• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698278)   Today's Articles (24)
For: Mesallati T, Buckley CT, Nagel T, Kelly DJ. Scaffold architecture determines chondrocyte response to externally applied dynamic compression. Biomech Model Mechanobiol 2012;12:889-99. [PMID: 23160843 DOI: 10.1007/s10237-012-0451-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/22/2012] [Indexed: 01/22/2023]
Number Cited by Other Article(s)
1
Pitacco P, Sadowska JM, O'Brien FJ, Kelly DJ. 3D bioprinting of cartilaginous templates for large bone defect healing. Acta Biomater 2023;156:61-74. [PMID: 35907556 DOI: 10.1016/j.actbio.2022.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/18/2023]
2
Hassan CR, Qin YX, Komatsu DE, Uddin SMZ. Utilization of Finite Element Analysis for Articular Cartilage Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2019;12:E3331. [PMID: 31614845 PMCID: PMC6829543 DOI: 10.3390/ma12203331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023]
3
Lin TH, Wang HC, Cheng WH, Hsu HC, Yeh ML. Osteochondral Tissue Regeneration Using a Tyramine-Modified Bilayered PLGA Scaffold Combined with Articular Chondrocytes in a Porcine Model. Int J Mol Sci 2019;20:ijms20020326. [PMID: 30650528 PMCID: PMC6359257 DOI: 10.3390/ijms20020326] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/28/2022]  Open
4
Chen CH, Kuo CY, Chen JP. Effect of Cyclic Dynamic Compressive Loading on Chondrocytes and Adipose-Derived Stem Cells Co-Cultured in Highly Elastic Cryogel Scaffolds. Int J Mol Sci 2018;19:370. [PMID: 29373507 PMCID: PMC5855592 DOI: 10.3390/ijms19020370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 12/23/2022]  Open
5
Daly AC, Sathy BN, Kelly DJ. Engineering large cartilage tissues using dynamic bioreactor culture at defined oxygen conditions. J Tissue Eng 2018;9:2041731417753718. [PMID: 29399319 PMCID: PMC5788092 DOI: 10.1177/2041731417753718] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/22/2017] [Indexed: 11/23/2022]  Open
6
Anderson DE, Johnstone B. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review. Front Bioeng Biotechnol 2017;5:76. [PMID: 29322043 PMCID: PMC5732133 DOI: 10.3389/fbioe.2017.00076] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/23/2017] [Indexed: 01/19/2023]  Open
7
Bandeiras C, Completo A. A mathematical model of tissue-engineered cartilage development under cyclic compressive loading. Biomech Model Mechanobiol 2016;16:651-666. [PMID: 27817048 DOI: 10.1007/s10237-016-0843-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/11/2016] [Indexed: 12/23/2022]
8
Gao Y, Mori T, Manning S, Zhao Y, Nielsen AD, Neshat A, Sharma A, Mahnen CJ, Everson HR, Crotty S, Clements RJ, Malcuit C, Hegmann E. Biocompatible 3D Liquid Crystal Elastomer Cell Scaffolds and Foams with Primary and Secondary Porous Architecture. ACS Macro Lett 2016;5:4-9. [PMID: 35668595 DOI: 10.1021/acsmacrolett.5b00729] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
9
Bandeiras C, Completo A, Ramos A. Influence of the scaffold geometry on the spatial and temporal evolution of the mechanical properties of tissue-engineered cartilage: insights from a mathematical model. Biomech Model Mechanobiol 2015;14:1057-70. [PMID: 25801173 DOI: 10.1007/s10237-015-0654-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/22/2015] [Indexed: 12/22/2022]
10
Tissue Engineered Cartilage in Unconfined Compression: Biomechanical Analysis. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.matpr.2015.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
11
Yousefi AM, Hoque ME, Prasad RGSV, Uth N. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review. J Biomed Mater Res A 2014;103:2460-81. [PMID: 25345589 DOI: 10.1002/jbm.a.35356] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/04/2014] [Accepted: 10/12/2014] [Indexed: 12/23/2022]
12
Mesallati T, Buckley CT, Kelly DJ. Engineering articular cartilage-like grafts by self-assembly of infrapatellar fat pad-derived stem cells. Biotechnol Bioeng 2014;111:1686-98. [DOI: 10.1002/bit.25213] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
13
Altering the architecture of tissue engineered hypertrophic cartilaginous grafts facilitates vascularisation and accelerates mineralisation. PLoS One 2014;9:e90716. [PMID: 24595316 PMCID: PMC3942470 DOI: 10.1371/journal.pone.0090716] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 02/04/2014] [Indexed: 02/06/2023]  Open
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA