1
|
Sulaiman MY, Wicaksono S, Dirgantara T, Mahyuddin AI, Sadputranto SA, Oli'i EM. Influence of bite force and implant elastic modulus on mandibular reconstruction with particulate-cancellous bone marrow grafts healing: An in silico investigation. J Mech Behav Biomed Mater 2024; 157:106654. [PMID: 39042972 DOI: 10.1016/j.jmbbm.2024.106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/25/2024]
Abstract
This study aims to investigate tissue differentiation during mandibular reconstruction with particulate cancellous bone marrow (PCBM) graft healing using biphasic mechanoregulation theory under four bite force magnitudes and four implant elastic moduli to examine its implications on healing rate, implant stress distribution, new bone elastic modulus, mandible equivalent stiffness, and load-sharing progression. The finite element model of a half Canis lupus mandible, symmetrical about the midsagittal plane, with two marginal defects filled by PCBM graft and stabilized by porous implants, was simulated for 12 weeks. Eight different scenarios, which consist of four bite force magnitudes and four implant elastic moduli, were tested. It was found that the tissue differentiation pattern corroborates the experimental findings, where the new bone propagates from the superior side and the buccal and lingual sides in contact with the native bone, starting from the outer regions and progressing inward. Faster healing and quicker development of bone graft elastic modulus and mandible equivalent stiffness were observed in the variants with lower bite force magnitude and or larger implant elastic modulus. A load-sharing condition was found as the healing progressed, with M3 (Ti6Al4V) being better than M4 (stainless steel), indicating the higher stress shielding potentials of M4 in the long term. This study has implications for a better understanding of mandibular reconstruction mechanobiology and demonstrated a novel in silico framework that can be used for post-operative planning, failure prevention, and implant design in a better way.
Collapse
Affiliation(s)
- Muhammad Yusril Sulaiman
- Mechanics of Solid and Lightweight Structures Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Satrio Wicaksono
- Mechanics of Solid and Lightweight Structures Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, West Java, Indonesia.
| | - Tatacipta Dirgantara
- Mechanics of Solid and Lightweight Structures Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Andi Isra Mahyuddin
- Dynamics and Control Research Group, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, West Java, Indonesia
| | - Seto Adiantoro Sadputranto
- Oral and Maxillofacial Medical Staff Group, Hasan Sadikin General Hospital, Jalan Pasteur 38, Bandung, 40161, West Java, Indonesia; Oral and Maxillofacial Department, Faculty of Dentistry, Universitas Padjajaran, Jalan Sekeloa Selatan 1, Bandung, 40132, West Java, Indonesia
| | - Eka Marwansyah Oli'i
- Oral and Maxillofacial Medical Staff Group, Hasan Sadikin General Hospital, Jalan Pasteur 38, Bandung, 40161, West Java, Indonesia; Oral and Maxillofacial Department, Faculty of Dentistry, Universitas Padjajaran, Jalan Sekeloa Selatan 1, Bandung, 40132, West Java, Indonesia; Mechanical Engineering Graduate Program, Faculty of Mechanical and Aerospace Engineering, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung, 40132, West Java, Indonesia
| |
Collapse
|
2
|
Sabik A, Daszkiewicz K, Witkowski W, Łuczkiewicz P. Comparative analysis of mechanical conditions in bone union following first metatarsophalangeal joint arthrodesis with varied locking plate positions: A finite element analysis. PLoS One 2024; 19:e0303752. [PMID: 38753866 PMCID: PMC11098485 DOI: 10.1371/journal.pone.0303752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND First metatarsophalangeal joint arthrodesis is a typical medical treatment performed in cases of arthritis or joint deformity. The gold standard for this procedure is arthrodesis stabilisation with the dorsally positioned plate. However, according to the authors' previous studies, medially positioned plate provides greater bending stiffness. It is worth to compare the mechanical conditions for bone formation in the fracture callus for both placements of the locking plate. METHODS Two finite element models of the first metatarsophalangeal joint with the dorsally and medially positioned plate were defined in the Abaqus software to simulate differentiation of the fracture callus. A simplified load application, i.e. one single step per each day and the diffusion of the mesenchymal stem cells into the fracture region were assumed in an iterative hardening process. The changes of the mesenchymal stem cells into different phenotypes during the callus stiffening were governed by the octahedral shear strain and interstitial fluid velocity according to Prendergast mechanoregulation theory. Basing on the obtained results the progress of the cartilage and bone tissues formation and their distribution within the callus were compared between two models. FINDINGS The obtained results suggest that after 6 weeks of simulation the healing progress is in general comparable for both plates. However, earlier closing of external callus was observed for the medially positioned plate which had greater vertical bending stiffness. This process enables faster internal callus hardening and promotes symmetrical bridging.
Collapse
Affiliation(s)
- Agnieszka Sabik
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering Gdańsk University of Technology, Narutowicza Gdańsk, Poland
| | - Karol Daszkiewicz
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering Gdańsk University of Technology, Narutowicza Gdańsk, Poland
| | - Wojciech Witkowski
- Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering Gdańsk University of Technology, Narutowicza Gdańsk, Poland
| | - Piotr Łuczkiewicz
- II Clinic of Orthopaedics and Kinetic Organ Traumatology, Medical University of Gdansk, Smoluchowskiego, Gdańsk, Poland
| |
Collapse
|
3
|
Prediction of Bone Healing around Dental Implants in Various Boundary Conditions by Deep Learning Network. Int J Mol Sci 2023; 24:ijms24031948. [PMID: 36768272 PMCID: PMC9915893 DOI: 10.3390/ijms24031948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Tissue differentiation varies based on patients' conditions, such as occlusal force and bone properties. Thus, the design of the implants needs to take these conditions into account to improve osseointegration. However, the efficiency of the design procedure is typically not satisfactory and needs to be significantly improved. Thus, a deep learning network (DLN) is proposed in this study. A data-driven DLN consisting of U-net, ANN, and random forest models was implemented. It serves as a surrogate for finite element analysis and the mechano-regulation algorithm. The datasets include the history of tissue differentiation throughout 35 days with various levels of occlusal force and bone properties. The accuracy of day-by-day tissue differentiation prediction in the testing dataset was 82%, and the AUC value of the five tissue phenotypes (fibrous tissue, cartilage, immature bone, mature bone, and resorption) was above 0.86, showing a high prediction accuracy. The proposed DLN model showed the robustness for surrogating the complex, time-dependent calculations. The results can serve as a design guideline for dental implants.
Collapse
|
4
|
Idulhaq M, Mudigdo A, Utomo P, Wasita B, Warman FI. Platelet-rich fibrin as a tissue engineering material in accelerate bone healing in rat bone defects: A systematic review and meta-analysis. Ann Med Surg (Lond) 2022; 84:104869. [PMID: 36504707 PMCID: PMC9732119 DOI: 10.1016/j.amsu.2022.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/08/2022] [Accepted: 11/06/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction Various techniques for tissue engineering have been introduced to help regenerate damaged or lost bone tissue. This study aimed to see the potential implication of platelet-rich fibrin (PRF) to accelerate the bone healing process in rat bone defects. Methods A systematic literature search was conducted from several electronic databases on subjects looking at the use of PRF in rat bone defects and their results in bone regeneration. Specific results compared PRF vs. other methods, PRF vs. control, and PRV vs. combination PRF and other methods. Science Direct, PubMed, and Cochrane Library were the main information sources. The Cochrane Collaboration method is employed to assess the risk of bias. Results A total of 483 rats were used in the twelve studies, and this meta-analysis showed that the PRF vs. other methods pooled odds ratio (OR) obtained was 0.92 (95% CI 0.42-2.04; p = 0.29; I2 = 18%), PRF versus control OR obtained 9.45 (95% CI 4.68-19.08; P = 0.01; I2 = 0%), the combination of PRF compared to PRF alone OR obtained 0.12 (95% CI 0.03-0.41; p = 0.01; I2 = 0%). Discussion Platelet-rich fibrin accelerates the bone healing process in rat bone defects compared to physiologically. Platelet-rich fibrin combined with other methods can stimulate rat bone defects than utilization of platelet-rich fibrin only. The small number of articles assessed may cause limitations in sensitivity tests. This study was registered in the research registry (reviewregistry1341).
Collapse
Affiliation(s)
- Mujaddid Idulhaq
- Doctorate Program of Medical Sciences, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
- Department of Orthopedic & Traumatology Faculty of Medicine, Universitas Sebelas MaretRSUD Dr. Moewardi / RSO Prof Dr. R Soeharso, Surakarta, Indonesia
| | - Ambar Mudigdo
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Pamudji Utomo
- Department of Orthopedic & Traumatology Faculty of Medicine, Universitas Sebelas MaretRSUD Dr. Moewardi / RSO Prof Dr. R Soeharso, Surakarta, Indonesia
| | - Brian Wasita
- Department of Pathology Anatomy, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Fanny Indra Warman
- Department of Orthopedic & Traumatology Faculty of Medicine, Universitas Sebelas MaretRSUD Dr. Moewardi / RSO Prof Dr. R Soeharso, Surakarta, Indonesia
| |
Collapse
|
5
|
Ghosh R, Chanda S, Chakraborty D. Influence of sequential opening/closing of interface gaps and texture density on bone growth over macro-textured implant surfaces using FE based mechanoregulatory algorithm. Comput Methods Biomech Biomed Engin 2021; 25:985-999. [PMID: 34698599 DOI: 10.1080/10255842.2021.1994960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Intramedullary implant fixation is achieved through a press-fit between the implant and the host bone. A stronger press-fit between the bone and the prosthesis often introduces damage to the bone canal creating micro-gaps. The aim of the present investigation is to study the influences of simultaneous opening/closing of gaps on bone growth over macro-textured implant surfaces. Models based on textures available on CORAIL and SP-CL hip stems have been considered and 3D finite element (FE) analysis has been carried out in conjunction with mechanoregulation based tissue differentiation algorithm. Additionally, using a full-factorial approach, different combinations (between 5 µm to 15 µm) of sliding and gap distances at the bone-implant interface were considered to understand their combined influences on bone growth. All designs show an elevated fibrous tissue formation (10.96% at 5 µm to 29.38% at 40 µm for CORAIL based textured model; 11.45% at 5 µm to 32.25% at 40 µm for SP-CL based textured model) and inhibition of soft cartilaginous tissue (75.64% at 5 µm to 53.94% at 40 µm for CORAIL based model; 76.02% at 5 µm to 53.60% at 40 µm SP-CL based model) at progressively higher levels of normal micromotion, leading to a fragile bone-implant interface. These results highlight the importance of minimizing both sliding and gap distances simultaneously to enhance bone growth and implant stability. Further, results from the studies with differential texture density over CORAIL based implant reveal a non-linear complex relationship between tissue growth and texture density which might be investigated in a machine learning framework.
Collapse
Affiliation(s)
- Rajdeep Ghosh
- Composite Structures and Fracture Mechanics Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Souptick Chanda
- Biomechanics and Simulations Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.,Mehta Family School of Data Science and Artificial Intelligence, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Debabrata Chakraborty
- Composite Structures and Fracture Mechanics Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
6
|
Biomechanical Evaluation of the Effect of Mesenchymal Stem Cells on Cartilage Regeneration in Knee Joint Osteoarthritis. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9091868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Numerous clinical studies have reported cell-based treatments for cartilage regeneration in knee joint osteoarthritis using mesenchymal stem cells (MSCs). However, the post-surgery rehabilitation and weight-bearing times remain unclear. Phenomenological computational models of cartilage regeneration have been only partially successful in predicting experimental results and this may be due to simplistic modeling assumptions and loading conditions of cellular activity. In the present study, we developed a knee joint model of cell and tissue differentiation based on a more mechanistic approach, which was applied to cartilage regeneration in osteoarthritis. First, a phenomenological biphasic poroelastic finite element model was developed and validated according to a previous study. Second, this method was applied to a real knee joint model with a cartilage defect created to simulate the tissue regeneration process. The knee joint model was able to accurately predict several aspects of cartilage regeneration, such as the cell and tissue distributions in the cartilage defect. Additionally, our results indicated that gait cycle loading with flexion was helpful for cartilage regeneration compared to the use of simple weight-bearing loading.
Collapse
|
7
|
Tarlochan F, Mehboob H, Mehboob A, Chang SH. Influence of functionally graded pores on bone ingrowth in cementless hip prosthesis: a finite element study using mechano-regulatory algorithm. Biomech Model Mechanobiol 2017; 17:701-716. [PMID: 29168071 DOI: 10.1007/s10237-017-0987-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 01/10/2023]
Abstract
Cementless hip prostheses with porous outer coating are commonly used to repair the proximally damaged femurs. It has been demonstrated that stability of prosthesis is also highly dependent on the bone ingrowth into the porous texture. Bone ingrowth is influenced by the mechanical environment produced in the callus. In this study, bone ingrowth into the porous structure was predicted by using a mechano-regulatory model. Homogenously distributed pores (200 and 800 [Formula: see text]m in diameter) and functionally graded pores along the length of the prosthesis were introduced as a porous coating. Bone ingrowth was simulated using 25 and 12 [Formula: see text]m micromovements. Load control simulations were carried out instead of traditionally used displacement control. Spatial and temporal distributions of tissues were predicted in all cases. Functionally graded pore decreasing models gave the most homogenous bone distribution, the highest bone ingrowth (98%) with highest average Young's modulus of all tissue phenotypes approximately 4.1 GPa. Besides this, the volume of the initial callus increased to 8.33% in functionally graded pores as compared to the 200 [Formula: see text]m pore size models which increased the bone volume. These findings indicate that functionally graded porous surface promote bone ingrowth efficiently which can be considered to design of surface texture of hip prosthesis.
Collapse
Affiliation(s)
- Faris Tarlochan
- Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| | - Hassan Mehboob
- Mechanical and Industrial Engineering, Qatar University, Doha, Qatar.
| | - Ali Mehboob
- School of Mechanical Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul, 156-756, Republic of Korea
| | - Seung-Hwan Chang
- School of Mechanical Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul, 156-756, Republic of Korea
| |
Collapse
|
8
|
Zhang L, Miramini S, Richardson M, Mendis P, Ebeling P. The role of impairment of mesenchymal stem cell function in osteoporotic bone fracture healing. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:603-610. [DOI: 10.1007/s13246-017-0566-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/20/2017] [Indexed: 01/08/2023]
|
9
|
Ghiasi MS, Chen J, Vaziri A, Rodriguez EK, Nazarian A. Bone fracture healing in mechanobiological modeling: A review of principles and methods. Bone Rep 2017; 6:87-100. [PMID: 28377988 PMCID: PMC5365304 DOI: 10.1016/j.bonr.2017.03.002] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/15/2017] [Accepted: 03/15/2017] [Indexed: 02/07/2023] Open
Abstract
Bone fracture is a very common body injury. The healing process is physiologically complex, involving both biological and mechanical aspects. Following a fracture, cell migration, cell/tissue differentiation, tissue synthesis, and cytokine and growth factor release occur, regulated by the mechanical environment. Over the past decade, bone healing simulation and modeling has been employed to understand its details and mechanisms, to investigate specific clinical questions, and to design healing strategies. The goal of this effort is to review the history and the most recent work in bone healing simulations with an emphasis on both biological and mechanical properties. Therefore, we provide a brief review of the biology of bone fracture repair, followed by an outline of the key growth factors and mechanical factors influencing it. We then compare different methodologies of bone healing simulation, including conceptual modeling (qualitative modeling of bone healing to understand the general mechanisms), biological modeling (considering only the biological factors and processes), and mechanobiological modeling (considering both biological aspects and mechanical environment). Finally we evaluate different components and clinical applications of bone healing simulation such as mechanical stimuli, phases of bone healing, and angiogenesis.
Collapse
Affiliation(s)
- Mohammad S. Ghiasi
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Jason Chen
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ashkan Vaziri
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Edward K. Rodriguez
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ara Nazarian
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Carl J. Shapiro Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Borgiani E, Duda GN, Checa S. Multiscale Modeling of Bone Healing: Toward a Systems Biology Approach. Front Physiol 2017; 8:287. [PMID: 28533757 PMCID: PMC5420595 DOI: 10.3389/fphys.2017.00287] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/19/2017] [Indexed: 12/30/2022] Open
Abstract
Bone is a living part of the body that can, in most situations, heal itself after fracture. However, in some situations, healing may fail. Compromised conditions, such as large bone defects, aging, immuno-deficiency, or genetic disorders, might lead to delayed or non-unions. Treatment strategies for those conditions remain a clinical challenge, emphasizing the need to better understand the mechanisms behind endogenous bone regeneration. Bone healing is a complex process that involves the coordination of multiple events at different length and time scales. Computer models have been able to provide great insights into the interactions occurring within and across the different scales (organ, tissue, cellular, intracellular) using different modeling approaches [partial differential equations (PDEs), agent-based models, and finite element techniques]. In this review, we summarize the latest advances in computer models of bone healing with a focus on multiscale approaches and how they have contributed to understand the emergence of tissue formation patterns as a result of processes taking place at the lower length scales.
Collapse
Affiliation(s)
- Edoardo Borgiani
- Julius Wolff Institute, Charité-Universitätsmedizin BerlinBerlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Georg N Duda
- Julius Wolff Institute, Charité-Universitätsmedizin BerlinBerlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin BerlinBerlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Charité-Universitätsmedizin BerlinBerlin, Germany.,Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin BerlinBerlin, Germany
| |
Collapse
|
11
|
Computational modelling of bone fracture healing under partial weight-bearing exercise. Med Eng Phys 2017; 42:65-72. [DOI: 10.1016/j.medengphy.2017.01.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 01/09/2017] [Accepted: 01/31/2017] [Indexed: 11/21/2022]
|
12
|
Williams DF. Biocompatibility Pathways: Biomaterials-Induced Sterile Inflammation, Mechanotransduction, and Principles of Biocompatibility Control. ACS Biomater Sci Eng 2016; 3:2-35. [DOI: 10.1021/acsbiomaterials.6b00607] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- David F. Williams
- Wake Forest Institute of Regenerative Medicine, Richard H. Dean Biomedical Building, 391 Technology Way, Winston-Salem, North Carolina 27101, United States
| |
Collapse
|
13
|
Khayyeri H, Gustafsson A, Heuijerjans A, Matikainen MK, Julkunen P, Eliasson P, Aspenberg P, Isaksson H. A fibre-reinforced poroviscoelastic model accurately describes the biomechanical behaviour of the rat Achilles tendon. PLoS One 2015; 10:e0126869. [PMID: 26030436 PMCID: PMC4450879 DOI: 10.1371/journal.pone.0126869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/08/2015] [Indexed: 11/19/2022] Open
Abstract
Background Computational models of Achilles tendons can help understanding how healthy tendons are affected by repetitive loading and how the different tissue constituents contribute to the tendon’s biomechanical response. However, available models of Achilles tendon are limited in their description of the hierarchical multi-structural composition of the tissue. This study hypothesised that a poroviscoelastic fibre-reinforced model, previously successful in capturing cartilage biomechanical behaviour, can depict the biomechanical behaviour of the rat Achilles tendon found experimentally. Materials and Methods We developed a new material model of the Achilles tendon, which considers the tendon’s main constituents namely: water, proteoglycan matrix and collagen fibres. A hyperelastic formulation of the proteoglycan matrix enabled computations of large deformations of the tendon, and collagen fibres were modelled as viscoelastic. Specimen-specific finite element models were created of 9 rat Achilles tendons from an animal experiment and simulations were carried out following a repetitive tensile loading protocol. The material model parameters were calibrated against data from the rats by minimising the root mean squared error (RMS) between experimental force data and model output. Results and Conclusions All specimen models were successfully fitted to experimental data with high accuracy (RMS 0.42-1.02). Additional simulations predicted more compliant and soft tendon behaviour at reduced strain-rates compared to higher strain-rates that produce a stiff and brittle tendon response. Stress-relaxation simulations exhibited strain-dependent stress-relaxation behaviour where larger strains produced slower relaxation rates compared to smaller strain levels. Our simulations showed that the collagen fibres in the Achilles tendon are the main load-bearing component during tensile loading, where the orientation of the collagen fibres plays an important role for the tendon’s viscoelastic response. In conclusion, this model can capture the repetitive loading and unloading behaviour of intact and healthy Achilles tendons, which is a critical first step towards understanding tendon homeostasis and function as this biomechanical response changes in diseased tendons.
Collapse
Affiliation(s)
- Hanifeh Khayyeri
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Anna Gustafsson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Ashley Heuijerjans
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Marko K. Matikainen
- Department of Mechanical Engineering, Lappeenranta University of Technology, Lappeenranta, Finland
| | - Petro Julkunen
- Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Pernilla Eliasson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Per Aspenberg
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Hanna Isaksson
- Department of Biomedical Engineering, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
14
|
Attachment-regulated signaling networks in the fibroblast-populated 3D collagen matrix. Sci Rep 2014; 3:1880. [PMID: 23697962 PMCID: PMC6504840 DOI: 10.1038/srep01880] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 05/02/2013] [Indexed: 01/03/2023] Open
Abstract
Fibroblasts in the attached collagen matrix are in a pro-survival, pro-proliferative state relative to fibroblasts in the released collagen matrix, such that matrix cell number increases in the former over time. Gene array data from attached vs. released matrices were analyzed for putative networks that regulated matrix cell number. Select networks then underwent augmentation and/or inhibition in order to determine their biologic relevance. Matrix stress-release was associated with modulation of signaling networks that involved IL6, IL8, NF-κB, TGF-β1, p53, interferon-γ, and other entities as central participants. Perturbation of select networks in multiple fibroblast strains suggested that IL6 and IL8 secretion may have been involved in preservation of matrix cell population in the released matrix, though there was variability in testing results among the strains. NF-κB activation may have contributed to the induction of population regression after matrix release.
Collapse
|
15
|
Inguinal hernia repair using a synthetic long-term resorbable mesh: results from a 3-year prospective safety and performance study. Hernia 2014; 18:723-30. [PMID: 24770701 PMCID: PMC4177566 DOI: 10.1007/s10029-014-1249-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 04/06/2014] [Indexed: 01/05/2023]
Abstract
PURPOSE Conventional meshes for hernia repair and abdominal wall reinforcement are usually made from polypropylene, polyester or other synthetic plastic materials known to promote foreign body reactions and a state of chronic inflammation that may lead to long-term complications. A novel approach is to use long-term resorbable implants like TIGR(®) Matrix Surgical Mesh. Preclinical studies have shown that this mesh maintains mechanical integrity beyond the point in time where newly formed tissue is capable of carrying the abdominal loads. METHODS This was a first-in-man, prospective, pilot study performed during 2009, at two sites in Sweden. Forty patients with primary inguinal hernias were enrolled for Lichtenstein repair using TIGR(®) Matrix Surgical Mesh. The primary endpoint was safety as assessed by monitoring the incidence of adverse events and serious adverse events (SAEs) both related and unrelated to the mesh. The secondary endpoint was pain or discomfort. Visual Analogue Scale (VAS) 0-10 and Inguinal Pain Questionnaire were used for scoring pain and discomfort. Included patients have been followed for 36 months using ultrasound in combination with clinical examination. RESULTS All patients followed a normal early postoperative course. After 12 months no SAEs were reported. None of the patients with an isolated lateral inguinal hernia (LIH) had developed a recurrence but 4 (44 %) with medial and 4 (33 %) with combined hernias had recurred at 36-month follow-up. After 3-year follow-up none of the patients with LIH reported pain in the VAS-form and none of those patients could feel the sensation of a mesh in their groin. In the total study population 5 (16 %) patients experienced chronic pain in the form of mild sporadic pain and 3 (9.7 %) patients could feel the sensation of a mesh in their groin. CONCLUSION The use of a synthetic long-term resorbable mesh (TIGR(®) Matrix Surgical Mesh) in Lichtenstein repair was found to be safe, without recurrences, and promising regarding pain/discomfort at 3-year follow-up in patients with LIH. However, patients with medial and combined inguinal hernias had high recurrence rates.
Collapse
|
16
|
Amin S, Banijamali SE, Tafazoli-Shadpour M, Shokrgozar MA, Dehghan MM, Haghighipour N, Mahdian R, Bayati V, Abbasnia P. Comparing the effect of equiaxial cyclic mechanical stimulation on GATA4 expression in adipose-derived and bone marrow-derived mesenchymal stem cells. Cell Biol Int 2014; 38:219-227. [PMID: 24123331 DOI: 10.1002/cbin.10194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/17/2013] [Indexed: 11/10/2022]
Abstract
Myocardium is prone to mechanical stimuli among which pulsatile blood flow exerts both radial and longitudinal strains on the heart. Recent studies have shown that mechanical stimulation can notably influence regeneration of cardiac muscle cells. GATA4 is a cardiac-specific transcription factor that plays an important role in late embryonic heart development. Our study aimed at investigating the effect of equiaxial cyclic strain on GATA4 expression in adipose-derived (ASCs) and bone marrow-derived (BMSCs) mesenchymal stem cells. For this reason, both ASCs and BMSCs were studied in four distinct groups of chemical, mechanical, mechano-chemical and negative control. According to this categorisation, the cells were exposed to cyclic mechanical loading and/or 5-azacytidine as the chemical factor. The level of GATA4 expression was then quantified using real-time PCR method on the first, fourth and seventh days. The results show that: (1) equiaxial cyclic stimulation of mesenchymal stem cells could promote GATA4 expression from the early days of induction and as it went on, its combination with chemical factor elevated expression; (2) cyclic strain could accelerate GATA4 expression compared to the chemical factor; (3) in this regard, these results indicate a higher capacity of ASCs than BMSCs to express GATA4.
Collapse
Affiliation(s)
- Susan Amin
- Cardiovascular Lab, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Miramini S, Zhang L, Richardson M, Pirpiris M, Mendis P, Oloyede K, Edwards G. Computational simulation of the early stage of bone healing under different configurations of locking compression plates. Comput Methods Biomech Biomed Engin 2013; 18:900-13. [PMID: 24261957 DOI: 10.1080/10255842.2013.855729] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Flexible fixation or the so-called 'biological fixation' has been shown to encourage the formation of fracture callus, leading to better healing outcomes. However, the nature of the relationship between the degree of mechanical stability provided by a flexible fixation and the optimal healing outcomes has not been fully understood. In this study, we have developed a validated quantitative model to predict how cells in fracture callus might respond to change in their mechanical microenvironment due to different configurations of locking compression plate (LCP) in clinical practice, particularly in the early stage of healing. The model predicts that increasing flexibility of the LCP by changing the bone-plate distance (BPD) or the plate working length (WL) could enhance interfragmentary strain in the presence of a relatively large gap size (> 3 mm). Furthermore, conventional LCP normally results in asymmetric tissue development during early stage of callus formation, and the increase of BPD or WL is insufficient to alleviate this problem.
Collapse
Affiliation(s)
- Saeed Miramini
- a Department of Infrastructure Engineering , The University of Melbourne , VIC 3010 , Australia
| | | | | | | | | | | | | |
Collapse
|
18
|
Burke D, Dishowitz M, Sweetwyne M, Miedel E, Hankenson KD, Kelly DJ. The role of oxygen as a regulator of stem cell fate during fracture repair in TSP2-null mice. J Orthop Res 2013; 31:1585-96. [PMID: 23775935 DOI: 10.1002/jor.22396] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 05/02/2013] [Indexed: 02/04/2023]
Abstract
It is often difficult to decouple the relative importance of different factors in regulating MSC differentiation. Genetically modified mice provide model systems whereby some variables can be manipulated while others are kept constant. Fracture repair in thrombospondin-2 (TSP2)-null mice is characterized by reduced endochondral ossification and enhanced intramembranous bone formation. The proposed mechanism for this shift in MSC fate is that increased vascular density and hence oxygen availability in TSP2-null mice regulates differentiation. However, TSP2 is multifunctional and regulates other aspects of the regenerative cascade, such as MSC proliferation. The objective of this study is to use a previously developed computational model of tissue differentiation, in which substrate stiffness and oxygen tension regulate stem cell differentiation, to simulate potential mechanisms which may drive alterations in MSC fate in TSP2-null mice. Four models (increased cell proliferation, increased numbers of MSCs in the marrow decreased cellular oxygen consumption, and an initially stiffer callus) were not predictive of experimental observations in TSP2-null mice. In contrast, increasing the rate of angiogenic progression led to a prediction of greater intramembranous ossification, diminished endochondral ossification, and a reduced region of hypoxia in the fracture callus similar to that quantified experimentally by the immunohistochemical detection of pimonidazole adducts that develop with hypoxia. This study therefore provides further support for the hypothesis that oxygen availability during early fracture healing is a key regulator of MSC bipotential differentiation, and furthermore, it highlights the advantages of integrating computational models with genetically modified mouse studies for further elucidating mechanisms regulating stem cell fate.
Collapse
Affiliation(s)
- Darren Burke
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
19
|
Khayyeri H, Isaksson H, Prendergast PJ. Corroboration of computational models for mechanoregulated stem cell differentiation. Comput Methods Biomech Biomed Engin 2013; 18:15-23. [DOI: 10.1080/10255842.2013.774381] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Nasr S, Hunt S, Duncan NA. Effect of screw position on bone tissue differentiation within a fixed femoral fracture. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.612a009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Khayyeri H, Prendergast PJ. The emergence of mechanoregulated endochondral ossification in evolution. J Biomech 2012; 46:731-7. [PMID: 23261239 DOI: 10.1016/j.jbiomech.2012.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 10/12/2012] [Accepted: 11/10/2012] [Indexed: 10/27/2022]
Abstract
The differentiation of skeletal tissue phenotypes is partly regulated by mechanical forces. This mechanoregulatory aspect of tissue differentiation has been the subject of many experimental and computational investigations. However, little is known about what factors promoted the emergence of mechanoregulated tissue differentiation in evolution, even though mechanoregulated tissue differentiation, for example during development or healing of adult bone, is crucial for vertebrate phylogeny. In this paper, we use a computational framework to test the hypothesis that the emergence of mechanosensitive genes that trigger endochondral ossification in evolution will stabilise in the population and create a variable mechanoregulated response, if the endochondral ossification process enhances fitness for survival. The model combines an evolutionary algorithm that considers genetic change with a mechanoregulated fracture healing model in which the fitness of animals in a population is determined by their ability to heal their bones. The simulations show that, with the emergence of mechanosensitive genes through evolution enabling skeletal cells to modulate their synthetic activities, novel differentiation pathways such as endochondral ossification could have emerged, which when favoured by natural selection is maintained in a population. Furthermore, the model predicts that evolutionary forces do not lead to a single optimal mechanoregulated response but that the capacity of endochondral ossification exists with variability in a population. The simulations correspond with many existing findings about the mechanosensitivity of skeletal tissues in current animal populations, therefore indicating that this kind of multi-level models could be used in future population based simulations of tissue differentiation.
Collapse
Affiliation(s)
- Hanifeh Khayyeri
- Trinity Centre for Bioengineering, School of Engineering, Parsons Building, Trinity College Dublin, Dublin D2, Ireland
| | | |
Collapse
|
22
|
Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model. PLoS One 2012; 7:e40737. [PMID: 22911707 PMCID: PMC3404068 DOI: 10.1371/journal.pone.0040737] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 06/12/2012] [Indexed: 01/08/2023] Open
Abstract
Extrinsic mechanical signals have been implicated as key regulators of mesenchymal stem cell (MSC) differentiation. It has been possible to test different hypotheses for mechano-regulated MSC differentiation by attempting to simulate regenerative events such as bone fracture repair, where repeatable spatial and temporal patterns of tissue differentiation occur. More recently, in vitro studies have identified other environmental cues such as substrate stiffness and oxygen tension as key regulators of MSC differentiation; however it remains unclear if and how such cues determine stem cell fate in vivo. As part of this study, a computational model was developed to test the hypothesis that substrate stiffness and oxygen tension regulate stem cell differentiation during fracture healing. Rather than assuming mechanical signals act directly on stem cells to determine their differentiation pathway, it is postulated that they act indirectly to regulate angiogenesis and hence partially determine the local oxygen environment within a regenerating tissue. Chondrogenesis of MSCs was hypothesized to occur in low oxygen regions, while in well vascularised regions of the regenerating tissue a soft local substrate was hypothesised to facilitate adipogenesis while a stiff substrate facilitated osteogenesis. Predictions from the model were compared to both experimental data and to predictions of a well established computational mechanobiological model where tissue differentiation is assumed to be regulated directly by the local mechanical environment. The model predicted all the major events of fracture repair, including cartilaginous bridging, endosteal and periosteal bony bridging and bone remodelling. It therefore provides support for the hypothesis that substrate stiffness and oxygen play a key role in regulating MSC fate during regenerative events such as fracture healing.
Collapse
|
23
|
A model of tissue differentiation and bone remodelling in fractured vertebrae treated with minimally invasive percutaneous fixation. Med Biol Eng Comput 2012; 50:947-59. [DOI: 10.1007/s11517-012-0937-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 06/13/2012] [Indexed: 10/28/2022]
|
24
|
Bayati V, Sadeghi Y, Shokrgozar MA, Haghighipour N, Azadmanesh K, Amanzadeh A, Azari S. The evaluation of cyclic uniaxial strain on myogenic differentiation of adipose-derived stem cells. Tissue Cell 2011; 43:359-366. [PMID: 21872289 DOI: 10.1016/j.tice.2011.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 12/31/2022]
Abstract
It has been revealed that skeletal muscle cells have the potential to generate, sense and respond to biomechanical signals and that, mechanical force is one of the important factors influencing proliferation, differentiation, regeneration and homeostasis of skeletal muscle cells and myoblasts. The aim of this study was to illustrate the effect of cyclic uniaxial strain on myogenic differentiation of adipose-derived stem cells (ASCs). This study was designed to investigate this effect within 3 days in 4 groups: control (untreated), chemical, chemical-mechanical and mechanical based on exposure of ASCs to chemical growth factors for 3 days or to mechanical strain just on the 2nd day. Finally, cell orientation, muscle-related gene expression, myosin protein synthesis and the number of myosin-positive cells were examined to estimate the rate of differentiation. By studying the cells before and after exposure to uniaxial strain, it could be observed that by exerting the load, the cells were organized almost perpendicularly to strain direction. Real-time RT-PCR demonstrated that uniaxial strain had a significant effect on up-regulation of muscle-related genes in chemical-mechanical group (P < 0.001) as compared to mechanical or chemical groups. Immunocytochemistry confirmed the myosin-positive cells in treated groups and the numbers of these cells were enumerated by flow cytometry. These data suggest that uniaxial cyclic strain could affect ASCs and cause their myogenic differentiation and that the combination of chemical myogenic differentiation factors with mechanical signals promotes differentiation much more than differentiation by chemical myogenic differentiation factors or mechanical signals alone.
Collapse
Affiliation(s)
- Vahid Bayati
- Biology and Anatomy Department, Medical School, Shaheed Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
25
|
A remodelling metric for angular fibre distributions and its application to diseased carotid bifurcations. Biomech Model Mechanobiol 2011; 11:869-82. [DOI: 10.1007/s10237-011-0358-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
|
26
|
Nagel T, Kelly DJ. Mechanically induced structural changes during dynamic compression of engineered cartilaginous constructs can potentially explain increases in bulk mechanical properties. J R Soc Interface 2011; 9:777-89. [PMID: 21900321 DOI: 10.1098/rsif.2011.0449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several studies on chondrocyte-seeded hydrogels in bioreactor culture report increased mechanical properties of mechanically loaded constructs compared with unloaded free swelling controls despite no significant differences in biochemical composition. One possible explanation is that changes in the collagen architecture of dynamically compressed constructs lead to improved mechanical properties. Collagen molecules are incorporated locally into the extracellular matrix with individual stress-free configurations and orientations. In this study, we computationally investigated possible influences of loading on the collagen architecture in chondrocyte-seeded hydrogels and their resulting mechanical properties. Both the collagen orientation and its stress-free configuration were hypothesized to depend on the local mechanical environment. Reorientation of the collagen network alone in response to dynamic compression leads to a prediction of constructs with lower compressive properties. In contrast, remodelling of the stress-free configuration of the collagen fibres was predicted to result in a more compacted tissue with higher swelling pressures and an altered pre-stressed state within the collagen network. Combining both mechanisms resulted in predictions of construct geometry and mechanical properties in agreement with experimental observations. This study provides support for the hypothesis that structural changes to the collagen network contribute to the enhanced mechanical properties of cartilaginous tissues engineered in bioreactors.
Collapse
Affiliation(s)
- Thomas Nagel
- Department of Mechanical and Manufacturing Engineering, Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | | |
Collapse
|
27
|
Khayyeri H, Checa S, Tägil M, Aspenberg P, Prendergast PJ. Variability observed in mechano-regulated in vivo tissue differentiation can be explained by variation in cell mechano-sensitivity. J Biomech 2011; 44:1051-8. [PMID: 21377680 DOI: 10.1016/j.jbiomech.2011.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 11/27/2022]
Abstract
Computational simulations of tissue differentiation have been able to capture the main aspects of tissue formation/regeneration observed in animal experiments-except for the considerable degree of variability reported. Understanding and modelling the source of this variability is crucial if computational tools are to be developed for clinical applications. The objective of this study was to test the hypothesis that differences in cell mechano-sensitivity between individuals can explain the variability of tissue differentiation patterns observed experimentally. Simulations of an experiment of tissue differentiation in a mechanically loaded bone chamber were performed. Finite element analysis was used to determine the biophysical environment, and a lattice-modelling approach was used to simulate cell activity. Differences in cell mechano-sensitivity among individuals were modelled as differences in cell activity rates, with the activation of cell activities regulated by the mechanical environment. Predictions of the tissue distribution in the chambers produced the two different classes of results found experimentally: (i) chambers with a layer of bone across the chamber covered by a layer of cartilage on top and (ii) chambers with almost no bone, mainly fibrous tissue and small islands of cartilage. This indicates that the differing cellular response to the mechanical environment (i.e., subject-specific mechano-sensitivity) could be a reason for the different outcomes found when implants (or tissue engineered constructs) are used in a population.
Collapse
Affiliation(s)
- Hanifeh Khayyeri
- Trinity Centre for Bioengineering, School of Engineering, Trinity College Dublin, Ireland
| | | | | | | | | |
Collapse
|
28
|
Coulibaly MO, Sietsema DL, Burgers TA, Mason J, Williams BO, Jones CB. Recent advances in the use of serological bone formation markers to monitor callus development and fracture healing. Crit Rev Eukaryot Gene Expr 2011; 20:105-27. [PMID: 21133841 DOI: 10.1615/critreveukargeneexpr.v20.i2.20] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The failure of an osseous fracture to heal, or the development of a nonunion, is common; however, current diagnostic measures lack the capability of early and reliable detection of such events. Analyses of radiographic imaging and clinical examination, in combination, remain the gold standard for diagnosis; however, these methods are not reliable for early detection. Delayed diagnosis of a nonunion is costly from both the patient and treatment standpoints. In response, repeated efforts have been made to identify bone metabolic markers as diagnostic or prognostic tools for monitoring bone healing. Thus far, the evidence regarding a correlation between the kinetics of most bone metabolic markers and nonunion is very limited. With the aim of classifying the role of biological pathways of bone metabolism and of understanding bone conditions in the development of osteoporosis, advances have been made in our knowledge of the molecular basis of bone remodeling, fracture healing, and its failure. Procollagen type I amino-terminal propeptide has been shown to be a reliable bone formation marker in osteoporosis therapy and its kinetics during fracture healing has been recently described. In this article, we suggest that procollagen type I amino-terminal propeptide presents a good opportunity for early detection of nonunion. We also review the role and potential of serum PINP, as well as other markers, as indications of fracture healing.
Collapse
|
29
|
|
30
|
Creane A, Maher E, Sultan S, Hynes N, Kelly DJ, Lally C. Prediction of fibre architecture and adaptation in diseased carotid bifurcations. Biomech Model Mechanobiol 2010; 10:831-43. [PMID: 21161562 DOI: 10.1007/s10237-010-0277-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 11/26/2010] [Indexed: 11/29/2022]
Abstract
Many studies have used patient-specific finite element models to estimate the stress environment in atherosclerotic plaques, attempting to correlate the magnitude of stress to plaque vulnerability. In complex geometries, few studies have incorporated the anisotropic material response of arterial tissue. This paper presents a fibre remodelling algorithm to predict the fibre architecture, and thus anisotropic material response in four patient-specific models of the carotid bifurcation. The change in fibre architecture during disease progression and its affect on the stress environment in the plaque were predicted. The mean fibre directions were assumed to lie at an angle between the two positive principal strain directions. The angle and the degree of dispersion were assumed to depend on the ratio of principal strain values. Results were compared with experimental observations and other numerical studies. In non-branching regions of each model, the typical double helix arterial fibre pattern was predicted while at the bifurcation and in regions of plaque burden, more complex fibre architectures were found. The predicted change in fibre architecture in the arterial tissue during plaque progression was found to alter the stress environment in the plaque. This suggests that the specimen-specific anisotropic response of the tissue should be taken into account to accurately predict stresses in the plaque. Since determination of the fibre architecture in vivo is a difficult task, the system presented here provides a useful method of estimating the fibre architecture in complex arterial geometries.
Collapse
Affiliation(s)
- Arthur Creane
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | | | | | | | | | | |
Collapse
|
31
|
Görke UJ, Günther H, Nagel T, Wimmer MA. A large strain material model for soft tissues with functionally graded properties. J Biomech Eng 2010; 132:074502. [PMID: 20590295 DOI: 10.1115/1.4001312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The reaction of articular cartilage and other soft tissues to mechanical loads has been characterized by coupled hydraulic (H) and mechanical (M) processes. An enhanced biphasic material model is presented, which may be used to describe the load response of soft tissue. A large-strain numerical approach of HM coupled processes has been applied. Physical and geometrical nonlinearities, as well as anisotropy and intrinsic rate-dependency of the solid skeleton have been realized using a thermodynamically consistent approach. The presented material model has been implemented into the commercially available finite element code MSC MARC. Initial verification of the model has been conducted analytically in tendonlike structures. The poroelastic and intrinsic viscoelastic features of the model were compared with the experimental data of an unconfined compression test of agarose hydrogel. A recent example from the area of cartilage research has been modeled, and the mechanical response was compared with cell viability. All examples showed good agreement between numerical and analytical/experimental results.
Collapse
Affiliation(s)
- Uwe-Jens Görke
- Department of Environmental Informatics, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| | | | | | | |
Collapse
|