1
|
Berteau JP. Predicting altered bone biomechanics in juvenile mice: insights from microgravity simulation, loading interventions, and Raman Spectroscopy. Lab Anim Res 2024; 40:20. [PMID: 38745255 PMCID: PMC11092207 DOI: 10.1186/s42826-024-00207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Microgravity, a condition experienced in a spatial environment, poses unique challenges to the skeletal system, particularly in juvenile organisms. This study aimed to investigate alterations in bone biomechanics of juvenile mice due to unloading - that simulates microgravity in the laboratory-and the effects of a bone-loading intervention. We compared bone compositional and mechanical properties between 21-six-week-old C57Bl/6 from a control group (wild type) and a group that underwent a tail-suspension unloading protocol to mimic microgravity (MG). The second group (MG) experienced additional in vivo loading protocol (MG + LDG) on the right hind leg, where dynamic compressive loading was applied to the right knee using a custom-built loading device. RESULTS Our results show that after two weeks, we successfully induced bone alterations by (i) decreasing the energy dissipated before fracture and (ii) decreasing the yield and maximum stress. In addition, we showed that Mineral to matrix component [ν1PO4/Amide I], Carbonate to Amide [CO3/Amide I], and Crystallinity [1/FWHM(ν1PO4)] are strongly linked in physiological bone but not in microgravity even after loading intervention. While Crystallinity is very sensitive to bone deformation (strain) alterations coming from simulated microgravity, we show that Carbonate to Amide [CO3/Amide I] - a common marker of turnover rate/remodeling activity-is a specific predictor of bone deformation for bone after simulated microgravity. Our results also invalidate the current parameters of the loading intervention to prevent bone alterations entirely in juvenile mice. CONCLUSIONS Our study successfully induced bone alterations in juvenile mice by using an unloading protocol to simulate microgravity, and we provided a new Raman Spectroscopy (RS) dataset of juvenile mice that contributes to the prediction of cortical bone mechanical properties, where the degree of interrelationship for RS data for physiological bone is improved compared to the most recent evidence.
Collapse
Affiliation(s)
- J P Berteau
- Department of Physical Therapy, City University of New York - College of Staten Island, New-York, USA.
- New York Center for Biomedical Engineering, City University of New York - City College of New York, New-York, USA.
- Nanoscience Initiative, Advanced Science Research Center, City University of New York, New-York, USA.
| |
Collapse
|
2
|
Moshtagh PR, Korthagen NM, Plomp SG, Pouran B, Castelein RM, Zadpoor AA, Weinans H. Early Signs of Bone and Cartilage Changes Induced by Treadmill Exercise in Rats. JBMR Plus 2018; 2:134-142. [PMID: 30283898 DOI: 10.1002/jbm4.10029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/02/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
This study aims to investigate the earliest alterations of bone and cartilage tissues as a result of different exercise protocols in the knee joint of Wistar rats. We hypothesize that pretraining to a continuous intense running protocol would protect the animals from cartilage degeneration. Three groups of animals were used: (i) an adaptive (pretraining) running group that ran for 8 weeks with gradually increasing velocity and time of running followed by a constant running program (6 weeks of 1.12 km/hour running per day); (ii) a non-adaptive running (constant running) group that initially rested for 8 weeks followed by 6 weeks of constant running; and (iii) a non-running (control) group. At weeks 8, 14, and 20 bone and cartilage were analyzed. Both running groups developed mild symptoms of cartilage irregularities, such as chondrocyte hypertrophy and cell clustering in different cartilage zones, in particular after the adaptive running protocol. As a result of physical training in the adaptive running exercise a dynamic response of bone was detected at week 8, where bone growth was enhanced. Conversely, the thickness of epiphyseal trabecular and subchondral bone (at week 14) was reduced due to the constant running in the period between 8 and 14 weeks. Finally, the intermediate differences between the two running groups disappeared after both groups had a resting period (from 14 to 20 weeks). The adaptive running group showed an increase in aggrecan gene expression and reduction of MMP2 expression after the initial 8 weeks running. Thus, the running exercise models in this study showed mild bone and cartilage/chondrocyte alterations that can be considered as early-stage osteoarthritis. The pretraining adaptive protocol before constant intense running did not protect from mild cartilage degeneration. © 2017 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Parisa R Moshtagh
- Department of Orthopaedics University Medical Center Utrecht Utrecht The Netherlands.,Faculty of Mechanical, Maritime, and Materials Engineering Delft University of Technology (TU Delft), Delft The Netherlands
| | - Nicoline M Korthagen
- Department of Orthopaedics University Medical Center Utrecht Utrecht The Netherlands.,Department of Equine Sciences Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Saskia G Plomp
- Department of Equine Sciences Faculty of Veterinary Medicine Utrecht University Utrecht The Netherlands
| | - Behdad Pouran
- Department of Orthopaedics University Medical Center Utrecht Utrecht The Netherlands.,Faculty of Mechanical, Maritime, and Materials Engineering Delft University of Technology (TU Delft), Delft The Netherlands
| | - Rene M Castelein
- Department of Orthopaedics University Medical Center Utrecht Utrecht The Netherlands
| | - Amir A Zadpoor
- Faculty of Mechanical, Maritime, and Materials Engineering Delft University of Technology (TU Delft), Delft The Netherlands
| | - Harrie Weinans
- Department of Orthopaedics University Medical Center Utrecht Utrecht The Netherlands.,Faculty of Mechanical, Maritime, and Materials Engineering Delft University of Technology (TU Delft), Delft The Netherlands.,Department of Rheumatology University Medical Center Utrecht Utrecht The Netherlands
| |
Collapse
|
3
|
Cellular Changes of Stem Cells in 3-Dimensional Culture. J Oral Maxillofac Surg 2017; 75:2477.e1-2477.e9. [PMID: 28683303 DOI: 10.1016/j.joms.2017.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 11/24/2022]
Abstract
PURPOSE During various operations and procedures, such as distraction osteogenesis and orthodontics, skeletal tissues use mechanotransduction. Mechanotransduction is important for maintaining bone health and converting mechanical forces into biochemical signals. We hypothesized that cells put under mechanical stress would adapt and change morphologically and respond with a decrease in cellular proliferation to accommodate the stress differences. These differences will be measured at the molecular and genetic level. We also wanted to test the practicality of an in vitro 3-dimensional gel model system. MATERIALS AND METHODS We implemented a 3-dimensional cell culture model. The sample was composed of isolated mouse mesenchymal prefibroblast bone marrow cells from the femurs and tibias of 6- to 8-week-old wild-type C57BL6 mice. The cells were seeded on fibronectin-coated hydrogels along with fibrin and nodulin growth factors. The variables tested were a no-force model (control) and a force model. The force model required two 0.1-mm suture pins put through one 0.25-cm length of cell-gel matrix. After the experiments were run to completion, the samples were fixed with 4% paraformaldehyde and embedded in paraffin. Serial sections were cut at a thickness of 5 μm along the long axis for the force construct and encompassing the entire circular area of the control construct. Descriptive and bivariate statistics were computed, and the P value was set at 5%. RESULTS There was a statistically significant difference between the 2 models. The force model had longer and straighter primary cilia, less apoptosis, and an increase in cell proliferation. In addition, the shape of the cells was markedly different after the experiment. CONCLUSIONS The results of the study suggest cells put under tensile stress have the ability to mechanically sense the environment to provide improved adaptation. Our work also confirms the usefulness of the in vitro 3-dimensional gel model system to mimic in vivo applications.
Collapse
|
4
|
Ryser MD, Murgas KA. Bone remodeling as a spatial evolutionary game. J Theor Biol 2017; 418:16-26. [PMID: 28108306 DOI: 10.1016/j.jtbi.2017.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 01/28/2023]
Abstract
Bone remodeling is a complex process involving cell-cell interactions, biochemical signaling and mechanical stimuli. Early models of the biological aspects of remodeling were non-spatial and focused on the local dynamics at a fixed location in the bone. Several spatial extensions of these models have been proposed, but they generally suffer from two limitations: first, they are not amenable to analysis and are computationally expensive, and second, they neglect the role played by bone-embedded osteocytes. To address these issues, we developed a novel model of spatial remodeling based on the principles of evolutionary game theory. The analytically tractable framework describes the spatial interactions between zones of bone resorption, bone formation and quiescent bone, and explicitly accounts for regulation of remodeling by bone-embedded, mechanotransducing osteocytes. Using tools from the theory of interacting particle systems we systematically classified the different dynamic regimes of the spatial model and identified regions of parameter space that allow for global coexistence of resorption, formation and quiescence, as observed in physiological remodeling. In coexistence scenarios, three-dimensional simulations revealed the emergence of sponge-like bone clusters. Comparison between spatial and non-spatial dynamics revealed substantial differences and suggested a stabilizing role of space. Our findings emphasize the importance of accounting for spatial structure and bone-embedded osteocytes when modeling the process of bone remodeling. Thanks to the lattice-based framework, the proposed model can easily be coupled to a mechanical model of bone loading.
Collapse
Affiliation(s)
- Marc D Ryser
- Department of Mathematics, Duke University, 120 Science Drive, 117 Physics Building, Durham, NC 27708 USA.
| | - Kevin A Murgas
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
5
|
Piccinini M, Cugnoni J, Botsis J, Ammann P, Wiskott A. Numerical prediction of peri-implant bone adaptation: Comparison of mechanical stimuli and sensitivity to modeling parameters. Med Eng Phys 2016; 38:1348-1359. [DOI: 10.1016/j.medengphy.2016.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 08/05/2016] [Accepted: 08/30/2016] [Indexed: 11/27/2022]
|
6
|
Effects of Hip Osteoarthritis on Mechanical Stimulation of Trabecular Bone: a Finite Element Study. J Med Biol Eng 2015. [DOI: 10.1007/s40846-015-0061-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Spyropoulou A, Karamesinis K, Basdra EK. Mechanotransduction pathways in bone pathobiology. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1700-8. [PMID: 26004394 DOI: 10.1016/j.bbadis.2015.05.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 12/16/2022]
Abstract
The skeleton is subject to dynamic changes throughout life and bone remodeling is essential for maintenance of bone functionality. The cell populations which predominantly participate in bone and cartilage remodeling, namely osteocytes, osteoblasts, osteoclasts and chondrocytes sense and respond to external mechanical signals and via a series of molecular cascades control bone metabolism and turnover rate. The aforementioned process, known as mechanotransduction, is the underlying mechanism that controls bone homeostasis and function. A wide array of cross-talking signaling pathways has been found to play an important role in the preservation of bone and cartilage tissue health. Moreover, alterations in bone mechanotransduction pathways, due to genetic, hormonal and biomechanical factors, are considered responsible for the pathogenesis of bone and cartilage diseases. Extensive research has been conducted and demonstrated that aberrations in mechanotransduction pathways result in disease-like effects, however only few signaling pathways have actually been engaged in the development of bone disease. The aim of the present review is to present these signaling molecules and cascades that have been found to be mechano-responsive and implicated in bone disease development, as revealed by research in the last five years. In addition, the role of these molecules as prognostic or diagnostic disease markers and their potential as therapeutic targets are also discussed.
Collapse
Affiliation(s)
- Anastasia Spyropoulou
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, University of Athens Medical School, 11527 Athens, Greece
| | - Konstantinos Karamesinis
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, University of Athens Medical School, 11527 Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, University of Athens Medical School, 11527 Athens, Greece.
| |
Collapse
|
8
|
Hambli R. Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling. Front Bioeng Biotechnol 2014; 2:6. [PMID: 25152881 PMCID: PMC4126454 DOI: 10.3389/fbioe.2014.00006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/20/2014] [Indexed: 01/25/2023] Open
Abstract
Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain-damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.'s (2003) dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone adaptation. The proposed FEM model gives insight into how bone cells adapt their architecture to the mechanical and biological environment.
Collapse
Affiliation(s)
- Ridha Hambli
- Prisme Institute, Polytechnique Orleans, PRISME/MMH, Orleans, France
- I3MTO, Université d’Orléans, Orleans, France
| |
Collapse
|
9
|
Zadpoor AA. Open forward and inverse problems in theoretical modeling of bone tissue adaptation. J Mech Behav Biomed Mater 2013; 27:249-61. [DOI: 10.1016/j.jmbbm.2013.05.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 04/15/2013] [Accepted: 05/11/2013] [Indexed: 12/01/2022]
|
10
|
Hambli R. Micro-CT finite element model and experimental validation of trabecular bone damage and fracture. Bone 2013; 56:363-74. [PMID: 23850483 DOI: 10.1016/j.bone.2013.06.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/11/2013] [Accepted: 06/30/2013] [Indexed: 11/15/2022]
Abstract
Most micro-CT finite element modeling of human trabecular bone has focused on linear and non-linear analysis to evaluate bone failure properties. However, prediction of the apparent failure properties of trabecular bone specimens under compressive load, including the damage initiation and its progressive propagation until complete bone failure into consideration, is still lacking. In the present work, an isotropic micro-CT FE model at bone tissue level coupled to a damage law was developed in order to simulate the failure of human trabecular bone specimens under quasi-static compressive load and predict the apparent stress and strain. The element deletion technique was applied in order to simulate the progressive fracturing process of bone tissue. To prevent mesh-dependence that generally affects the damage propagation rate, regularization technique was applied in the current work. The model was validated with experimental results performed on twenty-three human trabecular specimens. In addition, a sensitivity analysis was performed to investigate the impact of the model factors' sensitivities on the predicted ultimate stress and strain of the trabecular specimens. It was found that the predicted failure properties agreed very well with the experimental ones.
Collapse
Affiliation(s)
- Ridha Hambli
- Prisme Laboratory Institute/MMH, 8, Rue Léonard de Vinci, 45072 Orléans cedex 2, France.
| |
Collapse
|
11
|
Christen P, Ito K, Santos AAD, Müller R, Bert van Rietbergen. Validation of a bone loading estimation algorithm for patient-specific bone remodelling simulations. J Biomech 2013; 46:941-8. [DOI: 10.1016/j.jbiomech.2012.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/08/2012] [Accepted: 12/12/2012] [Indexed: 02/05/2023]
|
12
|
Cox LGE, van Donkelaar CC, van Rietbergen B, Emans PJ, Ito K. Alterations to the subchondral bone architecture during osteoarthritis: bone adaptation vs endochondral bone formation. Osteoarthritis Cartilage 2013; 21:331-8. [PMID: 23142725 DOI: 10.1016/j.joca.2012.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 09/13/2012] [Accepted: 10/25/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is characterized by loss of cartilage and alterations in subchondral bone architecture. Changes in cartilage and bone tissue occur simultaneously and are spatially correlated, indicating that they are probably related. We investigated two hypotheses regarding this relationship. According to the first hypothesis, both wear and tear changes in cartilage, and remodeling changes in bone are a result of abnormal loading conditions. According to the second hypothesis, loss of cartilage and changes in bone architecture result from endochondral ossification. DESIGN With an established bone adaptation model, we simulated adaptation to high load and endochondral ossification, and investigated whether alterations in bone architecture between these conditions were different. In addition, we analyzed bone structure differences between human bone samples with increasing degrees of OA, and compared these data to the simulation results. RESULTS The simulation of endochondral ossification led to a more refined structure, with a higher number of trabeculae in agreement with the finding of a higher trabecular number in osteochondral plugs with severe OA. Furthermore, endochondral ossification could explain the presence of a "double subchondral plate" which we found in some human bone samples. However, endochondral ossification could not explain the increase in bone volume fraction that we observed, whereas adaptation to high loading could. CONCLUSION Based on the simulation and experimental data, we postulate that both endochondral ossification and adaptation to high load may contribute to OA bone structural changes, while both wear and tear and the replacement of mineralized cartilage with bone tissue may contribute cartilage thinning.
Collapse
Affiliation(s)
- L G E Cox
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Hambli R, Lespessailles E, Benhamou CL. Integrated remodeling-to-fracture finite element model of human proximal femur behavior. J Mech Behav Biomed Mater 2013; 17:89-106. [DOI: 10.1016/j.jmbbm.2012.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/16/2012] [Accepted: 08/18/2012] [Indexed: 11/28/2022]
|
14
|
Khayyeri H, Prendergast PJ. The emergence of mechanoregulated endochondral ossification in evolution. J Biomech 2012; 46:731-7. [PMID: 23261239 DOI: 10.1016/j.jbiomech.2012.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 10/12/2012] [Accepted: 11/10/2012] [Indexed: 10/27/2022]
Abstract
The differentiation of skeletal tissue phenotypes is partly regulated by mechanical forces. This mechanoregulatory aspect of tissue differentiation has been the subject of many experimental and computational investigations. However, little is known about what factors promoted the emergence of mechanoregulated tissue differentiation in evolution, even though mechanoregulated tissue differentiation, for example during development or healing of adult bone, is crucial for vertebrate phylogeny. In this paper, we use a computational framework to test the hypothesis that the emergence of mechanosensitive genes that trigger endochondral ossification in evolution will stabilise in the population and create a variable mechanoregulated response, if the endochondral ossification process enhances fitness for survival. The model combines an evolutionary algorithm that considers genetic change with a mechanoregulated fracture healing model in which the fitness of animals in a population is determined by their ability to heal their bones. The simulations show that, with the emergence of mechanosensitive genes through evolution enabling skeletal cells to modulate their synthetic activities, novel differentiation pathways such as endochondral ossification could have emerged, which when favoured by natural selection is maintained in a population. Furthermore, the model predicts that evolutionary forces do not lead to a single optimal mechanoregulated response but that the capacity of endochondral ossification exists with variability in a population. The simulations correspond with many existing findings about the mechanosensitivity of skeletal tissues in current animal populations, therefore indicating that this kind of multi-level models could be used in future population based simulations of tissue differentiation.
Collapse
Affiliation(s)
- Hanifeh Khayyeri
- Trinity Centre for Bioengineering, School of Engineering, Parsons Building, Trinity College Dublin, Dublin D2, Ireland
| | | |
Collapse
|
15
|
Coleman RM, Aguilera L, Quinones L, Lukashova L, Poirier C, Boskey A. Comparison of bone tissue properties in mouse models with collagenous and non-collagenous genetic mutations using FTIRI. Bone 2012; 51:920-8. [PMID: 22910579 PMCID: PMC3583571 DOI: 10.1016/j.bone.2012.08.110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/02/2012] [Accepted: 08/04/2012] [Indexed: 12/18/2022]
Abstract
Understanding how the material properties of bone tissue from the various forms of osteogenesis imperfecta (OI) differ will allow us to tailor treatment regimens for affected patients. To this end, we characterized the bone structure and material properties of two mouse models of OI, the osteogenesis imperfecta mouse (oim/oim) and fragilitas ossium (fro/fro), in which bone fragility is due to a genetic defect in collagen type I and a defect in osteoblast matrix mineralization, respectively. Bones from 3 to 6 month old animals were examined using Fourier transform infrared spectroscopic imaging (FTIRI), microcomputed tomography (micro-CT), histology, and biochemical analysis. The attributes of oim/oim bone tissue were relatively constant over time when compared to wild type animals. The mineral density in oim/oim cortices and trabecular bone was higher than wild type while the bones had thinner cortices and fewer trabeculae that were thinner and more widely spaced. The fro/fro animals exhibited osteopenic attributes at 3 months. However, by 6 months, their spectroscopic and geometric properties were similar to wild type animals. Despite the lack of a specific collagen defect in fro/fro mice, both fro/fro and oim/oim genotypes exhibited abnormal collagen crosslinking as determined by FTIRI at both time points. These results demonstrate that abnormal extracellular matrix assembly plays a role in the bone fragility in both of these models.
Collapse
Affiliation(s)
- Rhima M. Coleman
- Hospital for Special Surgery, Cornell University-Weill Medical College, New York, NY, USA
| | - Laura Aguilera
- LaGuardia Community College of the City University of New York, New York, NY, USA
| | - Layla Quinones
- LaGuardia Community College of the City University of New York, New York, NY, USA
| | - Lyudamila Lukashova
- Hospital for Special Surgery, Cornell University-Weill Medical College, New York, NY, USA
| | | | - Adele Boskey
- Hospital for Special Surgery, Cornell University-Weill Medical College, New York, NY, USA
- Corresponding author at: Hospital for Special Surgery, Caspary Research Building, 535 E. 70th Street, New York, NY 10021, USA. Fax: + 1 212 472 5331. , (A. Boskey)
| |
Collapse
|
16
|
Parkinson IH, Badiei A, Stauber M, Codrington J, Müller R, Fazzalari NL. Vertebral body bone strength: the contribution of individual trabecular element morphology. Osteoporos Int 2012; 23:1957-65. [PMID: 22086309 DOI: 10.1007/s00198-011-1832-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 08/30/2011] [Indexed: 10/15/2022]
Abstract
SUMMARY Although the amount of bone explains the largest amount of variability in bone strength, there is still a significant proportion unaccounted for. The morphology of individual bone trabeculae explains a further proportion of the variability in bone strength and bone elements that contribute to bone strength depending on the direction of loading. INTRODUCTION Micro-CT imaging enables measurement of bone microarchitecture and subsequently mechanical strength of the same sample. It is possible using micro-CT data to perform morphometric analysis on individual rod and plate bone trabeculae using a volumetric spatial decomposition algorithm and hence determine their contribution to bone strength. METHODS Twelve pairs of vertebral bodies (T12/L1 or L4/L5) were harvested from human cadavers, and bone cubes (10 × 10 × 10 mm) were obtained. After micro-CT imaging, a volumetric spatial decomposition algorithm was applied, and measures of individual trabecular elements were obtained. Bone strength was measured in compression, where one bone specimen from each vertebral segment was tested supero-inferiorly (SI) and the paired specimen was tested antero-posteriorly (AP). RESULTS Bone volume fraction was the strongest individual determinant of SI strength (r(2) = 0.77, p < 0.0001) and AP (r(2) = 0.54, p < 0.0001). The determination of SI strength was improved to r(2) = 0.87 with the addition of mean rod length and relative plate bone volume fraction. The determination of AP strength was improved to r(2) = 0.85 with the addition of mean rod volume and relative rod bone volume fraction. CONCLUSIONS Microarchitectural measures of individual trabeculae that contribute to bone strength have been identified. In addition to the contribution of BV/TV, trabecular rod morphology increased the determination of AP strength by 57%, whereas measures of trabecular plate and rod morphology increased determination of SI strength by 13%. Decomposing vertebral body bone architecture into its constituent morphological elements shows that trabecular element morphology has specific functional roles to assist in maintaining skeletal integrity.
Collapse
Affiliation(s)
- I H Parkinson
- Bone and Joint Research Laboratory, SA Pathology and Hanson Institute, Frome Road, Adelaide, South Australia, 5000, Australia.
| | | | | | | | | | | |
Collapse
|
17
|
Cox LGE, van Donkelaar CC, van Rietbergen B, Emans PJ, Ito K. Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis. Bone 2012; 50:1152-61. [PMID: 22342798 DOI: 10.1016/j.bone.2012.01.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 11/28/2022]
Abstract
For many years, pharmaceutical therapies for osteoarthritis (OA) were focused on cartilage. However, it has been theorized that bone changes such as increased bone volume fraction and decreased bone matrix mineralization may play an important role in the initiation and pathogenesis of OA as well. The mechanisms behind the bone changes are subject of debate, and a better understanding may help in the development of bone-targeting OA therapies. In the literature, the increase in bone volume fraction has been hypothesized to result from mechanoregulated bone adaptation in response to decreased mineralization. Furthermore, both changes in bone volume fraction and mineralization have been reported to be highest close to the cartilage, and bone volume fraction has been reported to be correlated with cartilage degeneration. These data indicate that cartilage degeneration, bone volume fraction, and bone matrix mineralization may be related in OA. In the current study, we aimed to investigate the relationships between cartilage degeneration, bone matrix mineralization and bone volume fraction at a local level. With microCT, we determined bone matrix mineralization and bone volume fraction as a function of distance from the cartilage in osteochondral plugs from human OA tibia plateaus with varying degrees of cartilage degeneration. In addition, we evaluated whether mechanoregulated bone adaptation in response to decreased bone matrix mineralization may be responsible for the increase in bone volume fraction observed in OA. For this purpose, we used the experimentally obtained mineralization data as input for bone adaptation simulations. We simulated the effect of mechanoregulated bone adaptation in response to different degrees of mineralization, and compared the simulation results to the experimental data. We found that local changes in subchondral bone mineralization and bone volume fraction only occurred underneath severely degenerated cartilage, indicating that bone mineralization and volume fraction are related to cartilage degeneration at a local level. In addition, both the experimental data and the simulations indicated that a depth-dependent increase in bone volume fraction could be caused by decreased bone matrix mineralization. However, a quantitative comparison showed that decreased mineralization can only explain part of the subchondral sclerosis observed in OA.
Collapse
Affiliation(s)
- L G E Cox
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
The turnover of mineralized growth plate cartilage into bone may be regulated by osteocytes. J Biomech 2011; 44:1765-70. [DOI: 10.1016/j.jbiomech.2011.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 04/06/2011] [Accepted: 04/06/2011] [Indexed: 11/24/2022]
|
19
|
Cox LGE, van Rietbergen B, van Donkelaar CC, Ito K. Bone structural changes in osteoarthritis as a result of mechanoregulated bone adaptation: a modeling approach. Osteoarthritis Cartilage 2011; 19:676-82. [PMID: 21324371 DOI: 10.1016/j.joca.2011.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE There are strong indications that subchondral bone may play an important role in osteoarthritis (OA), making it an interesting target for medical therapies. The subchondral bone structure changes markedly during OA, and it has long been assumed that this occurs secondary to cartilage degeneration. However, for various conditions that are associated with OA, it is known that they may also induce bone structural changes in the absence of cartilage degeneration. We therefore aimed to investigate if OA bone structural changes can result from mechanoregulated bone adaptation, independent of cartilage degeneration. METHOD With a bone adaptation model, we simulated various conditions associated with OA -without altering the articular cartilage- and we evaluated if mechanoregulated bone remodeling by itself could lead to OA-like bone structural changes. RESULTS For each of the conditions, the predicted changes in bone structural parameters (bone fraction, trabecular thickness, trabecular number, and trabecular separation) were similar to those observed in OA. CONCLUSION This indicates that bone adaptation in OA can be mechanoregulated with structural changes occurring independent of cartilage degeneration.
Collapse
Affiliation(s)
- L G E Cox
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | | | | |
Collapse
|