1
|
Kouga T, Miwa T, Wei FY, Sunami K, Tomizawa K. Mitochonic acid 5 mitigates age-related hearing loss progression by targeting defective 2-methylthiolation in mitochondrial transfer RNAs. Front Cell Neurosci 2025; 19:1541347. [PMID: 40260078 PMCID: PMC12009901 DOI: 10.3389/fncel.2025.1541347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction Age-related hearing loss (ARHL) is linked to dementia, with mitochondrial dysfunction playing a key role in its progression. Deficient mitochondrial tRNA modifications impair protein synthesis and energy metabolism, accelerating ARHL. Mitochonic acid 5 (MA-5) has shown promise as a therapeutic candidate by improving mitochondrial function, reducing oxidative stress, and stabilizing membrane potential. Methods In this study, we investigated the effects of MA-5 on ARHL in cyclin-dependent kinase 5 regulatory subunit-associated protein 1 (Cdk5rap1) knockout (KO) mice, which exhibit early-onset ARHL due to abnormalities in mitochondrial transfer RNA (mt-tRNA) modifications. Results MA-5 treatment effectively attenuated ARHL progression in Cdk5rap1-KO mice by improving auditory brainstem response thresholds and distortion product otoacoustic emissions. It also reduced spiral ganglion and outer hair cell loss, while preserving the cochlear structural integrity by preventing mitochondrial degeneration in spiral ligament fibrocytes. Mechanistically, MA-5 upregulated the expression of silent information regulator sirtuin 1 and promoted the nuclear translocation of yes-associated protein, both of which are involved in regulating mitochondrial function and cellular senescence. Metabolomics analysis further demonstrated that MA-5 restored mitochondrial metabolism, reduced lactate accumulation, and maintained mitochondrial integrity. Conclusion These findings suggest that MA-5 is a viable treatment option for ARHL and other age-related disorders associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Teppei Kouga
- Department of Otolaryngology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto University, Kyoto, Japan
- Department of Otolaryngology, Teikyo University Hospital, Kawasaki, Japan
| | - Fan-yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kishiko Sunami
- Department of Otolaryngology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Fu Z, Zhao L, Guo Y, Yang J. Gene therapy for hereditary hearing loss. Hear Res 2025; 455:109151. [PMID: 39616957 DOI: 10.1016/j.heares.2024.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 12/28/2024]
Abstract
Gene therapy is a technique by which exogenous genetic material is introduced into target cells to treat or prevent diseases caused by genetic mutations. Hearing loss is the most common sensory disorder. Genetic factors contribute to approximately 50 % of all cases of profound hearing loss, and more than 150 independent genes have been reported as associated with hearing loss. Recent advances in CRISPR/Cas based gene-editing tools have facilitated the development of gene therapies for hereditary hearing loss (HHL). Viral delivery vectors, and especially adeno-associated virus (AAV) vectors, have been demonstrated as safe and efficient carriers for the delivery of transgenes into inner ear cells in animal models. More importantly, AAV-mediated gene therapy can restore hearing in some children with hereditary deafness. However, there are many different types of HHL that need to be identified and evaluated to determine appropriate gene therapy options. In the present review, we summarize recent animal model-based advances in gene therapy for HHL, as well as gene therapy strategies, gene-editing tools, delivery vectors, and administration routes. We also discuss the strengths and limitations of different gene therapy methods and describe future challenges for the eventual clinical application of gene therapy for HHL.
Collapse
Affiliation(s)
- Zeming Fu
- Department of Otolaryngology- Head and Neck Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130022, China
| | - Liping Zhao
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130022, China
| | - Yingyuan Guo
- Department of Otolaryngology- Head and Neck Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130022, China
| | - Jingpu Yang
- Department of Otolaryngology- Head and Neck Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130022, China.
| |
Collapse
|
3
|
Zhang L, Tan F, Qi J, Lu Y, Wang X, Yang X, Chen X, Zhang X, Fan J, Zhou Y, Peng L, Li N, Xu L, Yang S, Chai R. AAV-mediated Gene Therapy for Hereditary Deafness: Progress and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402166. [PMID: 39556694 DOI: 10.1002/advs.202402166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/19/2024] [Indexed: 11/20/2024]
Abstract
Hereditary deafness is the most prevalent sensory deficit disorder, with over 100 identified deafness-related genes. Clinical treatment options are currently limited to external devices like hearing aids and cochlear implants. Gene therapy has shown promising results in various genetic disorders and has emerged as a potential treatment for hereditary deafness. It has successfully restored hearing function in >20 types of genetic deafness model mice and can almost completely cure patients with hereditary autosomal recessvie deafness 9 (DFNB9) caused by the OTOFERLIN (OTOF) mutation, thus serving as a translational paradigm for gene therapy for other forms of genetic deafness. However, due to the complexity of the inner ear structure, the diverse nature of deafness genes, and variations in transduction efficiency among different types of inner ear cells targeted by adeno-associated virus (AAV), precision gene therapy approaches are required for different genetic forms of deafness. This review provides a comprehensive overview of gene therapy for hereditary deafness, including preclinical studies and recent research advancements in this field as well as challenges associated with AAV-mediated gene therapy.
Collapse
Affiliation(s)
- Liyan Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- State Key Laboratory of Hearing and Balance Science, Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yicheng Lu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiaohan Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xuehan Yang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xiangyan Chen
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xinru Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jinyi Fan
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Li Peng
- Otovia Therapeutics Inc., Suzhou, 215101, China
| | - Nianci Li
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, 250022, China
| | - Shiming Yang
- Senior Department of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, 100853, China
- State Key Laboratory of Hearing and Balance Science, Beijing, 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, 100853, China
- Key Laboratory of Hearing Science, Ministry of Education, Beijing, 100853, China
- Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, 100853, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- State Key Laboratory of Hearing and Balance Science, Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- University of Electronic Science and Technology of China, Chengdu, 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| |
Collapse
|
4
|
Rincon Sabatino S, Rivero A, Sangaletti R, Dietrich WD, Hoffer ME, King CS, Rajguru SM. Targeted therapeutic hypothermia protects against noise induced hearing loss. Front Neurosci 2024; 17:1296458. [PMID: 38292902 PMCID: PMC10826421 DOI: 10.3389/fnins.2023.1296458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Exposure to occupational or recreational loud noise activates multiple biological regulatory circuits and damages the cochlea, causing permanent changes in hearing sensitivity. Currently, no effective clinical therapy is available for the treatment or mitigation of noise-induced hearing loss (NIHL). Here, we describe an application of localized and non-invasive therapeutic hypothermia and targeted temperature management of the inner ear to prevent NIHL. Methods We developed a custom-designed cooling neck collar to reduce the temperature of the inner ear by 3-4°C post-injury to deliver mild therapeutic hypothermia. Results This localized and non-invasive therapeutic hypothermia successfully mitigated NIHL in rats. Our results show that mild hypothermia can be applied quickly and safely to the inner ear following noise exposure. We show that localized hypothermia after NIHL preserves residual hearing and rescues noise-induced synaptopathy over a period of months. Discussion This study establishes a minimally-invasive therapeutic paradigm with a high potential for rapid translation to the clinic for long-term preservation of hearing health.
Collapse
Affiliation(s)
| | - Andrea Rivero
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Rachele Sangaletti
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
| | - W. Dalton Dietrich
- Department of Otolaryngology, University of Miami, Coral Gables, FL, United States
| | - Michael E. Hoffer
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
| | | | - Suhrud M. Rajguru
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
- The Miami Project to Cure Paralysis, University of Miami, Coral Gables, FL, United States
- RestorEar Devices LLC, Bozeman, MT, United States
| |
Collapse
|
5
|
Kim DH, Seo YJ. Combination Therapy of Choline Alfoscerate With Ginkgo biloba Monotherapy in Age-Related Hearing Loss: Effects and Outcomes. J Audiol Otol 2024; 28:59-66. [PMID: 38052524 PMCID: PMC11810453 DOI: 10.7874/jao.2023.00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Ginkgo biloba and choline alfoscerate are used as adjuvant treatment for presbycusis, but studies on how the monotherapy differs from the combination therapy are lacking. Therefore, this study aimed to compare the audiologic outcomes between Ginkgo biloba monotherapy and Ginkgo biloba and choline alfoscerate combination therapy. Subjects and. METHODS The study groups are divided into three: negative control, monotherapy, and combination therapy groups. All groups' pure tone audiometry was measured by dividing the study period into Initial, 3-6, 6-9, 9-12, 12-15 months, and checked whether differences between groups were present. RESULTS The combination therapy showed less gradient gap than the monotherapy, indicating less hearing loss rate than the monotherapy. Based on the Kaplan-Meier curve, the combination therapy showed better results in terms of survival time of hearing. CONCLUSIONS As a pharmacological treatment for presbycusis, combination therapy shows better results than monotherapy.
Collapse
Affiliation(s)
- Dae Hyun Kim
- Department of Otolaryngology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Young Joon Seo
- Department of Otolaryngology, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
6
|
Markowska A, Koziorowski D, Szlufik S. Microglia and Stem Cells for Ischemic Stroke Treatment-Mechanisms, Current Status, and Therapeutic Challenges. FRONT BIOSCI-LANDMRK 2023; 28:269. [PMID: 37919085 DOI: 10.31083/j.fbl2810269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 11/04/2023]
Abstract
Ischemic stroke is one of the major causes of death and disability. Since the currently used treatment option of reperfusion therapy has several limitations, ongoing research is focusing on the neuroprotective effects of microglia and stem cells. By exerting the bystander effect, secreting exosomes and forming biobridges, mesenchymal stem cells (MSCs), neural stem cells (NSCs), induced pluripotent stem cells (iPSCs), and multilineage-differentiating stress-enduring cells (Muse cells) have been shown to stimulate neurogenesis, angiogenesis, cell migration, and reduce neuroinflammation. Exosome-based therapy is now being extensively researched due to its many advantageous properties over cell therapy, such as lower immunogenicity, no risk of blood vessel occlusion, and ease of storage and modification. However, although preclinical studies have shown promising therapeutic outcomes, clinical trials have been associated with several translational challenges. This review explores the therapeutic effects of preconditioned microglia as well as various factors secreted in stem cell-derived extracellular vesicles with their mechanisms of action explained. Furthermore, an overview of preclinical and clinical studies is presented, explaining the main challenges of microglia and stem cell therapies, and providing potential solutions. In particular, a highlight is the use of novel stem cell therapy of Muse cells, which bypasses many of the conventional stem cell limitations. The paper concludes with suggestions for directions in future neuroprotective research.
Collapse
Affiliation(s)
- Aleksandra Markowska
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland
| | - Dariusz Koziorowski
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Health Sciences, Medical University of Warsaw, 03-242 Warsaw, Poland
| |
Collapse
|
7
|
Tessler I, Gecel NA, Glicksberg BS, Shivatzki S, Shapira Y, Zimlichman E, Alon EE, Klang E, Wolfovitz A. A Five-Decade Text Mining Analysis of Cochlear Implant Research: Where We Started and Where We Are Heading. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1891. [PMID: 38003940 PMCID: PMC10673015 DOI: 10.3390/medicina59111891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Since its invention in the 1970s, the cochlear implant (CI) has been substantially developed. We aimed to assess the trends in the published literature to characterize CI. Materials and Methods: We queried PubMed for all CI-related entries published during 1970-2022. The following data were extracted: year of publication, publishing journal, title, keywords, and abstract text. Search terms belonged to the patient's age group, etiology for hearing loss, indications for CI, and surgical methodological advancement. Annual trends of publications were plotted. The slopes of publication trends were calculated by fitting regression lines to the yearly number of publications. Results: Overall, 19,428 CIs articles were identified. Pediatric-related CI was the most dominant sub-population among the age groups, with the highest rate and slope during the years (slope 5.2 ± 0.3, p < 0.001), while elderly-related CIs had significantly fewer publications. Entries concerning hearing preservation showed the sharpest rise among the methods, from no entries in 1980 to 46 entries in 2021 (slope 1.7 ± 0.2, p < 0.001). Entries concerning robotic surgery emerged in 2000, with a sharp increase in recent years (slope 0.5 ± 0.1, p < 0.001). Drug-eluting electrodes and CI under local-anesthesia have been reported only in the past five years, with a gradual rise. Conclusions: Publications regarding CI among pediatrics outnumbered all other indications, supporting the rising, pivotal role of CI in the rehabilitation of children with sensorineural hearing loss. Hearing-preservation publications have recently rapidly risen, identified as the primary trend of the current era, followed by a sharp rise of robotic surgery that is evolving and could define the next revolution.
Collapse
Affiliation(s)
- Idit Tessler
- Department of Otolaryngology and Head and Neck Surgery, Sheba Medical Center, Ramat Gan 52621, Israel (S.S.); (Y.S.); (E.E.A.); (A.W.)
- ARC Innovation Center, Sheba Medical Center, Ramat Gan 52621, Israel; (E.Z.); (E.K.)
| | - Nir A. Gecel
- Department of Otolaryngology and Head and Neck Surgery, Sheba Medical Center, Ramat Gan 52621, Israel (S.S.); (Y.S.); (E.E.A.); (A.W.)
| | - Benjamin S. Glicksberg
- Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shaked Shivatzki
- Department of Otolaryngology and Head and Neck Surgery, Sheba Medical Center, Ramat Gan 52621, Israel (S.S.); (Y.S.); (E.E.A.); (A.W.)
| | - Yisgav Shapira
- Department of Otolaryngology and Head and Neck Surgery, Sheba Medical Center, Ramat Gan 52621, Israel (S.S.); (Y.S.); (E.E.A.); (A.W.)
| | - Eyal Zimlichman
- ARC Innovation Center, Sheba Medical Center, Ramat Gan 52621, Israel; (E.Z.); (E.K.)
| | - Eran E. Alon
- Department of Otolaryngology and Head and Neck Surgery, Sheba Medical Center, Ramat Gan 52621, Israel (S.S.); (Y.S.); (E.E.A.); (A.W.)
| | - Eyal Klang
- ARC Innovation Center, Sheba Medical Center, Ramat Gan 52621, Israel; (E.Z.); (E.K.)
- Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amit Wolfovitz
- Department of Otolaryngology and Head and Neck Surgery, Sheba Medical Center, Ramat Gan 52621, Israel (S.S.); (Y.S.); (E.E.A.); (A.W.)
| |
Collapse
|
8
|
Lembacher MJ, Arnoldner C, Landegger LD. Patient Acceptance of Novel Therapeutic Options for Sensorineural Hearing Loss-A Pilot Study. Otol Neurotol 2023; 44:e204-e210. [PMID: 36791369 DOI: 10.1097/mao.0000000000003828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
OBJECTIVES Numerous preclinical experiments over the past years have shown the potential of novel therapeutic approaches for sensorineural hearing loss (SNHL) that are now awaiting clinical translation. In this pilot study, we aimed to evaluate the patient acceptance of these future innovative therapies in individuals with SNHL. STUDY DESIGN Cross-sectional exploratory pilot study. SETTING Tertiary care academic hospital. PATIENTS In total, 72 individuals (43 female and 29 male, 59 affected subjects and 13 parents) with different types of SNHL were surveyed between May 2020 and November 2020. INTERVENTION The interest/willingness to consider new therapeutic options (viral vectors, stem cells, CRISPR/Cas) for themselves or their children was assessed with the help of a questionnaire, and the answers were matched with a quality-of-life score and sociodemographic as well as clinical characteristics. MAIN OUTCOME MEASURE Acceptance of new therapeutic strategies for SNHL in a representative population. RESULTS Even with the currently associated treatment uncertainties, 48 patients (66.7%) suffering from SNHL stated that new therapies could be a potential future option for them. Half of these (24 individuals; 33.3%) expressed high acceptance toward the novel strategies. Subjects with a positive attitude toward new therapies in general and viral vectors specifically were significantly older. CONCLUSION With two-thirds of patients affected by SNHL expressing acceptance toward novel therapies, this pilot study highlights the importance of investigating such attitudes and motivates further translational research to offer additional treatment strategies to this patient population.
Collapse
Affiliation(s)
- Matthias J Lembacher
- Department of Otorhinolaryngology-Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna
| | - Christoph Arnoldner
- Department of Otorhinolaryngology-Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna
| | | |
Collapse
|
9
|
Zeng B, Xu H, Yu Y, Li S, Tian Y, Li T, Yang Z, Wang H, Wang G, Chang M, Tang W. Increased diagnostic yield in a cohort of hearing loss families using a comprehensive stepwise strategy of molecular testing. Front Genet 2022; 13:1057293. [PMID: 36568381 PMCID: PMC9768221 DOI: 10.3389/fgene.2022.1057293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Hearing loss is one of the most common sensory disorders in humans. This study proposes a stepwise strategy of deafness gene detection using multiplex PCR combined with high-throughput sequencing, Sanger sequencing, multiplex ligation-dependent probe amplification (MLPA), and whole-exome sequencing (WES) to explore its application in molecular diagnosis of hearing loss families. A total of 152 families with hearing loss were included in this study, the highest overall diagnosis rate was 73% (111/152). The diagnosis rate of multiplex PCR combined with high-throughput sequencing was 52.6% (80/152). One families was diagnosed by Sanger sequencing of GJB2 exon 1. Two families were diagnosed by MLPA analysis of the STRC gene. The diagnosis rate with additional contribution from WES was 18.4% (28/152). We identified 21 novel variants from 15 deafness genes by WES. Combining WES and deep clinical phenotyping, we diagnosed 11 patients with syndromic hearing loss (SHL). This study demonstrated improved diagnostic yield in a cohort of hearing loss families and confirmed the advantages of a stepwise strategy in the molecular diagnosis of hearing loss.
Collapse
Affiliation(s)
- Beiping Zeng
- BGI College and Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China,National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
| | - Hongen Xu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China,The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Yu
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Siqi Li
- Department of Physiology and Neurobiology, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Yongan Tian
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Tiandong Li
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zengguang Yang
- Precision Medicine Center, Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Haili Wang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China
| | - Guangke Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Mingxiu Chang
- National Health Commission Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, China,*Correspondence: Mingxiu Chang, ; Wenxue Tang,
| | - Wenxue Tang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China,*Correspondence: Mingxiu Chang, ; Wenxue Tang,
| |
Collapse
|
10
|
Nist-Lund C, Kim J, Koehler KR. Advancements in inner ear development, regeneration, and repair through otic organoids. Curr Opin Genet Dev 2022; 76:101954. [PMID: 35853286 PMCID: PMC10425989 DOI: 10.1016/j.gde.2022.101954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/01/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022]
Abstract
The vertebrate inner ear contains a diversity of unique cell types arranged in a particularly complex 3D cytoarchitecture. Both of these features are integral to the proper development, function, and maintenance of hearing and balance. Since the elucidation of the timing and delivery of signaling molecules to produce inner ear sensory cells, supporting cells, and neurons from human induced pluripotent stem cells, we have entered a revolution using organ-like 'otic organoid' cultures to explore inner ear specific genetic programs, developmental rules, and potential therapeutics. This review aims to highlight a selection of reviews and primary research papers from the past two years of particular merit that use otic organoids to investigate the broadly defined topics of cell reprogramming, regeneration, and repair.
Collapse
Affiliation(s)
- Carl Nist-Lund
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, 02115, USA
- Department of Otolaryngology, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
| | - Jin Kim
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, 02115, USA
| | - Karl R. Koehler
- Department of Otolaryngology, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- Department of Plastic and Oral Surgery, Boston Children’s Hospital, Boston, Massachusetts, 02115, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, 02115, USA
| |
Collapse
|
11
|
OUP accepted manuscript. Hum Mol Genet 2022; 31:3068-3082. [DOI: 10.1093/hmg/ddac096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 11/14/2022] Open
|
12
|
Progression of KCNQ4 related genetic hearing loss: a narrative review. JOURNAL OF BIO-X RESEARCH 2021. [DOI: 10.1097/jbr.0000000000000112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Botto C, Dalkara D, El-Amraoui A. Progress in Gene Editing Tools and Their Potential for Correcting Mutations Underlying Hearing and Vision Loss. Front Genome Ed 2021; 3:737632. [PMID: 34778871 PMCID: PMC8581640 DOI: 10.3389/fgeed.2021.737632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Blindness and deafness are the most frequent sensory disorders in humans. Whatever their cause - genetic, environmental, or due to toxic agents, or aging - the deterioration of these senses is often linked to irreversible damage to the light-sensing photoreceptor cells (blindness) and/or the mechanosensitive hair cells (deafness). Efforts are increasingly focused on preventing disease progression by correcting or replacing the blindness and deafness-causal pathogenic alleles. In recent years, gene replacement therapies for rare monogenic disorders of the retina have given positive results, leading to the marketing of the first gene therapy product for a form of childhood hereditary blindness. Promising results, with a partial restoration of auditory function, have also been reported in preclinical models of human deafness. Silencing approaches, including antisense oligonucleotides, adeno-associated virus (AAV)-mediated microRNA delivery, and genome-editing approaches have also been applied to various genetic forms of blindness and deafness The discovery of new DNA- and RNA-based CRISPR/Cas nucleases, and the new generations of base, prime, and RNA editors offers new possibilities for directly repairing point mutations and therapeutically restoring gene function. Thanks to easy access and immune-privilege status of self-contained compartments, the eye and the ear continue to be at the forefront of developing therapies for genetic diseases. Here, we review the ongoing applications and achievements of this new class of emerging therapeutics in the sensory organs of vision and hearing, highlighting the challenges ahead and the solutions to be overcome for their successful therapeutic application in vivo.
Collapse
Affiliation(s)
- Catherine Botto
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Deniz Dalkara
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
14
|
Sex Differences in the Triad of Acquired Sensorineural Hearing Loss. Int J Mol Sci 2021; 22:ijms22158111. [PMID: 34360877 PMCID: PMC8348369 DOI: 10.3390/ijms22158111] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/17/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
The triad of noise-generated, drug-induced, and age-related hearing loss is the major cause of acquired sensorineural hearing loss (ASNHL) in modern society. Although these three forms of hearing loss display similar underlying mechanisms, detailed studies have revealed the presence of sex differences in the auditory system both in human and animal models of ASNHL. However, the sexual dimorphism of hearing varies among noise-induced hearing loss (NIHL), ototoxicity, and age-related hearing loss (ARHL). Importantly, estrogen may play an essential role in modulating the pathophysiological mechanisms in the cochlea and several reports have shown that the effects of hormone replacement therapy on hearing loss are complex. This review will summarize the clinical features of sex differences in ASNHL, compare the animal investigations of cochlear sexual dimorphism in response to the three insults, and address how estrogen affects the auditory organ at molecular levels.
Collapse
|
15
|
Hosoya M, Fujioka M, Murayama AY, Ogawa K, Okano H, Ozawa H. Dynamic Spatiotemporal Expression Changes in Connexins of the Developing Primate's Cochlea. Genes (Basel) 2021; 12:genes12071082. [PMID: 34356098 PMCID: PMC8307058 DOI: 10.3390/genes12071082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 01/03/2023] Open
Abstract
Connexins are gap junction components that are essential for acquiring normal hearing ability. Up to 50% of congenital, autosomal-recessive, non-syndromic deafness can be attributed to variants in GJB2, the gene that encodes connexin 26. Gene therapies modifying the expression of connexins are a feasible treatment option for some patients with genetic hearing losses. However, the expression patterns of these proteins in the human fetus are not fully understood due to ethical concerns. Recently, the common marmoset was used as a primate animal model for the human fetus. In this study, we examined the expression patterns of connexin 26 and connexin 30 in the developing cochlea of this primate. Primate-specific spatiotemporal expression changes were revealed, which suggest the existence of primate-specific control of connexin expression patterns and specific functions of these gap junction proteins. Moreover, our results indicate that treatments for connexin-related hearing loss established in rodent models may not be appropriate for human patients, underscoring the importance of testing these treatments in primate models before applying them in human clinical trials.
Collapse
Affiliation(s)
- Makoto Hosoya
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (M.H.); (K.O.); (H.O.)
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (M.H.); (K.O.); (H.O.)
- Correspondence: ; Tel.: +81-3-5363-3827
| | - Ayako Y. Murayama
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (A.Y.M.); (H.O.)
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Kaoru Ogawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (M.H.); (K.O.); (H.O.)
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (A.Y.M.); (H.O.)
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako 351-0198, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (M.H.); (K.O.); (H.O.)
| |
Collapse
|