1
|
Zhou Z, Fahlstedt M, Li X, Kleiven S. Peaks and Distributions of White Matter Tract-related Strains in Bicycle Helmeted Impacts: Implication for Helmet Ranking and Optimization. Ann Biomed Eng 2025; 53:699-717. [PMID: 39636379 PMCID: PMC11836146 DOI: 10.1007/s10439-024-03653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Traumatic brain injury (TBI) in cyclists is a growing public health problem, with helmets being the major protection gear. Finite element head models have been increasingly used to engineer safer helmets often by mitigating brain strain peaks. However, how different helmets alter the spatial distribution of brain strain remains largely unknown. Besides, existing research primarily used maximum principal strain (MPS) as the injury parameter, while white matter fiber tract-related strains, increasingly recognized as effective predictors for TBI, have rarely been used for helmet evaluation. To address these research gaps, we used an anatomically detailed head model with embedded fiber tracts to simulate fifty-one helmeted impacts, encompassing seventeen bicycle helmets under three impact locations. We assessed the helmet performance based on four tract-related strains characterizing the normal and shear strain oriented along and perpendicular to the fiber tract, as well as the prevalently used MPS. Our results showed that both the helmet model and impact location affected the strain peaks. Interestingly, we noted that different helmets did not alter strain distribution, except for one helmet under one specific impact location. Moreover, our analyses revealed that helmet ranking outcome based on strain peaks was affected by the choice of injury metrics (Kendall's Tau coefficient: 0.58-0.93). Significant correlations were noted between tract-related strains and angular motion-based injury metrics. This study provided new insights into computational brain biomechanics and highlighted the helmet ranking outcome was dependent on the choice of injury metrics. Our results also hinted that the performance of helmets could be augmented by mitigating the strain peak and optimizing the strain distribution with accounting the selective vulnerability of brain subregions and more research was needed to develop region-specific injury criteria.
Collapse
Affiliation(s)
- Zhou Zhou
- Neuronic Engineering, KTH Royal Institute of Technology, 14152, Stockholm, Sweden.
| | | | - Xiaogai Li
- Neuronic Engineering, KTH Royal Institute of Technology, 14152, Stockholm, Sweden
| | - Svein Kleiven
- Neuronic Engineering, KTH Royal Institute of Technology, 14152, Stockholm, Sweden
| |
Collapse
|
2
|
Zhou Z, Olsson C, Gasser TC, Li X, Kleiven S. The White Matter Fiber Tract Deforms Most in the Perpendicular Direction During In Vivo Volunteer Impacts. J Neurotrauma 2024; 41:2554-2570. [PMID: 39212616 DOI: 10.1089/neu.2024.0183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
White matter (WM) tract-related strains are increasingly used to quantify brain mechanical responses, but their dynamics in live human brains during in vivo impact conditions remain largely unknown. Existing research primarily looked into the normal strain along the WM fiber tracts (i.e., tract-oriented normal strain), but it is rarely the case that the fiber tract only endures tract-oriented normal strain during impacts. In this study, we aim to extend the in vivo measurement of WM fiber deformation by quantifying the normal strain perpendicular to the fiber tract (i.e., tract-perpendicular normal strain) and the shear strain along and perpendicular to the fiber tract (i.e., tract-oriented shear strain and tract-perpendicular shear strain, respectively). To achieve this, we combine the three-dimensional strain tensor from the tagged magnetic resonance imaging with the diffusion tensor imaging (DTI) from an open-access dataset, including 44 volunteer impacts under two head loading modes, i.e., neck rotations (N = 30) and neck extensions (N = 14). The strain tensor is rotated to the coordinate system with one axis aligned with DTI-revealed fiber orientation, and then four tract-related strain measures are calculated. The results show that tract-perpendicular normal strain peaks are the largest among the four strain types (p < 0.05, Friedman's test). The distribution of tract-related strains is affected by the head loading mode, of which laterally symmetric patterns with respect to the midsagittal plane are noted under neck extensions, but not under neck rotations. Our study presents a comprehensive in vivo strain quantification toward a multifaceted understanding of WM dynamics. We find that the WM fiber tract deforms most in the perpendicular direction, illuminating new fundamentals of brain mechanics. The reported strain images can be used to evaluate the fidelity of computational head models, especially those intended to predict fiber deformation under noninjurious conditions.
Collapse
Affiliation(s)
- Zhou Zhou
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Christoffer Olsson
- Division of Biomedical Imaging, KTH Royal Institute of Technology, Stockholm, Sweden
| | - T Christian Gasser
- Material and Structural Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Xiaogai Li
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Svein Kleiven
- Division of Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
3
|
Zhang Y, Tang L, Liu Y, Yang B, Jiang Z, Liu Z, Zhou L. An Objective Injury Threshold for the Maximum Principal Strain Criterion for Brain Tissue in the Finite Element Head Model and Its Application. Bioengineering (Basel) 2024; 11:918. [PMID: 39329660 PMCID: PMC11429161 DOI: 10.3390/bioengineering11090918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Although the finite element head model (FEHM) has been widely utilized to analyze injury locations and patterns in traumatic brain injury, significant controversy persists regarding the selection of a mechanical injury variable and its corresponding threshold. This paper aims to determine an objective injury threshold for maximum principal strain (MPS) through a novel data-driven method, and to validate and apply it. We extract the peak responses from all elements across 100 head impact simulations to form a dataset, and then determine the objective injury threshold by analyzing the relationship between the combined injury degree and the threshold according to the stationary value principle. Using an occipital impact case from a clinical report as an example, we evaluate the accuracy of the injury prediction based on the new threshold. The results show that the injury area predicted by finite element analysis closely matches the main injury area observed in CT images, without the issue of over- or underestimating the injury due to an unreasonable threshold. Furthermore, by applying this threshold to the finite element analysis of designed occipital impacts, we observe, for the first time, supra-tentorium cerebelli injury, which is related to visual memory impairment. This discovery may indicate the biomechanical mechanism of visual memory impairment after occipital impacts reported in clinical cases.
Collapse
Affiliation(s)
| | - Liqun Tang
- Department of Engineering Mechanics, School of Civil Engineering and Transportation, South China University of Technology, No. 381, Wushan Road, Guangzhou 510000, China; (Y.Z.); (Y.L.); (Z.J.); (Z.L.); (L.Z.)
| | | | | | | | | | | |
Collapse
|
4
|
Sullivan D, Vaglio BJ, Cararo-Lopes MM, Wong RDP, Graudejus O, Firestein BL. Stretch-Induced Injury Affects Cortical Neuronal Networks in a Time- and Severity-Dependent Manner. Ann Biomed Eng 2024; 52:1021-1038. [PMID: 38294641 DOI: 10.1007/s10439-023-03438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024]
Abstract
Traumatic brain injury (TBI) is the leading cause of accident-related death and disability in the world and can lead to long-term neuropsychiatric symptoms, such as a decline in cognitive function and neurodegeneration. TBI includes primary and secondary injury, with head trauma and deformation of the brain caused by the physical force of the impact as primary injury, and cellular and molecular cascades that lead to cell death as secondary injury. Currently, there is no treatment for TBI-induced cell damage and neural circuit dysfunction in the brain, and thus, it is important to understand the underlying cellular mechanisms that lead to cell damage. In the current study, we use stretchable microelectrode arrays (sMEAs) to model the primary injury of TBI to study the electrophysiological effects of physically injuring cortical cells. We recorded electrophysiological activity before injury and then stretched the flexible membrane of the sMEAs to injure the cells to varying degrees. At 1, 24, and 72 h post-stretch, we recorded activity to analyze differences in spike rate, Fano factor, burstlet rate, burstlet width, synchrony of firing, local network efficiency, and Q statistic. Our results demonstrate that mechanical injury changes the firing properties of cortical neuron networks in culture in a time- and severity-dependent manner. Our results suggest that changes to electrophysiological properties after stretch are dependent on the strength of synchronization between neurons prior to injury.
Collapse
Affiliation(s)
- Dylan Sullivan
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Brandon J Vaglio
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Biomedical Engineering Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Marina M Cararo-Lopes
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Cell and Developmental Biology Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ruben D Ponce Wong
- BioMedical Sustainable Elastic Electronic Devices (BMSEED), Mesa, AZ, USA
| | - Oliver Graudejus
- BioMedical Sustainable Elastic Electronic Devices (BMSEED), Mesa, AZ, USA
- School of Molecular Science, Arizona State University, Tempe, AZ, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.
| |
Collapse
|
5
|
Varghese N, Morrison B. Inhibition of cyclooxygenase and EP3 receptor improved long term potentiation in a rat organotypic hippocampal model of repeated blast traumatic brain injury. Neurochem Int 2023; 163:105472. [PMID: 36599378 DOI: 10.1016/j.neuint.2022.105472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/09/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) is a health concern in military service members who are exposed to multiple blasts throughout their training and deployment. Our group has previously reported decreased long term potentiation (LTP) following repeated bTBI in a rat organotypic hippocampal slice culture (OHSC) model. In this study, we investigated changes in inflammatory markers like cyclooxygenase (COX) and tested the efficacy of COX or prostaglandin EP3 receptor (EP3R) inhibitors in attenuating LTP deficits. Expression of COX-2 was increased 48 h following repeated injury, whereas COX-1 expression was unchanged. EP3R expression was upregulated, and cyclic adenosine monophosphate (cAMP) concentration was decreased after repeated blast exposure. Post-traumatic LTP deficits improved after treatment with a COX-1 specific inhibitor, SC-560, a COX-2 specific inhibitor, rofecoxib, a pan-COX inhibitor, ibuprofen, or an EP3R inhibitor, L-798,106. Delayed treatment with ibuprofen and L-798,106 also prevented LTP deficits. These findings suggest that bTBI induced neuroinflammation may be responsible for some functional deficits that we have observed in injured OHSCs. Additionally, COX and EP3R inhibition may be viable therapeutic strategies to reduce neurophysiological deficits after repeated bTBI.
Collapse
Affiliation(s)
- Nevin Varghese
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, 1210 Amsterdam Avenue, New York, NY, 10027, USA.
| |
Collapse
|
6
|
Rowson B, Duma SM. A Review of Head Injury Metrics Used in Automotive Safety and Sports Protective Equipment. J Biomech Eng 2022; 144:1140295. [PMID: 35445266 DOI: 10.1115/1.4054379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 11/08/2022]
Abstract
Despite advances in the understanding of human tolerances to brain injury, injury metrics used in automotive safety and protective equipment standards have changed little since they were first implemented nearly a half-century ago. Although numerous metrics have been proposed as improvements over the ones currently used, evaluating the predictive capability of these metrics is challenging. The purpose of this review is to summarize existing head injury metrics that have been proposed for both severe head injuries, such as skull fractures and traumatic brain injuries (TBI), and mild traumatic brain injuries (mTBI) including concussions. Metrics have been developed based on head kinematics or intracranial parameters such as brain tissue stress and strain. Kinematic metrics are either based on translational motion, rotational motion, or a combination of the two. Tissue-based metrics are based on finite element model simulations or in vitro experiments. This review concludes with a discussion of the limitations of current metrics and how improvements can be made in the future.
Collapse
Affiliation(s)
- Bethany Rowson
- Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, 437 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061
| | - Stefan M Duma
- Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, 410H Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061
| |
Collapse
|
7
|
Zhou Z, Li X, Domel AG, Dennis EL, Georgiadis M, Liu Y, Raymond SJ, Grant G, Kleiven S, Camarillo D, Zeineh M. The Presence of the Temporal Horn Exacerbates the Vulnerability of Hippocampus During Head Impacts. Front Bioeng Biotechnol 2022; 10:754344. [PMID: 35392406 PMCID: PMC8980591 DOI: 10.3389/fbioe.2022.754344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Hippocampal injury is common in traumatic brain injury (TBI) patients, but the underlying pathogenesis remains elusive. In this study, we hypothesize that the presence of the adjacent fluid-containing temporal horn exacerbates the biomechanical vulnerability of the hippocampus. Two finite element models of the human head were used to investigate this hypothesis, one with and one without the temporal horn, and both including a detailed hippocampal subfield delineation. A fluid-structure interaction coupling approach was used to simulate the brain-ventricle interface, in which the intraventricular cerebrospinal fluid was represented by an arbitrary Lagrangian-Eulerian multi-material formation to account for its fluid behavior. By comparing the response of these two models under identical loadings, the model that included the temporal horn predicted increased magnitudes of strain and strain rate in the hippocampus with respect to its counterpart without the temporal horn. This specifically affected cornu ammonis (CA) 1 (CA1), CA2/3, hippocampal tail, subiculum, and the adjacent amygdala and ventral diencephalon. These computational results suggest that the presence of the temporal horn exacerbate the vulnerability of the hippocampus, highlighting the mechanobiological dependency of the hippocampus on the temporal horn.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Bioengineering, Stanford University, Stanford, CA, United States
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Xiaogai Li
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - August G. Domel
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Emily L. Dennis
- TBI and Concussion Center, Department of Neurology, University of Utah, Salt Lake City, UT, United States
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Marios Georgiadis
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Yuzhe Liu
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Samuel J. Raymond
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Gerald Grant
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
- Department of Neurology, Stanford University, Stanford, CA, United States
| | - Svein Kleiven
- Neuronic Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
| | - David Camarillo
- Department of Bioengineering, Stanford University, Stanford, CA, United States
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
- Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Michael Zeineh
- Department of Radiology, Stanford University, Stanford, CA, United States
| |
Collapse
|
8
|
Shoemaker AR, Jones IE, Jeffris KD, Gabrielli G, Togliatti AG, Pichika R, Martin E, Kiskinis E, Franz CK, Finan J. Biofidelic dynamic compression of human cortical spheroids reproduces neurotrauma phenotypes. Dis Model Mech 2021; 14:273823. [PMID: 34746950 PMCID: PMC8713991 DOI: 10.1242/dmm.048916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Fundamental questions about patient heterogeneity and human-specific pathophysiology currently obstruct progress towards a therapy for traumatic brain injury (TBI). Human in vitro models have the potential to address these questions. 3D spheroidal cell culture protocols for human-origin neural cells have several important advantages over their 2D monolayer counterparts. Three dimensional spheroidal cultures may mature more quickly, develop more biofidelic electrophysiological activity and/or reproduce some aspects of brain architecture. Here, we present the first human in vitro model of non-penetrating TBI employing 3D spheroidal cultures. We used a custom-built device to traumatize these spheroids in a quantifiable, repeatable and biofidelic manner and correlated the heterogeneous, mechanical strain field with the injury phenotype. Trauma reduced cell viability, mitochondrial membrane potential and spontaneous, synchronous, electrophysiological activity in the spheroids. Electrophysiological deficits emerged at lower injury severities than changes in cell viability. Also, traumatized spheroids secreted lactate dehydrogenase, a marker of cell damage, and neurofilament light chain, a promising clinical biomarker of neurotrauma. These results demonstrate that 3D human in vitro models can reproduce important phenotypes of neurotrauma in vitro.
Collapse
Affiliation(s)
- Aaron R Shoemaker
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | - Ian E Jones
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Kira D Jeffris
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Gina Gabrielli
- Department of Neurosurgery, NorthShore University Health System, Evanston, IL, USA
| | | | - Rajeswari Pichika
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eric Martin
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Colin K Franz
- Shirley Ryan AbilityLab, Chicago, IL, USA.,Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - John Finan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Predictive Factors of Kinematics in Traumatic Brain Injury from Head Impacts Based on Statistical Interpretation. Ann Biomed Eng 2021; 49:2901-2913. [PMID: 34244908 DOI: 10.1007/s10439-021-02813-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023]
Abstract
Brain tissue deformation resulting from head impacts is primarily caused by rotation and can lead to traumatic brain injury. To quantify brain injury risk based on measurements of kinematics on the head, finite element (FE) models and various brain injury criteria based on different factors of these kinematics have been developed, but the contribution of different kinematic factors has not been comprehensively analyzed across different types of head impacts in a data-driven manner. To better design brain injury criteria, the predictive power of rotational kinematics factors, which are different in (1) the derivative order (angular velocity, angular acceleration, angular jerk), (2) the direction and (3) the power (e.g., square-rooted, squared, cubic) of the angular velocity, were analyzed based on different datasets including laboratory impacts, American football, mixed martial arts (MMA), NHTSA automobile crashworthiness tests and NASCAR crash events. Ordinary least squares regressions were built from kinematics factors to the 95% maximum principal strain (MPS95), and we compared zero-order correlation coefficients, structure coefficients, commonality analysis, and dominance analysis. The angular acceleration, the magnitude and the first power factors showed the highest predictive power for the majority of impacts including laboratory impacts, American football impacts, with few exceptions (angular velocity for MMA and NASCAR impacts). The predictive power of rotational kinematics about three directions (x: posterior-to-anterior, y: left-to-right, z: superior-to-inferior) of kinematics varied with different sports and types of head impacts.
Collapse
|
10
|
Keating CE, Cullen DK. Mechanosensation in traumatic brain injury. Neurobiol Dis 2020; 148:105210. [PMID: 33259894 DOI: 10.1016/j.nbd.2020.105210] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/10/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) is distinct from other neurological disorders because it is induced by a discrete event that applies extreme mechanical forces to the brain. This review describes how the brain senses, integrates, and responds to forces under both normal conditions and during injury. The response to forces is influenced by the unique mechanical properties of brain tissue, which differ by region, cell type, and sub-cellular structure. Elements such as the extracellular matrix, plasma membrane, transmembrane receptors, and cytoskeleton influence its properties. These same components also act as force-sensors, allowing neurons and glia to respond to their physical environment and maintain homeostasis. However, when applied forces become too large, as in TBI, these components may respond in an aberrant manner or structurally fail, resulting in unique pathological sequelae. This so-called "pathological mechanosensation" represents a spectrum of cellular responses, which vary depending on the overall biomechanical parameters of the injury and may be compounded by repetitive injuries. Such aberrant physical responses and/or damage to cells along with the resulting secondary injury cascades can ultimately lead to long-term cellular dysfunction and degeneration, often resulting in persistent deficits. Indeed, pathological mechanosensation not only directly initiates secondary injury cascades, but this post-physical damage environment provides the context in which these cascades unfold. Collectively, these points underscore the need to use experimental models that accurately replicate the biomechanics of TBI in humans. Understanding cellular responses in context with injury biomechanics may uncover therapeutic targets addressing various facets of trauma-specific sequelae.
Collapse
Affiliation(s)
- Carolyn E Keating
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA
| | - D Kacy Cullen
- Department of Neurosurgery, Center for Brain Injury and Repair, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA; Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz VA Medical Center, USA.
| |
Collapse
|
11
|
Direct Observation of Low Strain, High Rate Deformation of Cultured Brain Tissue During Primary Blast. Ann Biomed Eng 2019; 48:1196-1206. [DOI: 10.1007/s10439-019-02437-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/08/2019] [Indexed: 10/25/2022]
|
12
|
Rosas-Hernandez H, Burks SM, Cuevas E, Ali SF. Stretch-Induced Deformation as a Model to Study Dopaminergic Dysfunction in Traumatic Brain Injury. Neurochem Res 2019; 44:2546-2555. [DOI: 10.1007/s11064-019-02872-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023]
|
13
|
A mechanoelectrical coupling model of neurons under stretching. J Mech Behav Biomed Mater 2019; 93:213-221. [DOI: 10.1016/j.jmbbm.2019.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 12/20/2022]
|
14
|
Verley DR, Torolira D, Pulido B, Gutman B, Bragin A, Mayer A, Harris NG. Remote Changes in Cortical Excitability after Experimental Traumatic Brain Injury and Functional Reorganization. J Neurotrauma 2018; 35:2448-2461. [PMID: 29717625 DOI: 10.1089/neu.2017.5536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although cognitive and behavioral deficits are well known to occur following traumatic brain injury (TBI), motor deficits that occur even after mild trauma are far less known, yet are equally persistent. This study was aimed at making progress toward determining how the brain reorganizes in response to TBI. We used the adult rat controlled cortical impact injury model to study the ipsilesional forelimb map evoked by electrical stimulation of the affected limb, as well as the contralesional forelimb map evoked by stimulation of the unaffected limb, both before injury and at 1, 2, 3, and 4 weeks after using functional magnetic resonance imaging (fMRI). End-point c-FOS immunohistochemistry data following 1 h of constant stimulation of the unaffected limb were acquired in the same rats to avoid any potential confounds due to altered cerebrovascular coupling. Single and paired-pulse sensory evoked potential (SEP) data were recorded from skull electrodes over the contralesional cortex in a parallel series of rats before injury, at 3 days, and at 1, 2, 3, and 4 weeks after injury in order to determine whether alterations in cortical excitability accompanied reorganization of the cortical map. The results show a transient trans-hemispheric shift in the ipsilesional cortical map as indicated by fMRI, remote contralesional increases in cortical excitability that occur in spatially similar regions to altered fMRI activity and greater c-FOS activation, and reduced or absent ipsilesional cortical activity chronically. The contralesional changes also were indicated by reduced SEP latency within 3 days after injury, but not by blood oxygenation level-dependent fMRI until much later. Detailed interrogation of cortical excitability using paired-pulse electrophysiology showed that the contralesional cortex undergoes both an early and a late post-injury period of hyper-excitability in response to injury, interspersed by a period of relatively normal activity. From these data, we postulate a cross-hemispheric mechanism by which remote cortex excitability inhibits ipsilesional activation by rebalanced cortical excitation-inhibition.
Collapse
Affiliation(s)
- Derek R Verley
- 1 UCLA Brain Injury Research Center, Department of Neurosurgery, University of California , Los Angeles, California
| | - Daniel Torolira
- 1 UCLA Brain Injury Research Center, Department of Neurosurgery, University of California , Los Angeles, California
| | - Brandon Pulido
- 1 UCLA Brain Injury Research Center, Department of Neurosurgery, University of California , Los Angeles, California
| | - Boris Gutman
- 2 Department of Neurology, Imaging Genetics Center, Keck/ University of Southern California School of Medicine, Institute for Neuroimaging and Informatics, University of Southern California , California
| | - Anatol Bragin
- 3 Department of Neurology, University of California , Los Angeles, California
| | - Andrew Mayer
- 4 The MIND Research Network and Department of Neurology, University of New Mexico , Albuquerque, New Mexico
| | - Neil G Harris
- 1 UCLA Brain Injury Research Center, Department of Neurosurgery, University of California , Los Angeles, California
| |
Collapse
|
15
|
Phillips JK, Sherman SA, Oungoulian SR, Finan JD. Method for High Speed Stretch Injury of Human Induced Pluripotent Stem Cell-derived Neurons in a 96-well Format. J Vis Exp 2018. [PMID: 29733307 PMCID: PMC6100707 DOI: 10.3791/57305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is a major clinical challenge with high morbidity and mortality. Despite decades of pre-clinical research, no proven therapies for TBI have been developed. This paper presents a novel method for pre-clinical neurotrauma research intended to complement existing pre-clinical models. It introduces human pathophysiology through the use of human induced pluripotent stem cell-derived neurons (hiPSCNs). It achieves loading pulse duration similar to the loading durations of clinical closed head impact injury. It employs a 96-well format that facilitates high throughput experiments and makes efficient use of expensive cells and culture reagents. Silicone membranes are first treated to remove neurotoxic uncured polymer and then bonded to commercial 96-well plate bodies to create stretchable 96-well plates. A custom-built device is used to indent some or all of the well bottoms from beneath, inducing equibiaxial mechanical strain that mechanically injures cells in culture in the wells. The relationship between indentation depth and mechanical strain is determined empirically using high speed videography of well bottoms during indentation. Cells, including hiPSCNs, can be cultured on these silicone membranes using modified versions of conventional cell culture protocols. Fluorescent microscopic images of cell cultures are acquired and analyzed after injury in a semi-automated fashion to quantify the level of injury in each well. The model presented is optimized for hiPSCNs but could in theory be applied to other cell types.
Collapse
Affiliation(s)
- Jack K Phillips
- Department of Neurosurgery, NorthShore University HealthSystem
| | - Sydney A Sherman
- Department of Neurosurgery, NorthShore University HealthSystem; Midwestern University/Chicago College of Osteopathic Medicine
| | | | - John D Finan
- Department of Neurosurgery, NorthShore University HealthSystem;
| |
Collapse
|
16
|
Characterization of Biaxial Stretch as an In Vitro Model of Traumatic Brain Injury to the Blood-Brain Barrier. Mol Neurobiol 2017; 55:258-266. [DOI: 10.1007/s12035-017-0738-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Vogel EW, Morales FN, Meaney DF, Bass CR, Morrison B. Phosphodiesterase-4 inhibition restored hippocampal long term potentiation after primary blast. Exp Neurol 2017; 293:91-100. [PMID: 28366471 PMCID: PMC6016024 DOI: 10.1016/j.expneurol.2017.03.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/08/2017] [Accepted: 03/30/2017] [Indexed: 01/03/2023]
Abstract
Due to recent military conflicts and terrorist attacks, blast-induced traumatic brain injury (bTBI) presents a health concern for military and civilian personnel alike. Although secondary blast (penetrating injury) and tertiary blast (inertia-driven brain deformation) are known to be injurious, the effects of primary blast caused by the supersonic shock wave interacting with the skull and brain remain debated. Our group previously reported that in vitro primary blast exposure reduced long-term potentiation (LTP), the electrophysiological correlate of learning and memory, in rat organotypic hippocampal slice cultures (OHSCs) and that primary blast affects key proteins governing LTP. Recent studies have investigated phosphodiesterase-4 (PDE4) inhibition as a therapeutic strategy for reducing LTP deficits following inertia-driven TBI. We investigated the therapeutic potential of PDE4 inhibitors, specifically roflumilast, to ameliorate primary blast-induced deficits in LTP. We found that roflumilast at concentrations of 1nM or greater prevented deficits in neuronal plasticity measured 24h post-injury. We also observed a therapeutic window of at least 6h, but <23h. Additionally, we investigated molecular mechanisms that could elucidate this therapeutic effect. Roflumilast treatment (1nM delivered 6h post-injury) significantly increased total AMPA glutamate receptor 1 (GluR1) subunit expression, phosphorylation of the GluR1 subunit at the serine-831 site, and phosphorylation of stargazin at the serine-239/240 site upon LTP induction, measured 24h following injury. Roflumilast treatment significantly increased PSD-95 regardless of LTP induction. These findings indicate that further investigation into the translation of PDE4 inhibition as a therapy following bTBI is warranted.
Collapse
Affiliation(s)
- Edward W Vogel
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Fatima N Morales
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - David F Meaney
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cameron R Bass
- Department of Biomedical Engineering, Duke University, Durham, NC 27705, USA
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
18
|
Giordano C, Zappalà S, Kleiven S. Anisotropic finite element models for brain injury prediction: the sensitivity of axonal strain to white matter tract inter-subject variability. Biomech Model Mechanobiol 2017; 16:1269-1293. [PMID: 28233136 PMCID: PMC5511602 DOI: 10.1007/s10237-017-0887-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/08/2017] [Indexed: 01/17/2023]
Abstract
Computational models incorporating anisotropic features of brain tissue have become a valuable tool for studying the occurrence of traumatic brain injury. The tissue deformation in the direction of white matter tracts (axonal strain) was repeatedly shown to be an appropriate mechanical parameter to predict injury. However, when assessing the reliability of axonal strain to predict injury in a population, it is important to consider the predictor sensitivity to the biological inter-subject variability of the human brain. The present study investigated the axonal strain response of 485 white matter subject-specific anisotropic finite element models of the head subjected to the same loading conditions. It was observed that the biological variability affected the orientation of the preferential directions (coefficient of variation of 39.41% for the elevation angle—coefficient of variation of 29.31% for the azimuth angle) and the determination of the mechanical fiber alignment parameter in the model (gray matter volume 55.55–70.75%). The magnitude of the maximum axonal strain showed coefficients of variation of 11.91%. On the contrary, the localization of the maximum axonal strain was consistent: the peak of strain was typically located in a 2 cm3 volume of the brain. For a sport concussive event, the predictor was capable of discerning between non-injurious and concussed populations in several areas of the brain. It was concluded that, despite its sensitivity to biological variability, axonal strain is an appropriate mechanical parameter to predict traumatic brain injury.
Collapse
Affiliation(s)
- Chiara Giordano
- Royal Institute of Technology KTH, School of Technology and Health, Hälsovägen 11C, 141 57, Huddinge, Sweden.
| | - Stefano Zappalà
- Royal Institute of Technology KTH, School of Technology and Health, Hälsovägen 11C, 141 57, Huddinge, Sweden
| | - Svein Kleiven
- Royal Institute of Technology KTH, School of Technology and Health, Hälsovägen 11C, 141 57, Huddinge, Sweden
| |
Collapse
|
19
|
Effgen GB, Morrison B. Electrophysiological and Pathological Characterization of the Period of Heightened Vulnerability to Repetitive Injury in an in Vitro Stretch Model. J Neurotrauma 2017; 34:914-924. [DOI: 10.1089/neu.2016.4477] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Gwen B. Effgen
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
20
|
Effgen GB, Morrison B. Memantine Reduced Cell Death, Astrogliosis, and Functional Deficits in an in vitro Model of Repetitive Mild Traumatic Brain Injury. J Neurotrauma 2016; 34:934-942. [PMID: 27450515 DOI: 10.1089/neu.2016.4528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Clinical studies suggest that athletes with a history of concussion may be at risk for additional mild traumatic brain injury (mTBI), and repetitive exposure to mTBI acutely increases risk for more significant and persistent symptoms and increases future risk for developing neurodegenerative diseases. Currently, symptoms of mTBI are managed with rest and pain medication; there are no drugs approved by the Food and Drug Administration (FDA) that target the biochemical pathology underlying mTBI to treat or prevent acute and long-term effects of repetitive mTBI. Memantine is an FDA-approved drug for treating Alzheimer's disease, and also was shown to be neuroprotective in rodents following a single, moderate to severe TBI. Therefore, we investigated the potential for memantine to mitigate negative outcomes from repetitive mild stretch injury in organotypical hippocampal slice cultures. Samples received two injuries 24 h apart; injury resulted in significant cell death, loss of long-term potentiation (LTP), and astrogliosis compared with naïve, uninjured samples. Delivery of 1.5 μM memantine 1 h following each stretch significantly reduced the effect of injury for all outcome measures, and did not alter those outcome measures that were unaffected by the injury. Therefore, memantine warrants further pre-clinical and clinical investigation for its therapeutic efficacy to prevent cognitive deficits and neuropathology from multiple mTBIs.
Collapse
Affiliation(s)
- Gwen B Effgen
- Department of Biomedical Engineering, Columbia University , New York, New York
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|
21
|
Effgen GB, Ong T, Nammalwar S, Ortuño AI, Meaney DF, 'Dale' Bass CR, Morrison B. Primary Blast Exposure Increases Hippocampal Vulnerability to Subsequent Exposure: Reducing Long-Term Potentiation. J Neurotrauma 2016; 33:1901-1912. [PMID: 26699926 DOI: 10.1089/neu.2015.4327] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Up to 80% of injuries sustained by U.S. soldiers in Operation Enduring Freedom and Operation Iraqi Freedom were the result of blast exposure from improvised explosive devices. Some soldiers experience multiple blasts while on duty, and it has been suggested that symptoms of repetitive blast are similar to those that follow multiple non-blast concussions, such as sport-related concussion. Despite the interest in the effects of repetitive blast exposure, it remains unknown whether an initial blast renders the brain more vulnerable to subsequent exposure, resulting in a synergistic injury response. To investigate the effect of multiple primary blasts on the brain, organotypic hippocampal slice cultures were exposed to single or repetitive (two or three total) primary blasts of varying intensities. Long-term potentiation was significantly reduced following two Level 2 (92.7 kPa, 1.4 msec, 38.5 kPa·msec) blasts delivered 24 h apart without altering basal evoked response. This deficit persisted when the interval between injuries was increased to 72 h but not when the interval was extended to 144 h. The repeated blast exposure with a 24 h interval increased microglia staining and activation significantly but did not significantly increase cell death or damage axons, dendrites, or principal cell layers. Lack of overt structural damage and change in basal stimulated neuron response suggest that injury from repetitive primary blast exposure may specifically affect long-term potentiation. Our studies suggest repetitive primary blasts can exacerbate injury dependent on the injury severity and interval between exposures.
Collapse
Affiliation(s)
- Gwen B Effgen
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Tiffany Ong
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Shruthi Nammalwar
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Andrea I Ortuño
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - David F Meaney
- 2 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | - Barclay Morrison
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|
22
|
Vogel EW, Effgen GB, Patel TP, Meaney DF, Bass CRD, Morrison B. Isolated Primary Blast Inhibits Long-Term Potentiation in Organotypic Hippocampal Slice Cultures. J Neurotrauma 2015; 33:652-61. [PMID: 26414012 DOI: 10.1089/neu.2015.4045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Over the last 13 years, traumatic brain injury (TBI) has affected over 230,000 U.S. service members through the conflicts in Iraq and Afghanistan, mostly as a result of exposure to blast events. Blast-induced TBI (bTBI) is multi-phasic, with the penetrating and inertia-driven phases having been extensively studied. The effects of primary blast injury, caused by the shockwave interacting with the brain, remain unclear. Earlier in vivo studies in mice and rats have reported mixed results for primary blast effects on behavior and memory. Using a previously developed shock tube and in vitro sample receiver, we investigated the effect of isolated primary blast on the electrophysiological function of rat organotypic hippocampal slice cultures (OHSC). We found that pure primary blast exposure inhibited long-term potentiation (LTP), the electrophysiological correlate of memory, with a threshold between 9 and 39 kPa·ms impulse. This deficit occurred well below a previously identified threshold for cell death (184 kPa·ms), supporting our previously published finding that primary blast can cause changes in brain function in the absence of cell death. Other functional measures such as spontaneous activity, network synchronization, stimulus-response curves, and paired-pulse ratios (PPRs) were less affected by primary blast exposure, as compared with LTP. This is the first study to identify a tissue-level tolerance threshold for electrophysiological changes in neuronal function to isolated primary blast.
Collapse
Affiliation(s)
- Edward W Vogel
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Gwen B Effgen
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Tapan P Patel
- 2 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - David F Meaney
- 2 Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania
| | - Cameron R Dale Bass
- 3 Department of Biomedical Engineering, Duke University , Durham, North Carolina
| | - Barclay Morrison
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| |
Collapse
|
23
|
Predicting changes in cortical electrophysiological function after in vitro traumatic brain injury. Biomech Model Mechanobiol 2015; 14:1033-44. [PMID: 25628144 DOI: 10.1007/s10237-015-0652-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/14/2015] [Indexed: 01/09/2023]
Abstract
Finite element (FE) models of traumatic brain injury (TBI) are capable of predicting injury-induced brain tissue deformation. However, current FE models are not equipped to predict the biological consequences of tissue deformation, which requires the determination of tolerance criteria relating the effects of mechanical stimuli to biologically relevant functional responses. To address this deficiency, we present functional tolerance criteria for the cortex for alterations in neuronal network electrophysiological function in response to controlled mechanical stimuli. Organotypic cortical slice cultures were mechanically injured via equibiaxial stretch with a well-characterized in vitro model of TBI at tissue strains and strain rates relevant to TBI (up to Lagrangian strain of 0.59 and strain rates up to 29 [Formula: see text]. At 4-6 days post-injury, electrophysiological function was assessed simultaneously throughout the cortex using microelectrode arrays. Electrophysiological parameters associated with unstimulated spontaneous network activity (neural event rate, duration, and magnitude), stimulated evoked responses (the maximum response [Formula: see text], the stimulus current necessary for a half-maximal response [Formula: see text], and the electrophysiological parameter [Formula: see text] that is representative of firing uniformity), and evoked paired-pulse ratios at varying interstimulus intervals were quantified for each cortical slice culture. Nonlinear regression was performed between mechanical injury parameters as independent variables (tissue strain and strain rate) and each electrophysiological parameter as output. Parsimonious best-fit equations were determined from a large pool of candidate equations with tenfold cross-validation. Changes in electrophysiological parameters were dependent on strain and strain rate in a complex manner. Compared to the hippocampus, the cortex was less spontaneously active, less excitable, and less prone to significant changes in electrophysiological function in response to controlled deformation (strain or strain rate). Our study provides functional data that can be incorporated into FE models to improve their predictive capabilities of the in vivo consequences of TBI.
Collapse
|