1
|
Xie X, Chao R, Mao Y, Wan T, Wang Y, Zhu Y, Xu W, Chen X, Wang Y, Ma Z, Zhang S. Osteoarthritis-like changes in rat temporomandibular joint induced by unilateral anterior large overjet treatment. Sci Rep 2025; 15:1646. [PMID: 39794380 PMCID: PMC11723919 DOI: 10.1038/s41598-024-81306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/26/2024] [Indexed: 01/13/2025] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative disease that causes chronic pain and joint dysfunction. However, the current understanding of TMJOA pathogenesis is limited and necessitates further research. Animal models are crucial for investigating TMJOA due to the scarcity of clinical samples. Class II malocclusion is an occlusal type highly associated with TMJOA, but it currently lacks appropriate animal models for simulating this malocclusion in research. Therefore, this study develops a new malocclusion model using a unilateral anterior large overjet (UALO) dental device to cause Class II malocclusion characteristics and TMJOA-like pathological alterations in rats. By inducing a posteriorly positioned condyle, the UALO device effectively results in cartilage degradation, subchondral bone loss, condylar volume reduction, and mandibular retrusion. Furthermore, RNA sequencing of condylar cartilages revealed that the oxidative stress of chondrocytes was elevated under the UALO-triggered abnormal mechanical stress. Disruption of antioxidant systems and mitochondrial dysfunction are involved in cartilage degeneration. The current study provides a novel and reliable rat model suitable for TMJOA research and offers insights into the disease's potential mechanistic pathways and molecular targets, contributing to a deeper understanding of TMJOA.
Collapse
Affiliation(s)
- Xinru Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Rui Chao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yi Mao
- State Key Laboratory of Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Tianhao Wan
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yexin Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yan Zhu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Weifeng Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yong Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Zhigui Ma
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Shanyong Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
2
|
Soh LJ, Lee SY, Roebuck MM, Wong PF. Unravelling the interplay between ER stress, UPR and the cGAS-STING pathway: Implications for osteoarthritis pathogenesis and treatment strategy. Life Sci 2024; 357:123112. [PMID: 39378929 DOI: 10.1016/j.lfs.2024.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Osteoarthritis (OA) is a debilitating chronic degenerative disease affecting the whole joint organ leading to pain and disability. Cellular stress and injuries trigger inflammation and the onset of pathophysiological changes ensue after irreparable damage and inability to resolve inflammation, impeding the completion of the healing process. Extracellular matrix (ECM) degradation leads to dysregulated joint tissue metabolism. The reparative effort induces the proliferation of hypertrophic chondrocytes and matrix protein synthesis. Aberrant protein synthesis leads to endoplasmic reticulum (ER) stress and chondrocyte apoptosis with consequent cartilage matrix loss. These events in a vicious cycle perpetuate inflammation, hindering the restoration of normal tissue homeostasis. Recent evidence suggests that inflammatory responses and chondrocyte apoptosis could be caused by the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling axis in response to DNA damage. It has been reported that there is a crosstalk between ER stress and cGAS-STING signalling in cellular senescence and other diseases. Based on recent evidence, this review discusses the role of ER stress, Unfolded Protein Response (UPR) and cGAS-STING pathway in mediating inflammatory responses in OA.
Collapse
Affiliation(s)
- Li-Jen Soh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siam-Yee Lee
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Margaret M Roebuck
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L3 9TA, UK
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
3
|
Momin A, Perrotti S, Waldman SD. The role of mitochondrial reactive oxygen species in chondrocyte mechanotransduction. J Orthop Res 2024; 42:628-637. [PMID: 37804213 DOI: 10.1002/jor.25709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/09/2023]
Abstract
Chondrocytes are mechanosensitive cells able to sense and respond to external mechanical stimuli through the process of mechanotransduction. Previous studies have demonstrated that mechanical stimulation causes mitochondrial deformation leading to mitochondrial reactive oxygen species (ROS) release in a dose-dependent manner. For this reason, we focused on elucidating the role of mitochondrial ROS as anabolic signaling molecules in chondrocyte mechanotransduction. Chondrocyte-seeded agarose gels were subjected to mechanical stimuli and the effect on matrix synthesis, ROS production, and mitogen-activated protein kinases (MAPK) signaling was evaluated. Through the use of ROS-specific staining, superoxide anion was the primary ROS released in response to mechanical stimuli. The anabolic effect of mechanical stimulation was abolished in the presence of electron transport chain inhibitors (complexes I, III, and V) and superoxide anion scavengers. Subsequent studies were centered on the involvement of MAPK pathways (ERK1/2, p38, and JNK) in the mechanotransduction cascade. While disruption of the ERK1/2 pathway had no apparent effect, the anabolic effect of mechanical stimulation was abolished in the presence of p38 and JNK pathway inhibitors. This suggest the involvement of apoptosis stimulating kinase 1 (ASK1), an upstream redox-sensitive MAP3K shared by both the JNK and p38 pathways. Future experiments will focus on the involvement of the thioredoxin-ASK1 complex which disassociates in the presence of oxidative stress, allowing ASK1 to phosphorylate several MAP2Ks. Overall, these findings indicate superoxide anion as the primary ROS released in response to mechanical stimuli and that the resulting anabolic effect on chondrogenic matrix biosynthesis arises from the ROS-dependent activation of the p38 and JNK MAPKs.
Collapse
Affiliation(s)
- Aisha Momin
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Simona Perrotti
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Stephen D Waldman
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Floramo JS, Molchanov V, Liu H, Liu Y, Craig SEL, Yang T. An Integrated View of Stressors as Causative Agents in OA Pathogenesis. Biomolecules 2023; 13:721. [PMID: 37238590 PMCID: PMC10216563 DOI: 10.3390/biom13050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Cells in the body are exposed to dynamic external and internal environments, many of which cause cell damage. The cell's response to this damage, broadly called the stress response, is meant to promote survival and repair or remove damage. However, not all damage can be repaired, and sometimes, even worse, the stress response can overtax the system itself, further aggravating homeostasis and leading to its loss. Aging phenotypes are considered a manifestation of accumulated cellular damage and defective repair. This is particularly apparent in the primary cell type of the articular joint, the articular chondrocytes. Articular chondrocytes are constantly facing the challenge of stressors, including mechanical overloading, oxidation, DNA damage, proteostatic stress, and metabolic imbalance. The consequence of the accumulation of stress on articular chondrocytes is aberrant mitogenesis and differentiation, defective extracellular matrix production and turnover, cellular senescence, and cell death. The most severe form of stress-induced chondrocyte dysfunction in the joints is osteoarthritis (OA). Here, we summarize studies on the cellular effects of stressors on articular chondrocytes and demonstrate that the molecular effectors of the stress pathways connect to amplify articular joint dysfunction and OA development.
Collapse
Affiliation(s)
| | | | | | | | | | - Tao Yang
- Laboratory of Skeletal Biology, Department of Cell Biology, Van Andel Institute, 333 Bostwick Ave NE, Grand Rapids, MI 49503, USA
| |
Collapse
|
5
|
Plaas AHK, Moran MM, Sandy JD, Hascall VC. Aggrecan and Hyaluronan: The Infamous Cartilage Polyelectrolytes - Then and Now. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1402:3-29. [PMID: 37052843 DOI: 10.1007/978-3-031-25588-5_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Cartilages are unique in the family of connective tissues in that they contain a high concentration of the glycosaminoglycans, chondroitin sulfate and keratan sulfate attached to the core protein of the proteoglycan, aggrecan. Multiple aggrecan molecules are organized in the extracellular matrix via a domain-specific molecular interaction with hyaluronan and a link protein, and these high molecular weight aggregates are immobilized within the collagen and glycoprotein network. The high negative charge density of glycosaminoglycans provides hydrophilicity, high osmotic swelling pressure and conformational flexibility, which together function to absorb fluctuations in biomechanical stresses on cartilage during movement of an articular joint. We have summarized information on the history and current knowledge obtained by biochemical and genetic approaches, on cell-mediated regulation of aggrecan metabolism and its role in skeletal development, growth as well as during the development of joint disease. In addition, we describe the pathways for hyaluronan metabolism, with particular focus on the role as a "metabolic rheostat" during chondrocyte responses in cartilage remodeling in growth and disease.Future advances in effective therapeutic targeting of cartilage loss during osteoarthritic diseases of the joint as an organ as well as in cartilage tissue engineering would benefit from 'big data' approaches and bioinformatics, to uncover novel feed-forward and feed-back mechanisms for regulating transcription and translation of genes and their integration into cell-specific pathways.
Collapse
Affiliation(s)
- Anna H K Plaas
- Department of Internal Medicine (Rheumatology), Rush University Medical Center, Chicago, IL, USA
| | - Meghan M Moran
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL, USA
| | - John D Sandy
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Vincent C Hascall
- Department of Biomedical Engineering, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
6
|
Boos MA, Lamandé SR, Stok KS. Multiscale Strain Transfer in Cartilage. Front Cell Dev Biol 2022; 10:795522. [PMID: 35186920 PMCID: PMC8855033 DOI: 10.3389/fcell.2022.795522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
The transfer of stress and strain signals between the extracellular matrix (ECM) and cells is crucial for biochemical and biomechanical cues that are required for tissue morphogenesis, differentiation, growth, and homeostasis. In cartilage tissue, the heterogeneity in spatial variation of ECM molecules leads to a depth-dependent non-uniform strain transfer and alters the magnitude of forces sensed by cells in articular and fibrocartilage, influencing chondrocyte metabolism and biochemical response. It is not fully established how these nonuniform forces ultimately influence cartilage health, maintenance, and integrity. To comprehend tissue remodelling in health and disease, it is fundamental to investigate how these forces, the ECM, and cells interrelate. However, not much is known about the relationship between applied mechanical stimulus and resulting spatial variations in magnitude and sense of mechanical stimuli within the chondrocyte’s microenvironment. Investigating multiscale strain transfer and hierarchical structure-function relationships in cartilage is key to unravelling how cells receive signals and how they are transformed into biosynthetic responses. Therefore, this article first reviews different cartilage types and chondrocyte mechanosensing. Following this, multiscale strain transfer through cartilage tissue and the involvement of individual ECM components are discussed. Finally, insights to further understand multiscale strain transfer in cartilage are outlined.
Collapse
Affiliation(s)
- Manuela A. Boos
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Shireen R. Lamandé
- Musculoskeletal Research, Murdoch Children’s Research Institute, Parkville, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Kathryn S. Stok
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Kathryn S. Stok,
| |
Collapse
|
7
|
Jiang W, Liu H, Wan R, Wu Y, Shi Z, Huang W. Mechanisms linking mitochondrial mechanotransduction and chondrocyte biology in the pathogenesis of osteoarthritis. Ageing Res Rev 2021; 67:101315. [PMID: 33684550 DOI: 10.1016/j.arr.2021.101315] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Mechanical loading is essential for chondrocyte health. Chondrocytes can sense and respond to various extracellular mechanical signals through an integrated set of mechanisms. Recently, it has been found that mitochondria, acting as critical mechanotransducers, are at the intersection between extracellular mechanical signals and chondrocyte biology. Much attention has been focused on identifying how mechanical loading-induced mitochondrial dysfunction contributes to the pathogenesis of osteoarthritis. In contrast, little is known regarding the mechanisms underlying functional alterations in mitochondria induced by mechanical stimulation. In this review, we describe how chondrocytes perceive environmental mechanical signals. We discuss how mechanical load induces mitochondrial functional alterations and highlight the major unanswered questions in this field. We speculate that AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis, may play an important role in coupling force transmission to mitochondrial health and intracellular biological responses.
Collapse
|
8
|
He Y, Makarczyk MJ, Lin H. Role of mitochondria in mediating chondrocyte response to mechanical stimuli. Life Sci 2020; 263:118602. [PMID: 33086121 PMCID: PMC7736591 DOI: 10.1016/j.lfs.2020.118602] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/22/2020] [Accepted: 10/11/2020] [Indexed: 12/21/2022]
Abstract
As the most common form of arthritis, osteoarthritis (OA) has become a major cause of severe joint pain, physical disability, and quality of life impairment in the affected population. To date, precise pathogenesis of OA has not been fully clarified, which leads to significant obstacles in developing efficacious treatments such as failures in finding disease-modifying OA drugs (DMOADs) in the last decades. Given that diarthrodial joints primarily display the weight-bearing and movement-supporting function, it is not surprising that mechanical stress represents one of the major risk factors for OA. However, the inner connection between mechanical stress and OA onset/progression has yet to be explored. Mitochondrion, a widespread organelle involved in complex biological regulation processes such as adenosine triphosphate (ATP) synthesis and cellular metabolism, is believed to have a controlling role in the survival and function implement of chondrocytes, the singular cell type within cartilage. Mitochondrial dysfunction has also been observed in osteoarthritic chondrocytes. In this review, we systemically summarize mitochondrial alterations in chondrocytes during OA progression and discuss our recent progress in understanding the potential role of mitochondria in mediating mechanical stress-associated osteoarthritic alterations of chondrocytes. In particular, we propose the potential signaling pathways that may regulate this process, which provide new views and therapeutic targets for the prevention and treatment of mechanical stress-associated OA.
Collapse
Affiliation(s)
- Yuchen He
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Meagan J Makarczyk
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
9
|
Bartell LR, Fortier LA, Bonassar LJ, Szeto HH, Cohen I, Delco ML. Mitoprotective therapy prevents rapid, strain-dependent mitochondrial dysfunction after articular cartilage injury. J Orthop Res 2020; 38:1257-1267. [PMID: 31840828 PMCID: PMC7225065 DOI: 10.1002/jor.24567] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/12/2019] [Indexed: 02/04/2023]
Abstract
Posttraumatic osteoarthritis (PTOA) involves the mechanical and biological deterioration of articular cartilage that occurs following joint injury. PTOA is a growing problem in health care due to the lack of effective therapies combined with an aging population with high activity levels. Recently, acute mitochondrial dysfunction and altered cellular respiration have been associated with cartilage degeneration after injury. This finding is particularly important because recently developed mitoprotective drugs, including SS peptides, can preserve mitochondrial structure and function after acute injury in other tissues. It is not known, however, if cartilage injury induces rapid structural changes in mitochondria, to what degree mitochondrial dysfunction in cartilage depends on the mechanics of injury or the time frame over which such dysfunction develops. Similarly, it is unknown if SS-peptide treatment can preserve mitochondrial structure and function after cartilage injury. Here, we combined fast camera elastography, longitudinal fluorescence assays, and computer vision techniques to track the fates of thousands of individual cells. Our results show that impact induces mechanically dependent mitochondrial depolarization within a few minutes after injury. Electron microscopy revealed that impact causes rapid structural changes in mitochondria that are related to reduced mitochondrial function, namely, fission and loss of cristae structure. We found that SS-peptide treatment prior to impact protects the mitochondrial structure and preserves mitochondrial function at levels comparable with that of unimpacted control samples. Overall, this study reveals the vital role of mitochondria in mediating cartilage's peracute (within minutes) response to traumatic injury and demonstrates mitoprotection as a promising therapeutic strategy for injury-induced cartilage damage.
Collapse
Affiliation(s)
- Lena R. Bartell
- School of Applied & Engineering Physics, Cornell University, Ithaca, NY, United States of America
| | - Lisa A. Fortier
- Department of Clinical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Lawrence J. Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Hazel H. Szeto
- Burke Medical Research Institute, White Plains, NY, United States of America
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY, United States of America
| | - Michelle L. Delco
- Department of Clinical Sciences, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
10
|
Delco ML, Bonnevie ED, Szeto HS, Bonassar LJ, Fortier LA. Mitoprotective therapy preserves chondrocyte viability and prevents cartilage degeneration in an ex vivo model of posttraumatic osteoarthritis. J Orthop Res 2018; 36:10.1002/jor.23882. [PMID: 29469223 PMCID: PMC6105558 DOI: 10.1002/jor.23882] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 02/07/2018] [Indexed: 02/04/2023]
Abstract
No disease-modifying osteoarthritis (OA) drugs are available to prevent posttraumatic osteoarthritis (PTOA). Mitochondria (MT) mediate the pathogenesis of many degenerative diseases, and recent evidence indicates that MT dysfunction is a peracute (within minutes to hours) response of cartilage to mechanical injury. The goal of this study was to investigate cardiolipin-targeted mitoprotection as a new strategy to prevent chondrocyte death and cartilage degeneration after injury. Cartilage was harvested from bovine knee joints and subjected to a single, rapid impact injury (24.0 ±1.4 MPa, 53.8 ± 5.3 GPa/s). Explants were then treated with a mitoprotective peptide, SS-31 (1µM), immediately post-impact, or at 1, 6, or 12 h after injury, and then cultured for up to 7 days. Chondrocyte viability and apoptosis were quantified in situ using confocal microscopy. Cell membrane damage (lactate dehydrogenase activity) and cartilage matrix degradation (glycosaminoglycan loss) were quantified in cartilage-conditioned media. SS-31 treatment at all time points after impact resulted in chondrocyte viability similar to that of un-injured controls. This effect was sustained for up to a week in culture. Further, SS-31 prevented impact-induced chondrocyte apoptosis, cell membrane damage, and cartilage matrix degeneration. CLINICAL SIGNIFICANCE This study is the first investigation of cardiolipin-targeted mitoprotective therapy in cartilage. These results suggest that even when treatment is delayed by up to 12 h after injury, mitoprotection may be a useful strategy in the prevention of PTOA. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 9999:1-10, 2018.
Collapse
Affiliation(s)
- Michelle L. Delco
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Edward D. Bonnevie
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| | - Hazel S. Szeto
- Department of Pharmacology, Weill Cornell Medical College, New York, NY
| | - Lawrence J. Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Lisa A. Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
11
|
Vertical Light Sheet Enhanced Side-View Imaging for AFM Cell Mechanics Studies. Sci Rep 2018; 8:1504. [PMID: 29367675 PMCID: PMC5784156 DOI: 10.1038/s41598-018-19791-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 12/27/2022] Open
Abstract
The ability to measure dynamic structural changes within a cell under applied load is essential for developing more accurate models of cell mechanics and mechanotransduction. Atomic force microscopy is a powerful tool for evaluating cell mechanics, but the dominant applied forces and sample strains are in the vertical direction, perpendicular to the imaging plane of standard fluorescence imaging. Here we report on a combined sideways imaging and vertical light sheet illumination system integrated with AFM. Our system enables high frame rate, low background imaging of subcellular structural dynamics in the vertical plane synchronized with AFM force data. Using our system for cell compression measurements, we correlated stiffening features in the force indentation data with onset of nuclear deformation revealed in the imaging data. In adhesion studies we were able to correlate detailed features in the force data during adhesive release events with strain at the membrane and within the nucleus.
Collapse
|
12
|
Sliogeryte K, Botto L, Lee DA, Knight MM. Chondrocyte dedifferentiation increases cell stiffness by strengthening membrane-actin adhesion. Osteoarthritis Cartilage 2016; 24:912-20. [PMID: 26706702 DOI: 10.1016/j.joca.2015.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/23/2015] [Accepted: 12/06/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Chondrocyte dedifferentiation is known to influence cell mechanics leading to alterations in cell function. This study examined the influence of chondrocyte dedifferentiation in monolayer on cell viscoelastic properties and associated changes in actin organisation, bleb formation and membrane-actin cortex interaction. METHOD Micropipette aspiration was used to estimate the viscoelastic properties of freshly isolated articular chondrocytes and the same cells after passage in monolayer. Studies quantified the cell membrane-actin cortex adhesion by measuring the critical pressure required for membrane detachment and bleb formation. We then examined the expression of ezrin, radixin and moesin (ERM) proteins which are involved in linking the membrane and actin cortex and combined this with theoretical modelling of bleb dynamics. RESULTS Dedifferentiated chondrocytes at passage 1 (P1) were found to be stiffer compared to freshly isolated chondrocytes (P0), with equilibrium modulus values of 0.40 and 0.16 kPa respectively. The critical pressure increased from 0.59 kPa at P0 to 0.74 kPa at P1. Dedifferentiated cells at P1 exhibited increased cortical F-actin organisation and increased expression of total and phosphorylated ERM proteins compared to cells at P0. Theoretical modelling confirmed the importance of membrane-actin cortex adhesion in regulating bleb formation and effective cellular elastic modulus. CONCLUSION This study demonstrates that chondrocyte dedifferentiation in monolayer strengthens membrane-actin cortex adhesion associated with increased F-actin organisation and up-regulation of ERM protein expression. Thus dedifferentiated cells have reduced susceptibility to bleb formation which increases cell modulus and may also regulate other fundamental aspects of cell function such as mechanotransduction and migration.
Collapse
Affiliation(s)
- K Sliogeryte
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom; Laboratoire Physico-chimie Curie-UMR 168, Institut Curie, Centre de Recherche, Paris, F-75248, France
| | - L Botto
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom
| | - D A Lee
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom
| | - M M Knight
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London, E1 4NS, United Kingdom.
| |
Collapse
|
13
|
Zhang Y, Liu G, Dull RO, Schwartz DE, Hu G. Autophagy in pulmonary macrophages mediates lung inflammatory injury via NLRP3 inflammasome activation during mechanical ventilation. Am J Physiol Lung Cell Mol Physiol 2014; 307:L173-L185. [PMID: 24838752 PMCID: PMC4101793 DOI: 10.1152/ajplung.00083.2014] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/13/2014] [Indexed: 01/12/2023] Open
Abstract
The inflammatory response is a primary mechanism in the pathogenesis of ventilator-induced lung injury. Autophagy is an essential, homeostatic process by which cells break down their own components. We explored the role of autophagy in the mechanisms of mechanical ventilation-induced lung inflammatory injury. Mice were subjected to low (7 ml/kg) or high (28 ml/kg) tidal volume ventilation for 2 h. Bone marrow-derived macrophages transfected with a scrambled or autophagy-related protein 5 small interfering RNA were administered to alveolar macrophage-depleted mice via a jugular venous cannula 30 min before the start of the ventilation protocol. In some experiments, mice were ventilated in the absence and presence of autophagy inhibitors 3-methyladenine (15 mg/kg ip) or trichostatin A (1 mg/kg ip). Mechanical ventilation with a high tidal volume caused rapid (within minutes) activation of autophagy in the lung. Conventional transmission electron microscopic examination of lung sections showed that mechanical ventilation-induced autophagy activation mainly occurred in lung macrophages. Autophagy activation in the lungs during mechanical ventilation was dramatically attenuated in alveolar macrophage-depleted mice. Selective silencing of autophagy-related protein 5 in lung macrophages abolished mechanical ventilation-induced nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation and lung inflammatory injury. Pharmacological inhibition of autophagy also significantly attenuated the inflammatory responses caused by lung hyperinflation. The activation of autophagy in macrophages mediates early lung inflammation during mechanical ventilation via NLRP3 inflammasome signaling. Inhibition of autophagy activation in lung macrophages may therefore provide a novel and promising strategy for the prevention and treatment of ventilator-induced lung injury.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois; Department of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Gongjian Liu
- Department of Anesthesiology, Xuzhou Medical College, Xuzhou, China
| | - Randal O Dull
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois
| | - David E Schwartz
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois
| | - Guochang Hu
- Department of Anesthesiology, University of Illinois College of Medicine, Chicago, Illinois; Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois; and
| |
Collapse
|
14
|
Roossien DH, Lamoureux P, Miller KE. Cytoplasmic dynein pushes the cytoskeletal meshwork forward during axonal elongation. J Cell Sci 2014; 127:3593-602. [PMID: 24951117 DOI: 10.1242/jcs.152611] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During development, neurons send out axonal processes that can reach lengths hundreds of times longer than the diameter of their cell bodies. Recent studies indicate that en masse microtubule translocation is a significant mechanism underlying axonal elongation, but how cellular forces drive this process is unknown. Cytoplasmic dynein generates forces on microtubules in axons to power their movement through 'stop-and-go' transport, but whether these forces influence the bulk translocation of long microtubules embedded in the cytoskeletal meshwork has not been tested. Here, we use both function-blocking antibodies targeted to the dynein intermediate chain and the pharmacological dynein inhibitor ciliobrevin D to ask whether dynein forces contribute to en bloc cytoskeleton translocation. By tracking docked mitochondria as fiducial markers for bulk cytoskeleton movements, we find that translocation is reduced after dynein disruption. We then directly measure net force generation after dynein disruption and find a dramatic increase in axonal tension. Taken together, these data indicate that dynein generates forces that push the cytoskeletal meshwork forward en masse during axonal elongation.
Collapse
Affiliation(s)
- Douglas H Roossien
- Cell and Molecular Biology Program, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| | - Phillip Lamoureux
- Department of Zoology, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| | - Kyle E Miller
- Department of Zoology, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
On the role of the actin cytoskeleton and nucleus in the biomechanical response of spread cells. Biomaterials 2014; 35:4015-25. [PMID: 24529900 DOI: 10.1016/j.biomaterials.2014.01.056] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/23/2014] [Indexed: 01/09/2023]
Abstract
Micropipette aspiration (MA) has been used extensively in biomechanical investigations of un-adhered cells suspended in media. In the current study, a custom MA system is developed to aspirate substrate adhered spread cells. Additionally, the system facilitates immuno-fluorescent staining of aspirated cells to investigate stress fibre redistribution and nucleus deformation during MA. In response to an applied pressure, significantly lower aspiration length is observed for untreated contractile cells compared to cells in which actin polymerisation is chemically inhibited, demonstrating the important contribution of stress fibres in the biomechanical behaviour of spread cells. Additional experiments are performed in which untreated contractile cells are subjected to a range of applied pressures. Computational finite element simulations reveal that a viscoelastic material model for the cell cytoplasm is incapable of accurately predicting the observed aspiration length over the range of applied pressures. It is demonstrated that an active computational framework that incorporates stress fibre remodelling and contractility must be used in order to accurately simulate MA of untreated spread cells. Additionally, the stress fibre distribution observed in immuno-fluorescent experimental images of aspirated cells is accurately predicted using the active stress fibre modelling framework. Finally, a detailed experimental-computational investigation of the nucleus mechanical behaviour demonstrates that the nucleus is highly deformable in cyto, reaching strain levels in excess of 100% during MA. The characterisation of stress fibres and nucleus biomechanics in spread cells presented in the current study can potentially be used to guide tissue engineering strategies to control cell behaviour and gene expression.
Collapse
|
16
|
Lim KY, Henderson JT, Neu CP. Cell and tissue deformation measurements: texture correlation with third-order approximation of displacement gradients. J Biomech 2013; 46:2490-6. [PMID: 23992835 DOI: 10.1016/j.jbiomech.2013.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Revised: 06/30/2013] [Accepted: 07/04/2013] [Indexed: 01/16/2023]
Abstract
Cells remarkably are capable of large deformations during motility and when subjected to mechanical force. Measurement of mechanical deformation (i.e. displacements, strain) is critical to understand functional changes in cells and biological tissues following disease, and to elucidate basic relationships between applied force and cellular biosynthesis. Microscopy-based imaging modalities provide the ability to noninvasively visualize small cell or tissue structures and track their motion over time, often using two-dimensional (2D) digital image (texture) correlation algorithms. For the measurement of complex and nonlinear motion in cells and tissues, implementation of texture correlation algorithms with high order approximations of displacement mapping terms are needed to minimize error. Here, we extend a texture correlation algorithm with up to third-order approximation of displacement mapping terms for the measurement of cell and tissue deformation. We additionally investigate relationships between measurement error and image texture, defined by subset entropy. Displacement measurement error is significantly reduced when the order of displacement mapping terms in the texture correlation algorithm matches or exceeds the order of the deformation observed. Displacement measurement error is also inversely proportional to subset entropy, with well-defined cell and tissue structures leading to high entropy and low error. For cell and tissue studies where complex or nonlinear displacements are expected, texture correlation algorithms with high order terms are required to best characterize the observed deformation.
Collapse
Affiliation(s)
- Kai Y Lim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
17
|
Strain-dependent oxidant release in articular cartilage originates from mitochondria. Biomech Model Mechanobiol 2013; 13:565-72. [PMID: 23896937 DOI: 10.1007/s10237-013-0518-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 07/18/2013] [Indexed: 12/29/2022]
Abstract
Mechanical loading is essential for articular cartilage homeostasis and plays a central role in the cartilage pathology, yet the mechanotransduction processes that underlie these effects remain unclear. Previously, we showed that lethal amounts of reactive oxygen species (ROS) were liberated from the mitochondria in response to mechanical insult and that chondrocyte deformation may be a source of ROS. To this end, we hypothesized that mechanically induced mitochondrial ROS is related to the magnitude of cartilage deformation. To test this, we measured axial tissue strains in cartilage explants subjected to semi-confined compressive stresses of 0, 0.05, 0.1, 0.25, 0.5, or 1.0 MPa. The presence of ROS was then determined by confocal imaging with dihydroethidium, an oxidant sensitive fluorescent probe. Our results indicated that ROS levels increased linearly relative to the magnitude of axial strains (r(2) = 0.87, p < 0.05), and significant cell death was observed at strains >40%. By contrast, hydrostatic stress, which causes minimal tissue strain, had no significant effect. Cell-permeable superoxide dismutase mimetic Mn(III)tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride significantly decreased ROS levels at 0.5 and 0.25 MPa. Electron transport chain inhibitor, rotenone, and cytoskeletal inhibitor, cytochalasin B, significantly decreased ROS levels at 0.25 MPa. Our findings strongly suggest that ROS and mitochondrial oxidants contribute to cartilage mechanobiology.
Collapse
|
18
|
Wolff KJ, Ramakrishnan PS, Brouillette MJ, Journot B, Mckinley TO, Buckwalter JA, Martin JA. Mechanical stress and ATP synthesis are coupled by mitochondrial oxidants in articular cartilage. J Orthop Res 2013; 31:191-6. [PMID: 22930474 PMCID: PMC3678272 DOI: 10.1002/jor.22223] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 08/07/2012] [Indexed: 02/04/2023]
Abstract
Metabolic adaptation of articular cartilage under joint loading is evident and matrix synthesis seems to be critically tied to ATP. Chondrocytes utilize the glycolytic pathway for energy requirements but seem to require mitochondrial reactive oxygen species (ROS) to sustain ATP synthesis. The role of ROS in regulating ATP reserves under a mechanically active environment is not clear. It is believed that physiological strains cause deformation of the mitochondria, potentially releasing ROS for energy production. We hypothesized that mechanical loading stimulates ATP synthesis via mitochondrial release of ROS. Bovine osteochondral explants were dynamically loaded at 0.5 Hz with amplitude of 0.25 MPa for 1 h. Cartilage response to mechanical loading was assessed by imaging with dihydroethidium (ROS indicator) and a Luciferase-based ATP assay. Electron transport inhibitor rotenone and mitochondrial ROS scavenger MitoQ significantly suppressed mechanically induced ROS production and ATP synthesis. Our findings indicate that mitochondrial ROS are produced as a result of physiological mechanical strains. Taken together with our previous findings of ROS involvement in blunt impact injuries, mitochondrial ROS are important contributors to cartilage metabolic adaptation and their precise role in the pathogenesis of osteoarthritis warrants further investigation.
Collapse
Affiliation(s)
| | - Prem S Ramakrishnan
- Ignacio Ponsetti Orthopaedic Cell Biology Lab Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City
| | - Marc J Brouillette
- Biomedical Engineering, University of Iowa,Ignacio Ponsetti Orthopaedic Cell Biology Lab Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City
| | - Brice Journot
- Biomedical Engineering, University of Iowa,Ignacio Ponsetti Orthopaedic Cell Biology Lab Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City
| | - Todd O Mckinley
- Ignacio Ponsetti Orthopaedic Cell Biology Lab Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City
| | - JA Buckwalter
- Ignacio Ponsetti Orthopaedic Cell Biology Lab Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City,Veterans Affairs Medical Center, Iowa City, Iowa
| | - James A Martin
- Ignacio Ponsetti Orthopaedic Cell Biology Lab Department of Orthopaedics and Rehabilitation, University of Iowa, Iowa City
| |
Collapse
|
19
|
Pourmohammadali H, Chandrashekar N, Medley JB. Hydromechanical stimulator for chondrocyte-seeded constructs in articular cartilage tissue engineering applications. Proc Inst Mech Eng H 2012; 227:310-6. [DOI: 10.1177/0954411912468638] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mechanical stimulation is a key technique used for controlling the mechanical properties of tissue engineered articular cartilage constructs proposed for defect repair. The present study introduces a new technical method and device for ‘hydromechanical’ stimulation of tissue engineered articular cartilage constructs. The stimulation consists of simultaneous cyclic compression, frictional shear from a sliding indenter contact and direct pressurized fluid perfusion. Each of these modes of mechanical loading has been shown by other research groups to effectively stimulate tissue engineered constructs. A device for applying these conditions was designed, developed and tested. Two sets (high and low perfusion flow rates) of three experiments were performed, each with two samples subjected to hydromechanical stimulation conditions (compression and friction forces along with perfusion). Two other samples from each set were subjected to just compression and dynamic frictional shear forces, and two more were used as controls (not stimulated). The average amount of glycosaminoglycan retained in the constructs after 3 weeks ranked from low to high as follows: controls, hydromechanical conditions with the low-flow rate, hydromechanical conditions with the high-flow rate and just compression plus dynamic frictional shear. Statistically significant differences were not detected. However, future studies would focus on glycosaminoglycan production in the superficial zone, measuring the glycosaminoglycan released to the nutrient media, and address altering the hydromechanical stimulation parameters using the results of the present study as guidance, in attempts to achieve statistically significant increases in glycosaminoglycan production compared with the controls.
Collapse
Affiliation(s)
- Homeyra Pourmohammadali
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Naveen Chandrashekar
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - John B Medley
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
20
|
Nguyen BNB, Chetta J, Shah SB. A Novel Technology for Simultaneous Tensile Loading and High-Resolution Imaging of Cells. Cell Mol Bioeng 2012. [DOI: 10.1007/s12195-012-0245-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
21
|
Bell BJ, Nauman E, Voytik-Harbin SL. Multiscale strain analysis of tissue equivalents using a custom-designed biaxial testing device. Biophys J 2012; 102:1303-12. [PMID: 22455913 DOI: 10.1016/j.bpj.2012.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 12/21/2011] [Accepted: 02/03/2012] [Indexed: 01/13/2023] Open
Abstract
Mechanical signals transferred between a cell and its extracellular matrix play an important role in regulating fundamental cell behavior. To further define the complex mechanical interactions between cells and matrix from a multiscale perspective, a biaxial testing device was designed and built. Finite element analysis was used to optimize the cruciform specimen geometry so that stresses within the central region were concentrated and homogenous while minimizing shear and grip effects. This system was used to apply an equibiaxial loading and unloading regimen to fibroblast-seeded tissue equivalents. Digital image correlation and spot tracking were used to calculate three-dimensional strains and associated strain transfer ratios at macro (construct), meso, matrix (collagen fibril), cell (mitochondria), and nuclear levels. At meso and matrix levels, strains in the 1- and 2-direction were statistically similar throughout the loading-unloading cycle. Interestingly, a significant amplification of cellular and nuclear strains was observed in the direction perpendicular to the cell axis. Findings indicate that strain transfer is dependent upon local anisotropies generated by the cell-matrix force balance. Such multiscale approaches to tissue mechanics will assist in advancement of modern biomechanical theories as well as development and optimization of preconditioning regimens for functional engineered tissue constructs.
Collapse
Affiliation(s)
- B J Bell
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | | | | |
Collapse
|
22
|
Shakesheff KM, Rose FRAJ. Tissue engineering in the development of replacement technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 745:47-57. [PMID: 22437812 DOI: 10.1007/978-1-4614-3055-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The field of tissue engineering is generating new scaffolds, bioreactors and methods for stimulating cells within complex cultures, with the aim of recreating the conditions under which cells form functional tissues. Hitherto, the primary focus of this field has been on clinical applications. However, there are many methods of in vitro tissue engineering that represent new opportunities in 3D cell culture and could be the basis for new replacement methods that either replace the use of a tissue isolated from an animal or the use of a living animal. This chapter presents an overview of tissue engineering and provides tissue-specific examples of recent advances.
Collapse
Affiliation(s)
- Kevin M Shakesheff
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre Biomolecular for Studies, School of Pharmacy, University of Nottingham, UK.
| | | |
Collapse
|
23
|
Qiu J, Baik AD, Lu XL, Hillman EMC, Zhuang Z, Guo XE. Theoretical Analysis of Novel Quasi-3D Microscopy of Cell Deformation. Cell Mol Bioeng 2011; 5:165-172. [PMID: 22707985 DOI: 10.1007/s12195-011-0218-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A novel quasi-three-dimensional (quasi-3D) microscopy technique has been developed to enable visualization of a cell under dynamic loading in two orthogonal planes simultaneously. The three-dimensional (3D) dynamics of the mechanical behavior of a cell under fluid flow can be examined at a high temporal resolution. In this study, a numerical model of a fluorescently dyed cell was created in 3D space, and the cell was subjected to uniaxial deformation or unidirectional fluid shear flow via finite element analysis (FEA). Therefore, the intracellular deformation in the simulated cells was exactly prescribed. Two-dimensional fluorescent images simulating the quasi-3D technique were created from the cell and its deformed states in 3D space using a point-spread function (PSF) and a convolution operation. These simulated original and deformed images were processed by a digital image correlation technique to calculate quasi-3D-based intracellular strains. The calculated strains were compared to the prescribed strains, thus providing a theoretical basis for the measurement of the accuracy of quasi-3D and wide-field microscopy-based intracellular strain measurements against the true 3D strains. The signal-to-noise ratio (SNR) of the simulated quasi-3D images was also modulated using additive Gaussian noise, and a minimum SNR of 12 was needed to recover the prescribed strains using digital image correlation. Our computational study demonstrated that quasi-3D strain measurements closely recovered the true 3D strains in uniform and fluid flow cellular strain states to within 5% strain error.
Collapse
Affiliation(s)
- Jun Qiu
- School of Aerospace, Tsinghua University, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Chan DD, Van Dyke WS, Bahls M, Connell SD, Critser P, Kelleher JE, Kramer MA, Pearce SM, Sharma S, Neu CP. Mechanostasis in apoptosis and medicine. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 106:517-24. [PMID: 21846479 DOI: 10.1016/j.pbiomolbio.2011.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
Abstract
Mechanostasis describes a complex and dynamic process where cells maintain equilibrium in response to mechanical forces. Normal physiological loading modes and magnitudes contribute to cell proliferation, tissue growth, differentiation and development. However, cell responses to abnormal forces include compensatory apoptotic mechanisms that may contribute to the development of tissue disease and pathological conditions. Mechanotransduction mechanisms tightly regulate the cell response through discrete signaling pathways. Here, we provide an overview of links between pro- and anti-apoptotic signaling and mechanotransduction signaling pathways, and identify potential clinical applications for treatments of disease by exploiting mechanically-linked apoptotic pathways.
Collapse
Affiliation(s)
- D D Chan
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Quasi-3D cytoskeletal dynamics of osteocytes under fluid flow. Biophys J 2011; 99:2812-20. [PMID: 21044578 DOI: 10.1016/j.bpj.2010.08.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/27/2010] [Accepted: 08/31/2010] [Indexed: 11/23/2022] Open
Abstract
Osteocytes respond to dynamic fluid shear loading by activating various biochemical pathways, mediating a dynamic process of bone formation and resorption. Whole-cell deformation and regional deformation of the cytoskeleton may be able to directly regulate this process. Attempts to image cellular deformation by conventional microscopy techniques have been hindered by low temporal or spatial resolution. In this study, we developed a quasi-three-dimensional microscopy technique that enabled us to simultaneously visualize an osteocyte's traditional bottom-view profile and a side-view profile at high temporal resolution. Quantitative analysis of the plasma membrane and either the intracellular actin or microtubule (MT) cytoskeletal networks provided characterization of their deformations over time. Although no volumetric dilatation of the whole cell was observed under flow, both the actin and MT networks experienced primarily tensile strains in all measured strain components. Regional heterogeneity in the strain field of normal strains was observed in the actin networks, especially in the leading edge to flow, but not in the MT networks. In contrast, side-view shear strains exhibited similar subcellular distribution patterns in both networks. Disruption of MT networks caused actin normal strains to decrease, whereas actin disruption had little effect on the MT network strains, highlighting the networks' mechanical interactions in osteocytes.
Collapse
|
26
|
Raizman I, De Croos JNA, Pilliar R, Kandel RA. Calcium regulates cyclic compression-induced early changes in chondrocytes during in vitro cartilage tissue formation. Cell Calcium 2010; 48:232-42. [PMID: 20932575 DOI: 10.1016/j.ceca.2010.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 11/18/2022]
Abstract
A single application of cyclic compression (1kPa, 1Hz, 30min) to bioengineered cartilage results in improved tissue formation through sequential catabolic and anabolic changes mediated via cell shape changes that are regulated by α5β1 integrin and membrane-type metalloprotease (MT1-MMP). To determine if calcium was involved in this process, the role of calcium in regulating cell shape changes, MT1-MMP expression and integrin activity in response to mechanical stimulation was examined. Stimulation-induced changes in cell shape and MT1-MMP expression were abolished by chelation of extracellular calcium, and this effect was reversed by re-introduction of calcium. Spreading was inhibited by blocking stretch-activated channels (with gadolinium), while retraction was prevented by blocking the L-Type voltage-gated channel (with nifedipine); both compounds inhibited MT1-MMP upregulation. Calcium A23187 ionophore restored cellular response further supporting a role for these channels. Calcium regulated the integrin-mediated signalling pathway, which was facilitated through Src kinase. Both calcium- and integrin-mediated pathways converged on ERK-MAPK in response to stimulation. While both integrins and calcium signalling mediate chondrocyte mechanotransduction, calcium appears to play the major regulatory role. Understanding the underlying molecular mechanisms involved in chondrocyte mechanotransduction may lead to the development of improved bioengineered cartilage.
Collapse
Affiliation(s)
- Igal Raizman
- CIHR-BioEngineering of Skeletal Tissue Team, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada M5G 1X5
| | | | | | | |
Collapse
|
27
|
Wang N, Tytell JD, Ingber DE. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat Rev Mol Cell Biol 2009; 10:75-82. [DOI: 10.1038/nrm2594] [Citation(s) in RCA: 1267] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Bader DL, Knight MM. Biomechanical analysis of structural deformation in living cells. Med Biol Eng Comput 2008; 46:951-63. [PMID: 18726630 DOI: 10.1007/s11517-008-0381-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 07/21/2008] [Indexed: 10/24/2022]
Abstract
Most tissues are subject to some form of physiological mechanical loading which results in deformation of the cells triggering intracellular mechanotransduction pathways. This response to loading is generally essential for the health of the tissue, although more pronounced deformation may result in cell and tissue damage. In order to determine the biological response of cells to loading it is necessary to understand how cells and intracellular structures deform. This paper reviews the various loading systems that have been adopted for studying cell deformation both in situ within tissue explants and in isolated cell culture systems. In particular it describes loading systems which facilitate visualisation and subsequent quantification of cell deformation. The review also describes the associated microscopy and image analysis techniques. The review focuses on deformation of chondrocytes with additional information on a variety of other cell types including neurons, red blood cells, epithelial cells and skin and muscle cells.
Collapse
Affiliation(s)
- D L Bader
- School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London, UK
| | | |
Collapse
|
29
|
Transfer of macroscale tissue strain to microscale cell regions in the deformed meniscus. Biophys J 2008; 95:2116-24. [PMID: 18487290 DOI: 10.1529/biophysj.107.126938] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cells within fibrocartilaginous tissues, including chondrocytes and fibroblasts of the meniscus, ligament, and tendon, regulate cell biosynthesis in response to local mechanical stimuli. The processes by which an applied mechanical load is transferred through the extracellular matrix to the environment of a cell are not fully understood. To better understand the role of mechanics in controlling cell phenotype and biosynthetic activity, this study was conducted to measure strain at different length scales in tissue of the fibrocartilaginous meniscus of the knee joint, and to define a quantitative parameter that describes the strain transferred from the far-field tissue to a microenvironment surrounding a cell. Experiments were performed to apply a controlled uniaxial tensile deformation to explants of porcine meniscus containing live cells. Using texture correlation analyses of confocal microscopy images, two-dimensional Lagrangian and principal strains were measured at length scales representative of the tissue (macroscale) and microenvironment in the region of a cell (microscale) to yield a strain transfer ratio as a measure of median microscale to macroscale strain. The data demonstrate that principal strains at the microscale are coupled to and amplified from macroscale principal strains for a majority of cell microenvironments located across diverse microstructural regions, with average strain transfer ratios of 1.6 and 2.9 for the maximum and minimum principal strains, respectively. Lagrangian strain components calculated along the experimental axes of applied deformations exhibited considerable spatial heterogeneity and intersample variability, and suggest the existence of both strain amplification and attenuation. This feature is consistent with an in-plane rotation of the principal strain axes relative to the experimental axes at the microscale that may result from fiber sliding, fiber twisting, and fiber-matrix interactions that are believed to be important for regulating deformation in other fibrocartilaginous tissues. The findings for consistent amplification of macroscale to microscale principal strains suggest a coordinated pattern of strain transfer from applied deformation to the microscale environment of a cell that is largely independent of these microstructural features in the fibrocartilaginous meniscus.
Collapse
|
30
|
Crosstalk between integrin and G protein pathways involved in mechanotransduction in mandibular condylar chondrocytes under pressure. Arch Biochem Biophys 2008; 474:102-8. [PMID: 18375197 DOI: 10.1016/j.abb.2008.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 03/10/2008] [Accepted: 03/10/2008] [Indexed: 01/16/2023]
Abstract
To investigate the role of integrin and G protein pathways in the mechanotransduction process within MCCs and explore the possible crosstalk between the two traditional signal pathways, in vitro-cultured rabbit MCCs were treated with pressure. The mRNA level of alpha5beta1 integrin was determined by in situ hybridization and the distributions of vinculin, Galphaq/11 protein, F-actin and intracellular calcium were studied with a laser scanning confocal microscope. Increased integrin alpha5beta1 expression, enhanced stress fiber assembly, elevated G protein and vinculin level and up-regulated IP(3) channel sensitivity were found in the mechanotransduction process of MCCs under pressure. Furthermore, the vinculin and the Galphaq/11 were observed co-localized with each other, and the F-actin reassembly and stress fibers formation could be inhibited by intracellular calcium channel blocking, which gave direct evidence that the traditional integrin-mediated or G protein-mediated signaling pathways coordinately regulate the function of MCCs under mechanical stimulation.
Collapse
|
31
|
|
32
|
Chowdhury TT, Knight MM. Purinergic pathway suppresses the release of .NO and stimulates proteoglycan synthesis in chondrocyte/agarose constructs subjected to dynamic compression. J Cell Physiol 2007; 209:845-53. [PMID: 16924659 DOI: 10.1002/jcp.20768] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mechanical loading plays a fundamental role in the physiological and pathological processes of articular cartilage. The application of dynamic compression to chondrocytes cultured in agarose, downregulates the release of nitric oxide (NO) and enhances cell proliferation and proteoglycan synthesis. We hypothesize that the observed metabolic changes in response to dynamic compression involve a purinergic signaling pathway. Chondrocyte/agarose constructs were subjected to dynamic compression (15%, 1 Hz, 48 h) in the presence of antagonists for the purinergic pathway. Gadolinium was used as a putative inhibitor of stretch-activated calcium ion channels including adenosine 5'-triphosphate (ATP) release channels; suramin was employed as a P2 receptor antagonist and apyrase was used to catalyze the hydrolysis of extracellular ATP. The data presented demonstrate that in the absence of the inhibitor, dynamic compression suppressed .NO release. Treatment with gadolinium and suramin caused a compression-induced upregulation of .NO release, a response abolished with apyrase. Compression-induced stimulation of cell proliferation was reversed with gadolinium, suramin, or apyrase. By contrast, compression-induced stimulation of proteoglycan synthesis was abolished under all treatment conditions. Thus, the purinergic pathway is important in suppressing the release of .NO and stimulation of proteoglycan synthesis. Indeed, high levels of .NO could trigger a downstream catabolic response and mediate the compression-induced inhibition of cell proliferation. The current study demonstrates for the first time the importance of a purinergic pathway in mediating the metabolic response to dynamic compression and suppressing an inflammatory effect.
Collapse
Affiliation(s)
- T T Chowdhury
- Medical Engineering Division, Department of Engineering, Queen Mary, University of London, Mile End Road, London, UK.
| | | |
Collapse
|
33
|
Mechanical strains induced in osteoblasts by use of point femtosecond laser targeting. Int J Biomed Imaging 2006; 2006:10427. [PMID: 23165014 PMCID: PMC2324012 DOI: 10.1155/ijbi/2006/21304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 09/03/2006] [Accepted: 09/17/2006] [Indexed: 11/25/2022] Open
Abstract
A study demonstrating how ultrafast laser radiation stimulates osteoblasts is presented. The study employed a custom made optical system that allowed for simultaneous confocal cell imaging and targeted femtosecond pulse laser irradiation. When femtosecond laser light was
focused onto a single cell, a rise in intracellular Ca2+ levels was observed followed by contraction of the targeted cell. This contraction
caused deformation of neighbouring cells leading to a heterogeneous strain field throughout the
monolayer. Quantification of the strain fields in the monolayer using digital image correlation revealed local
strains much higher than threshold values typically reported to stimulate extracellular bone matrix production
in vitro. This use of point targeting with femtosecond pulse lasers could provide a new method for stimulating cell
activity in orthopaedic tissue engineering.
Collapse
|