomic, histological, and immunohistochemical analyses were performed. The dataset obtained as a result of genomic analysis was modeled with random forest (RF), a tree-based method. Modeling results were evaluated with sensitivity (Se), specificity (Sp), balanced accuracy (B-Acc), negative predictive value (Npv), accuracy (Acc), positive predictive value (Ppv), and F1-score performance metrics. The local interpretable model-agnostic annotations (LIME) method was used to determine the lncRNAs that could be biomarkers for nephrotoxicity by providing the interpretability of the RF model. Results: The outcomes of the histological and immunohistochemical analyses conducted in the study support the conclusion that MTX use caused kidney injury. According to the results of the bioinformatics analysis, 52 lncRNAs showed different expressions in the groups. As a result of modeling with RF for lncRNAs selected with Boruta variable selection, the B-Acc, Acc, Sp, Se, Npv, Ppv, and F1-score were 88.9%, 90%, 90.9%, 88.9%, 90.9%, 88.9%, and 88.9%, respectively. lncRNAs with id rnaXR_591534.3 rnaXR_005503408.1, rnaXR_005495645.1, rnaXR_001839007.2, rnaXR_005492056.1, and rna_XR_005492522.1. The lncRNAs with the highest variable importance values produced from RF modeling can be used as nephrotoxicity biomarker candidates. Furthermore, according to the LIME results, the high level of lncRNAs with id rnaXR_591534.3 and rnaXR_005503408.1 particularly increased the possibility of nephrotoxicity. Conclusions: With the possible biomarkers resulting from the analyses in this study, it can be ensured that the procedures for the diagnosis of drug-induced nephrotoxicity can be carried out easily, quickly, and effectively.
Collapse
Affiliation(s)
- Ipek Balikci Cicek
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Saim Yologlu
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Zeynep Kucukakcali
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Onural Ozhan
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Elif Taslidere
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Nefsun Danis
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Ahmet Koc
- Department of Medical Biology and Genetics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| | - Sami Akbulut
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
- Department of Surgery, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey
| |
Collapse
|
12
|
Zhao M, Li N, Wan C, Zhang Q, Wang H, Jiang C. LncRNA CRNDE is involved in the pathogenesis of renal fibrosis by regulating renal epithelial cell mesenchymal-epithelial transition via targeting miR-29a-3p. Mutat Res 2023; 826:111817. [PMID: 37178498 DOI: 10.1016/j.mrfmmm.2023.111817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Results of previous studies suggested that renal fibrosis and epithelial-mesenchymal transition (EMT) plays an important role in the process of renal fibrosis, but the underlying mechanism remains unclear. Long coding RNA (lncRNA) CRNDE has emerged as potent regulators of EMT programs, therefore, in present work, we examined the roles of LncRNA CRNDE/miR-29a-3p axis in renal fibrosis and the underlying mechanism. We found that in both renal fibrosis animal and cell models, lncRNA CRNDE was dynamically upregulated in animal models or cells by the treatment of TGF-β. Furthermore, knockdown of CRNDE to rat significantly inhibited EMT, prevented renal fibrosis. Finally, CRNDE regulates renal fibrosis through suppression of miR-29a-3p expression. Together, our results demonstrated that CRNDE acted as a regulator of renal fibrosis via targeting miR-29a-3p. Our findings may provide a potential therapeutic target for the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Min Zhao
- Department of Nephrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Nan Li
- Department of Nephrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Cheng Wan
- Department of Nephrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Qingyan Zhang
- Department of Nephrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing 210008, Jiangsu, PR China
| | - Hengjin Wang
- Department of Nephrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing 210008, Jiangsu, PR China.
| | - Chunming Jiang
- Department of Nephrology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, No.321, Zhongshan Road, Nanjing 210008, Jiangsu, PR China.
| |
Collapse
|
13
|
Giannuzzi F, Maiullari S, Gesualdo L, Sallustio F. The Mission of Long Non-Coding RNAs in Human Adult Renal Stem/Progenitor Cells and Renal Diseases. Cells 2023; 12:1115. [PMID: 37190024 PMCID: PMC10137190 DOI: 10.3390/cells12081115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/29/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are a large, heterogeneous class of transcripts and key regulators of gene expression at both the transcriptional and post-transcriptional levels in different cellular contexts and biological processes. Understanding the potential mechanisms of action of lncRNAs and their role in disease onset and development may open up new possibilities for therapeutic approaches in the future. LncRNAs also play an important role in renal pathogenesis. However, little is known about lncRNAs that are expressed in the healthy kidney and that are involved in renal cell homeostasis and development, and even less is known about lncRNAs involved in human adult renal stem/progenitor cells (ARPC) homeostasis. Here we give a thorough overview of the biogenesis, degradation, and functions of lncRNAs and highlight our current understanding of their functional roles in kidney diseases. We also discuss how lncRNAs regulate stem cell biology, focusing finally on their role in human adult renal stem/progenitor cells, in which the lncRNA HOTAIR prevents them from becoming senescent and supports these cells to secrete high quantities of α-Klotho, an anti-aging protein capable of influencing the surrounding tissues and therefore modulating the renal aging.
Collapse
Affiliation(s)
- Francesca Giannuzzi
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Silvia Maiullari
- Department of Interdisciplinary Medicine (DIM), University of Bari Aldo Moro, 70124 Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
- MIRROR—Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Fabio Sallustio
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
- MIRROR—Medical Institute for Regeneration, Repairing and Organ Replacement, Interdepartmental Center, University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
14
|
He L, Wang H, He P, Jiang Y, Ma F, Wang J, Hu J. Serum Long Noncoding RNA H19 and CKD Progression in IgA Nephropathy. J Nephrol 2023; 36:397-406. [PMID: 36574208 DOI: 10.1007/s40620-022-01536-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/20/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND IgA nephropathy (IgAN) is one of the most common primary glomerular diseases worldwide, especially in young Asian adults. Long RNA H19 is associated with renal pathologies, such as renal cell injury; however, a connection between serum H19 expression and kidney disease progression has not been demonstrated. METHOD Our cohort consisted of 204 patients with IgAN. Serum H19 levels were determined with reverse-transcription quantitative polymerase between 1 May, 2014 and 1 May, 2015. H19 levels were log-transformed and categorical variables were categorized according to cutoff points of a ROC curve. Restricted cubic spline and generalized estimating equation analyses were performed to determine the association between serum H19 and kidney disease progression. RESULTS H19 expression was significantly downregulated in patients with IgAN compared to healthy controls. Restricted cubic spline analyses showed that the relationship was negatively and linearly correlated (P for nonlinearly = 0.256). After adjusting for other potential clinical, pathologic, and treatment factors, H19 was found to be a protective factor for prognosis in IgAN (HR, 0.52; 95% CI 0.32-0.84; P = 0.008). ROC curve analysis showed that the clinical value of lncRNA H19 with CKD and area under the ROC curve was 0.746 (95% CI 0.663-0.829; P < 0.001) of the clinical prognostic value of H19. Serum restricted cubic spline analyses showed that the relationship was negatively and linearly correlated (P for non-linearly = 0.256). H19 > 0.097 in patients in IgAN was associated with a reduction of the risk of kidney progression by approximately 70% within 5 years compared to H19≤0.097 (HR, 0.30;95% CI 0.12-0.74; P = 0.009). CONCLUSION H19 is an independent protective factor, and a high level of H19 often indicates better renal outcome within 5 years.
Collapse
Affiliation(s)
- Lijie He
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hanmin Wang
- Department of Nephrology, First Hospital of Xi'an City, Northwest University, Xi'an, 710054, Shaan'xi Province, China
| | - Peng He
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yali Jiang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Feng Ma
- Department of Nephrology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaan'xi Province, China
| | - Jing Wang
- Department of Nephrology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaan'xi Province, China
| | - Jinping Hu
- Department of Nephrology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710054, Shaan'xi Province, China.
| |
Collapse
|
15
|
Liu J, Zhao Z, Deng Z, Chen X, Li W. LncRNA AC108925 promotes osteoblast differentiation of tendon-derived stem cells by targeting miR-146a-3p. Pathol Res Pract 2023; 241:154230. [PMID: 36463687 DOI: 10.1016/j.prp.2022.154230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
It has been reported that tendon-derived stem cells(TDSCs) conduce to the ostosis in tendon diseases, and the molecular mechanism needs to be discussed. To investigate the function and mechanism of LncRNA in tendinopathy. Tendon of tendinopathy patients and health controls were obtained, and sequencing analysis have been performed to detect the significantly expressed genes and non-coding RNAs. Moreover, to further discuss LncRNA AC108925 in tendinopathy, tendinopathy animal models have been established, and the expression of LncRNA AC108925 expression was examined by RT-qPCR methods. Furthermore, hTDSCs have been treated by osteogenic medium, and the modulating function of LncRNA AC108925 on the osteoblast differentiation of hTDSCs have been examined. Sequencing analysis showed that AC108925 a dramatically elevated LncRNA, and results of animal and cells studies confirmed the finding. Knockdown AC108925 inhibited the osteogenic differentiation of osteogenic medium treated TDSCs by decreasing the expression of osteogenic markers. Furthermore, miR-146a-3p is a target of AC108925 in TDSCs, and miR-146a-3p is a negative modulator of osteogenic differentiation of hTDSCs by inhibiting the effects of AC108925 shRNA on osteogenic differentiation of hTDSCs. AC108925 can regulate the osteogenic differentiation of hTDSCs via regulating the miR-146a-3p. Targeting the AC108925/miR-146a-3p axis might be a latent way to treat tendinopathy.
Collapse
Affiliation(s)
- Jianquan Liu
- Department of Foot and Ankle & Hand Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Zhe Zhao
- Department of Foot and Ankle & Hand Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Zhiqin Deng
- Department of Foot and Ankle & Hand Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Xiaoqiang Chen
- Department of Foot and Ankle & Hand Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China
| | - Wencui Li
- Department of Foot and Ankle & Hand Surgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, China.
| |
Collapse
|
16
|
Liu C, Ma K, Zhang Y, He X, Song L, Chi M, Han Z, Li G, Zhang Q, Liu C. Kidney diseases and long non-coding RNAs in the limelight. Front Physiol 2022; 13:932693. [PMID: 36299256 PMCID: PMC9589442 DOI: 10.3389/fphys.2022.932693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The most extensively and well-investigated sequences in the human genome are protein-coding genes, while large numbers of non-coding sequences exist in the human body and are even more diverse with more potential roles than coding sequences. With the unveiling of non-coding RNA research, long-stranded non-coding RNAs (lncRNAs), a class of transcripts >200 nucleotides in length primarily expressed in the nucleus and rarely in the cytoplasm, have drawn our attention. LncRNAs are involved in various levels of gene regulatory processes, including but not limited to promoter activity, epigenetics, translation and transcription efficiency, and intracellular transport. They are also dysregulated in various pathophysiological processes, especially in diseases and cancers involving genomic imprinting. In recent years, numerous studies have linked lncRNAs to the pathophysiology of various kidney diseases. This review summarizes the molecular mechanisms involved in lncRNAs, their impact on kidney diseases, and associated complications, as well as the value of lncRNAs as emerging biomarkers for the prevention and prognosis of kidney diseases, suggesting their potential as new therapeutic tools.
Collapse
Affiliation(s)
- Chenxin Liu
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kuai Ma
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yunchao Zhang
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Linjiang Song
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Zhongyu Han
- Reproductive and Women-Children Hospital, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanhua Li
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| | - Qinxiu Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- *Correspondence: Guanhua Li, ; Qinxiu Zhang, ; Chi Liu,
| |
Collapse
|
17
|
Abstract
Diabetes mellitus (DM) causes damage to major organs, including the heart, liver, brain, kidneys, eyes, and blood vessels, threatening the health of the individuals. Emerging evidence has demonstrated that lncRNAs has important functions in the pathogenesis of human diseases, such as cancers, neurodegenerative diseases, cardiac fibroblast phenotypes, hypertension, heart failure, atherosclerosis and diabetes. Recently, H19, a lncRNA, has been reported to shown to participate in the regulatory process of muscle differentiation, glucose metabolism, and tumor metastasis, as well as endometrial development. However, the roles of H19 in DM were still not completely understood. This review was conducted to summarize the functions of H19 in diabetes and discuss the challenges and possible strategies of H19 in DM.
Collapse
Affiliation(s)
- Ye Bi
- Department of Geriatrics, Shandong First Medical University, Jinan, China
| | - Yao Wang
- Shandong Institute of Endocrine and Metabolic Diseases, Medical University, Jinan, China
| | - Xianglan Sun
- Department of Geriatrics, Shandong First Medical University, Jinan, China
| |
Collapse
|
18
|
Ashrafizadeh M, Zarrabi A, Mostafavi E, Aref AR, Sethi G, Wang L, Tergaonkar V. Non-coding RNA-based regulation of inflammation. Semin Immunol 2022; 59:101606. [PMID: 35691882 DOI: 10.1016/j.smim.2022.101606] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/01/2022] [Accepted: 05/25/2022] [Indexed: 01/15/2023]
Abstract
Inflammation is a multifactorial process and various biological mechanisms and pathways participate in its development. The presence of inflammation is involved in pathogenesis of different diseases such as diabetes mellitus, cardiovascular diseases and even, cancer. Non-coding RNAs (ncRNAs) comprise large part of transcribed genome and their critical function in physiological and pathological conditions has been confirmed. The present review focuses on miRNAs, lncRNAs and circRNAs as ncRNAs and their potential functions in inflammation regulation and resolution. Pro-inflammatory and anti-inflammatory factors are regulated by miRNAs via binding to 3'-UTR or indirectly via affecting other pathways such as SIRT1 and NF-κB. LncRNAs display a similar function and they can also affect miRNAs via sponging in regulating levels of cytokines. CircRNAs mainly affect miRNAs and reduce their expression in regulating cytokine levels. Notably, exosomal ncRNAs have shown capacity in inflammation resolution. In addition to pre-clinical studies, clinical trials have examined role of ncRNAs in inflammation-mediated disease pathogenesis and cytokine regulation. The therapeutic targeting of ncRNAs using drugs and nucleic acids have been analyzed to reduce inflammation in disease therapy. Therefore, ncRNAs can serve as diagnostic, prognostic and therapeutic targets in inflammation-related diseases in pre-clinical and clinical backgrounds.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
19
|
Hernández-Aguilar AI, Luciano-Villa CA, Tello-Flores VA, Beltrán-Anaya FO, Zubillaga-Guerrero MI, Flores-Alfaro E. Dysregulation of lncRNA-H19 in cardiometabolic diseases and the molecular mechanism involved : a systematic review. Expert Rev Mol Diagn 2021; 21:809-821. [PMID: 34133256 DOI: 10.1080/14737159.2021.1944808] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Cardiometabolic diseases are a global public health problem, with significant increases in their prevalence. Different epigenetic factors involved in the progression of metabolic alterations have been described, such as long non-coding RNAs (lncRNAs). H19 is a multifunctional lncRNA expressed from the maternal allele, with low expression after birth, except in the skeletal muscle and heart. Recent studies have linked its dysregulation to alterations in cell metabolism.Areas covered: H19 plays a role in the pathogenesis of coronary artery disease, nonalcoholic fatty liver disease, hepatic and renal fibrosis, insulin resistance, type 2 diabetes, and inflammation. H19 acts mainly as a competitive endogenous RNA of molecules involved in pathways that regulate cell metabolism. In this review, we analyzed the dysregulation of H19 in cardiometabolic diseases and its relationship with molecular alterations in different signaling pathways.Expert opinion: The association of H19 with the development of cardiometabolic diseases, indicates that H19 could be a therapeutic target and prognostic biomarker for these diseases. Controversies have been reported regarding the expression of H19 in some metabolic diseases, therefore, it is necessary to continue research to clarify its pathogenic effect in different organs.
Collapse
Affiliation(s)
- Ana Iris Hernández-Aguilar
- Faculty of Chemical‑Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | | | | | - Fredy Omar Beltrán-Anaya
- Faculty of Chemical‑Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| | | | - Eugenia Flores-Alfaro
- Faculty of Chemical‑Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, Mexico
| |
Collapse
|