1
|
Kara R, Vergara C. Assessing turbulent effects in ascending aorta in presence of bicuspid aortic valve. Comput Methods Biomech Biomed Engin 2024; 27:2349-2361. [PMID: 37950490 DOI: 10.1080/10255842.2023.2279938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Aortic valves with bicuspids have two rather than three leaflets, which is a congenital heart condition. About 0.5-2% of people have a bicuspid aortic valve. Blood flow through the aorta is commonly believed to be laminar, although aortic valve disorders can cause turbulent transitions. Understanding the impact of turbulence is crucial for foreseeing how the disease will progress. The study's objective was use large eddy simulation to provide a thorough analysis of the turbulence in bicuspid aortic valve dysfunction. Using a large eddy simulation, the blood flow patterns of the bicuspid and tricuspid aortic valves were compared, and significant discrepancies were found. The velocity field in flow in bicuspid configurations was asymmetrically distributed toward the ascending aorta. In tricuspid aortic valve (TAV) the flow, on the other hand, was symmetrical within the same aortic segment. Moreover, we looked into standard deviation, Q-criterion, viscosity ratio and wall shear stresses for each cases to understand transition to turbulence. Our findings indicate that in the bicuspid aortic valve (BAV) case, the fluid-dynamic abnormalities increase. The global turbulent kinetic energy and time-averaged wall shear stress for the TAV and BAV scenarios were also examined. We discovered that the global turbulent kinetic energy was higher in the BAV case compared to TAV, in addition to the increased wall shear stress induced by the BAV in the ascending aorta.
Collapse
Affiliation(s)
- Rukiye Kara
- Department of Mathematics, Mimar Sinan Fine Arts University, Istanbul, Turkey
| | - Christian Vergara
- LABS - Dipartimento di Chimica, Materiali e Ingegneria Chimica" Giulio Natta" - Politecnico di Milano, Milan, Italy
| |
Collapse
|
2
|
Michaud-Dorko J, Sundström E, de Luzan CF, Gutmark E, Oren L. The Effect of an Increasing Subglottal Stenosis Constriction That Extends From the Vocal Folds to the Inferior Border of the Cricoid Cartilage. J Biomech Eng 2024; 146:021002. [PMID: 37943109 PMCID: PMC11003117 DOI: 10.1115/1.4064029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/17/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Acquired subglottal stenosis is an unpredicted complication that can occur in some patients who have undergone prolonged endotracheal intubation. It is a narrowing of the airway at the level of the cricoid cartilage that can restrict airflow and cause breathing difficulty. Stenosis is typically treated with endoscopic airway dilation, with some patients experiencing multiple recurrences. The study highlights the potential of computational fluid dynamics as a noninvasive method for monitoring subglottic stenosis, which can aid in early diagnosis and surgical planning. An anatomically accurate human laryngeal airway model was constructed from computerized tomography (CT) scans. The subglottis cross-sectional area was narrowed systematically using ≈10% decrements. A quadratic profile was used to interpolate the transformation of the airway geometry from its modified shape to the baseline geometry. The numerical results were validated by static pressure measurements conducted in a physical model. The results show that airway resistance follows a squared ratio that is inversely proportional to the size of the subglottal opening (R∝A-2). The study found that critical constriction occurs in the subglottal region at 70% stenosis (upper end of grade 2). Moreover, removing airway tissue below 40% stenosis during surgical intervention does not significantly decrease airway resistance.
Collapse
Affiliation(s)
- Jacob Michaud-Dorko
- Department of Biomedical Engineering, University of Cincinnati, 665 Baldwin Hall, Cincinnati, OH 45221-0070
| | - Elias Sundström
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0528
| | - Charles Farbos de Luzan
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0528
| | - Ephraim Gutmark
- Department of Aerospace Engineering, University of Cincinnati, 799 Rhodes Hall, Cincinnati, OH 45221-0070
| | - Liran Oren
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0528
| |
Collapse
|
3
|
Zolfaghari H, Andiapen M, Baumbach A, Mathur A, Kerswell RR. Wall shear stress and pressure patterns in aortic stenosis patients with and without aortic dilation captured by high-performance image-based computational fluid dynamics. PLoS Comput Biol 2023; 19:e1011479. [PMID: 37851683 PMCID: PMC10635572 DOI: 10.1371/journal.pcbi.1011479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 11/09/2023] [Accepted: 08/24/2023] [Indexed: 10/20/2023] Open
Abstract
Spatial patterns of elevated wall shear stress and pressure due to blood flow past aortic stenosis (AS) are studied using GPU-accelerated patient-specific computational fluid dynamics. Three cases of moderate to severe AS, one with a dilated ascending aorta and two within the normal range (root diameter less than 4cm) are simulated for physiological waveforms obtained from echocardiography. The computational framework is built based on sharp-interface Immersed Boundary Method, where aortic geometries segmented from CT angiograms are integrated into a high-order incompressible Navier-Stokes solver. The key question addressed here is, given the presence of turbulence due to AS which increases wall shear stress (WSS) levels, why some AS patients undergo much less aortic dilation. Recent case studies of AS have linked the existence of an elevated WSS hotspot (due to impingement of AS on the aortic wall) to the dilation process. Herein we further investigate the WSS distribution for cases with and without dilation to understand the possible hemodynamics which may impact the dilation process. We show that the spatial distribution of elevated WSS is significantly more focused for the case with dilation than those without dilation. We further show that this focal area accommodates a persistent pocket of high pressure, which may have contributed to the dilation process through an increased wall-normal forcing. The cases without dilation, on the contrary, showed a rather oscillatory pressure behaviour, with no persistent pressure "buildup" effect. We further argue that a more proximal branching of the aortic arch could explain the lack of a focal area of elevated WSS and pressure, because it interferes with the impingement process due to fluid suction effects. These phenomena are further illustrated using an idealized aortic geometry. We finally show that a restored inflow eliminates the focal area of elevated WSS and pressure zone from the ascending aorta.
Collapse
Affiliation(s)
- Hadi Zolfaghari
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Mervyn Andiapen
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Andreas Baumbach
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Anthony Mathur
- Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
- Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- NIHR Barts Biomedical Research Centre, Queen Mary University of London, London, United Kingdom
| | - Rich R. Kerswell
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Lowis C, Ramara Winaya A, Kumari P, Rivera CF, Vlahos J, Hermantara R, Pratama MY, Ramkhelawon B. Mechanosignals in abdominal aortic aneurysms. Front Cardiovasc Med 2023; 9:1021934. [PMID: 36698932 PMCID: PMC9868277 DOI: 10.3389/fcvm.2022.1021934] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023] Open
Abstract
Cumulative evidence has shown that mechanical and frictional forces exert distinct effects in the multi-cellular aortic layers and play a significant role in the development of abdominal aortic aneurysms (AAA). These mechanical cues collectively trigger signaling cascades relying on mechanosensory cellular hubs that regulate vascular remodeling programs leading to the exaggerated degradation of the extracellular matrix (ECM), culminating in lethal aortic rupture. In this review, we provide an update and summarize the current understanding of the mechanotransduction networks in different cell types during AAA development. We focus on different mechanosensors and stressors that accumulate in the AAA sac and the mechanotransduction cascades that contribute to inflammation, oxidative stress, remodeling, and ECM degradation. We provide perspectives on manipulating this mechano-machinery as a new direction for future research in AAA.
Collapse
Affiliation(s)
- Christiana Lowis
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Biomedicine, Indonesia International Institute for Life-Sciences, Jakarta, Indonesia
| | - Aurellia Ramara Winaya
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Biomedicine, Indonesia International Institute for Life-Sciences, Jakarta, Indonesia
| | - Puja Kumari
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| | - Cristobal F. Rivera
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| | - John Vlahos
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| | - Rio Hermantara
- Department of Biomedicine, Indonesia International Institute for Life-Sciences, Jakarta, Indonesia
| | - Muhammad Yogi Pratama
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| | - Bhama Ramkhelawon
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Langone Medical Center, New York, NY, United States
- Department of Cell Biology, New York University Langone Medical Center, New York, NY, United States
| |
Collapse
|
5
|
Mirza A, Ramaswamy S. Importance of Non-Newtonian Computational Fluid Modeling on Severely Calcified Aortic Valve Geometries - Insights from Quasi-Steady State Simulations. J Biomech Eng 2022; 144:1141166. [DOI: 10.1115/1.4054630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Indexed: 11/08/2022]
Abstract
Abstract
The Newtonian model has commonly been used to represent the viscosity of blood in the aorta, despite blood itself being a non-Newtonian fluid. This is justified where shear rates tend to be large. However, we hypothesized that using the Newtonian model to predict the hemodynamics on the aortic valve, particularly in those with severe calcifications, is inaccurate owing to valve leaflet geometry irregularities inducing multiple regions of low shear rates, <100 s-1, where a Newtonian model is invalid. We investigated the use of three fluid models: Newtonian, Carreau, and Quemada on a healthy and calcified valve and compared their ability to capture important hemodynamic parameters of time averaged wall shear stress (TAWSS) and the oscillatory shear index (OSI). Our findings indicate that when the shear rates were large enough, >100 s-1, use of a Newtonian model was justified for the ventricularis side of the leaflet. However, in spatial regions of low shear rates, <100 s-1, specifically on the inner cusps of the fibrosa side of the valve, TAWSS calculations under a Newtonian model were found to be much lower when compared with their non-Newtonian Carreau and Quemada counterparts. We hereby conclude that in order to facilitate more accurate computational flow simulations in severe aortic valve calcification which is subjected to relatively large spatial regions of low shear (<100 s-1), a non-Newtonian model should be applied.
Collapse
Affiliation(s)
- Asad Mirza
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174
| | - Sharan Ramaswamy
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174
| |
Collapse
|
6
|
Xiao HJ, Zhan AL, Huang QW, Huang RG, Lin WH. Computed tomography angiography assessment of the degree of simple coarctation of the aorta and its relationship with surgical outcome: A retrospective analysis. Front Pediatr 2022; 10:1017455. [PMID: 36545667 PMCID: PMC9760797 DOI: 10.3389/fped.2022.1017455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To investigate the correlation between the degree of aortic coarctation and surgical prognosis in infants with simple coarctation of the aorta (CoA) using computed tomography angiography (CTA). METHODS This study was a retrospective study. Twenty-seven infants with simple CoA who underwent surgical correction from January 2020 to June 2022 were enrolled. Aortic diameters were measured at five different levels and normalized to Z scores based on the square root of body surface area. The relevant data were collected and analyzed, and the predictors associated with surgical outcome were determined. RESULTS Patients were divided into the mild CoA group and the severe CoA group according to the severity of coarctation. The mechanical ventilation duration and the length of ICU stay in the mild CoA group were significantly lower than those in the severe CoA group. Multiple linear regression analyses revealed that the degree of aortic coarctation was a significant risk factor for a prolonged postoperative ICU stay. In addition, gestational age and age at operation were risk factors for a prolonged postoperative ICU stay. Correlation analysis showed that the degree of aortic coarctation correlated with the Z scores of the ascending aorta and postcoarctation aorta. CONCLUSION The degree of the CoA is an important predictor of surgical outcomes in infants with simple CoA and was significantly correlated with the ascending aorta and postcoarctation aorta Z scores. Therefore, preoperative CTA should be routinely performed to assess the degree of aortic coarctation and better identify risk factors.
Collapse
Affiliation(s)
- Hui-Jun Xiao
- Department of Radiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - A-Lai Zhan
- Department of Radiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Qing-Wen Huang
- Department of Radiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Rui-Gang Huang
- Department of Radiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Wei-Hua Lin
- Department of Radiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| |
Collapse
|
7
|
Moravia A, Simoëns S, El Hajem M, Bou-Saïd B, Kulisa P, Della-Schiava N, Lermusiaux P. In vitro flow study in a compliant abdominal aorta phantom with a non-Newtonian blood-mimicking fluid. J Biomech 2021; 130:110899. [PMID: 34923186 DOI: 10.1016/j.jbiomech.2021.110899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
In vitro aortic flow simulators allow studying hemodynamics with a wider range of flow visualization techniques compared to in vivo medical imaging and without the limitations of invasive examinations. This work aims to develop an experimental bench to emulate the pulsatile circulation in a realistic aortic phantom. To mimic the blood shear thinning behavior, a non-Newtonian aqueous solution is prepared with glycerin and xanthan gum polymer. The flow is compared to a reference flow of Newtonian fluid. Particle image velocimetry is carried out to visualize 2D velocity fields in a phantom section. The experimental loop accurately recreates flowrates and pressure conditions and preserves the shear-thinning properties of the non-Newtonian fluid. Velocity profiles, shear rate, and shear stress distribution maps show that the Newtonian fluid tends to dampen the observed velocities. Preferential asymmetrical flow paths are observed in a diameter narrowing region and amplified in the non-Newtonian case. Wall shear stresses are about twice higher in the non-Newtonian case. This study shows new insights on flow patterns, velocity and shear stress distributions compared to rigid and simplified geometry aorta phantom with Newtonian fluid flows studies. The use of a non-Newtonian blood analog shows clear differences in flows compared to the Newtonian one in this compliant patient-specific geometry. The development of this aortic simulator is a promising tool to better analyze and understand aortic hemodynamics and to aid in clinical decision-making.
Collapse
Affiliation(s)
- Anaïs Moravia
- Université de Lyon, INSA de Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CNRS, LMFA UMR 5509, Villeurbanne, France.
| | - Serge Simoëns
- Université de Lyon, INSA de Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CNRS, LMFA UMR 5509, Villeurbanne, France
| | - Mahmoud El Hajem
- Université de Lyon, INSA de Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CNRS, LMFA UMR 5509, Villeurbanne, France
| | - Benyebka Bou-Saïd
- Université de Lyon, CNRS, INSA de Lyon, LaMCoS UMR5259, Villeurbanne, France
| | - Pascale Kulisa
- Université de Lyon, INSA de Lyon, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CNRS, LMFA UMR 5509, Villeurbanne, France
| | | | - Patrick Lermusiaux
- Vascular and Endovascular Department, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
8
|
van der Palen RLF, Juffermans JF, Kroft LJM, Hazekamp MG, Lamb HJ, Blom NA, Roest AAW, Westenberg JJM. Wall shear stress in the thoracic aorta at rest and with dobutamine stress after arterial switch operation. Eur J Cardiothorac Surg 2021; 59:814-822. [PMID: 33382414 PMCID: PMC8083947 DOI: 10.1093/ejcts/ezaa392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Progressive root dilatation is an important complication in patients with transposition of the great arteries (TGA) after arterial switch operation (ASO) that may be caused by altered flow dynamics. Aortic wall shear stress (WSS) distribution at rest and under dobutamine stress (DS) conditions using 4D flow magnetic resonance imaging were investigated in relation to thoracic aorta geometry. METHODS 4D flow magnetic resonance imaging was performed in 16 adolescent TGA patients after ASO (rest and DS condition) and in 10 healthy controls (rest). The primary outcome measure was the WSS distribution along the aortic segments and the WSS change with DS in TGA patients. Based on the results, we secondary zoomed in on factors [aortic geometry and left ventricular (LV) function parameters] that might relate to these WSS distribution differences. Aortic diameters, arch angle, LV function parameters (stroke volume, LV ejection fraction, cardiac output) and peak systolic aortic WSS were obtained. RESULTS TGA patients had significantly larger neoaortic root and smaller mid-ascending aorta (AAo) dimensions and aortic arch angle. At rest, patients had significantly higher WSS in the entire thoracic aorta, except for the dilated root. High WSS levels beyond the proximal AAo were associated with the diameter decrease from the root to the mid-AAo (correlation coefficient r = 0.54–0.59, P = 0.022–0.031), not associated with the aortic arch angle. During DS, WSS increased in all aortic segments (P < 0.001), most pronounced in the AAo segments. The increase in LV ejection fraction, stroke volume and cardiac output as a result of DS showed a moderate linear relationship with the WSS increase in the distal AAo (correlation coefficient r = 0.54–0.57, P = 0.002–0.038). CONCLUSIONS Increased aortic WSS was observed in TGA patients after ASO, related to the ASO-specific geometry, which increased with DS. Stress-enhanced elevated WSS may play a role in neoaortic root dilatation and anterior aortic wall thinning of the distal AAo.
Collapse
Affiliation(s)
- Roel L F van der Palen
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Joe F Juffermans
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Lucia J M Kroft
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Mark G Hazekamp
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Leiden, Netherlands
| | - Hildo J Lamb
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Nico A Blom
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Arno A W Roest
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Jos J M Westenberg
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
9
|
Mandell JG, Loke YH, Mass PN, Opfermann J, Cleveland V, Aslan S, Hibino N, Krieger A, Olivieri LJ. Aorta size mismatch predicts decreased exercise capacity in patients with successfully repaired coarctation of the aorta. J Thorac Cardiovasc Surg 2021; 162:183-192.e2. [PMID: 33131888 DOI: 10.1016/j.jtcvs.2020.09.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/09/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Coarctation of the aorta (CoA) is associated with decreased exercise capacity despite successful repair with no residual stenosis; however, the hemodynamic mechanism remains unknown. This study aims to correlate aortic arch geometry with exercise capacity in patients with successfully repaired CoA and explain hemodynamic changes using 3-dimensional-printed aorta models in a mock circulatory flow loop. METHODS A retrospective chart review identified patients with CoA repair who had cardiac magnetic resonance imaging and an exercise stress test. Measurements included aorta diameters, arch height to diameter ratio, left ventricular function, and percent descending aorta (%DAo) flow. Each aorta was printed 3-dimensionally for the flow loop. Flow and pressure were measured at the ascending aorta (AAo) and DAo during simulated rest and exercise. Measurements were correlated with percent predicted peak oxygen consumption (VO2 max). RESULTS Fifteen patients (mean age 26.8 ± 8.6 years) had a VO2 max between 47% and 126% predicted (mean 92 ± 20%) with normal left ventricular function. DAo diameter and %DAo flow positively correlated with VO2 (P = .007 and P = .04, respectively). AAo to DAo diameter ratio (DAAo/DDAo) negatively correlated with VO2 (P < .001). From flow loop simulations, the ratio of %DAo flow in exercise to rest negatively correlated with VO2 (P = .02) and positively correlated with DAAo/DDAo (P < .01). CONCLUSIONS This study suggests aorta size mismatch (DAAo/DDAo) is a novel, clinically important measurement predicting exercise capacity in patients with successful CoA repair, likely due to increased resistance and altered flow distribution. Aorta size mismatch and %DAo flow are targets for further clinical evaluation in repaired CoA.
Collapse
Affiliation(s)
- Jason G Mandell
- Division of Cardiology, Children's National Hospital, Washington, DC.
| | - Yue-Hin Loke
- Division of Cardiology, Children's National Hospital, Washington, DC
| | - Paige N Mass
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC
| | - Justin Opfermann
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC
| | - Vincent Cleveland
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC
| | - Seda Aslan
- Department of Mechanical Engineering, University of Maryland, College Park, Md
| | - Narutoshi Hibino
- Section of Cardiac Surgery, Department of Surgery, University of Chicago/Advocate Children's Hospital Chicago, Ill
| | - Axel Krieger
- Department of Mechanical Engineering, University of Maryland, College Park, Md
| | - Laura J Olivieri
- Division of Cardiology, Children's National Hospital, Washington, DC; Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC
| |
Collapse
|
10
|
Johnston L, Allen R, Hall Barrientos P, Mason A, Kazakidi A. Hemodynamic Abnormalities in the Aorta of Turner Syndrome Girls. Front Cardiovasc Med 2021; 8:670841. [PMID: 34141729 PMCID: PMC8203817 DOI: 10.3389/fcvm.2021.670841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/06/2021] [Indexed: 01/15/2023] Open
Abstract
Congenital abnormalities in girls and women with Turner syndrome (TS), alongside an underlying predisposition to obesity and hypertension, contribute to an increased risk of cardiovascular disease and ultimately reduced life expectancy. We observe that children with TS present a greater variance in aortic arch morphology than their healthy counterparts, and hypothesize that their hemodynamics is also different. In this study, computational fluid dynamic (CFD) simulations were performed for four TS girls, and three age-matched healthy girls, using patient-specific inlet boundary conditions, obtained from phase-contrast MRI data. The visualization of multidirectional blood flow revealed an increase in vortical flow in the arch, supra-aortic vessels, and descending aorta, and a correlation between the presence of aortic abnormalities and disturbed flow. Compared to the relatively homogeneous pattern of time-averaged wall shear stress (TAWSS) on the healthy aortae, a highly heterogeneous distribution with elevated TAWSS values was observed in the TS geometries. Visualization of further shear stress parameters, such as oscillatory shear index (OSI), normalized relative residence time (RRTn), and transverse WSS (transWSS), revealed dissimilar heterogeneity in the oscillatory and multidirectional nature of the aortic flow. Taking into account the young age of our TS cohort (average age 13 ± 2 years) and their obesity level (75% were obese or overweight), which is believed to accelerate the initiation and progression of endothelial dysfunction, these findings may be an indication of atherosclerotic disease manifesting earlier in life in TS patients. Age, obesity and aortic morphology may, therefore, play a key role in assessing cardiovascular risk in TS children.
Collapse
Affiliation(s)
- Lauren Johnston
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Ruth Allen
- Department of Radiology, Royal Hospital for Children, Glasgow, United Kingdom
| | | | - Avril Mason
- Department of Paediatric Endocrinology, Royal Hospital for Children, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Asimina Kazakidi
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
11
|
Sundström E, Jonnagiri R, Gutmark-Little I, Gutmark E, Critser P, Taylor MD, Tretter JT. Hemodynamics and tissue biomechanics of the thoracic aorta with a trileaflet aortic valve at different phases of valve opening. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2020; 36:e3345. [PMID: 32359198 DOI: 10.1002/cnm.3345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 02/17/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
In a normal cardiac cycle, the trileaflet aortic valve opening is progressive, which correlates with the phasic blood flow. Therefore, we aimed to determine the impact of including an anatomically accurate reconstructed trileaflet aortic valve within a fluid-structure interaction (FSI) simulation model and determine the cyclical hemodynamic forces imposed on the thoracic aortic walls from aortic valve opening to closure. A pediatric patient with a normal trileaflet valve was recruited. Using the Cardiac Magnetic Resonance Data (CMR), a 3D model of the aortic valve and thoracic aorta was reconstructed. FSI simulations were employed to assess the tissue stress during a cardiac cycle as the result of changes in the valve opening. The blood flow was simulated as a mixture of blood plasma and red blood cells to account for non-Newtonian effects. The computation was validated with phase-contrast CMR. Windkessel boundary conditions were employed to ensure physiological pressures during the cardiac cycle. The leaflets' dynamic motion during the cardiac cycle was defined with an analytic grid velocity function. At the beginning of the valve opening a thin jet is developing. From mid-open towards full opening the stress level increases where the jet impinges the convex wall. At peak systole two counter-rotating Dean-like vortex cores manifest in the ascending aorta, which correlates with increased integrated mean stress levels. An accurate trileaflet aortic valve is needed for capturing of both primary and secondary flow features that impact the forces on the thoracic aorta wall. Omitting the aortic valve underestimates the biomechanical response.
Collapse
Affiliation(s)
- Elias Sundström
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, Cincinnati, Ohio, USA
| | - Raghuvir Jonnagiri
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Iris Gutmark-Little
- Division of Endocrine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ephraim Gutmark
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Paul Critser
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Michael D Taylor
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Justin T Tretter
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Sundström E, Jonnagiri R, Gutmark-Little I, Gutmark E, Critser P, Taylor MD, Tretter JT. Effects of Normal Variation in the Rotational Position of the Aortic Root on Hemodynamics and Tissue Biomechanics of the Thoracic Aorta. Cardiovasc Eng Technol 2019; 11:47-58. [PMID: 31701357 DOI: 10.1007/s13239-019-00441-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/30/2019] [Indexed: 01/04/2023]
Abstract
PURPOSE Variation in the rotational position of the aortic root relative to the left ventricle is present in normal trileaflet aortic valves. Its impact on the resulting fluid mechanics of blood flow in the thoracic aorta and structural mechanics in the aortic wall are unknown. We aimed to determine the regional hemodynamic and biomechanical differences in different rotational positions of the normal aortic root (clockwise, central, and counterclockwise positions). METHOD Cardiac magnetic resonance imaging (CMR) data was acquired from a normal pediatric patient. These were used for reconstruction of the aortic valve and thoracic aorta 3D model. Fluid-structure interaction (FSI) simulations were employed to study the influence of the root rotation with a central position as compared to observed extreme variations. Patient-specific phase-encoding CMR data were used to assess the validity of computed blood flow. The 3D FSI model was coupled with Windkessel boundary conditions that were tuned for physiological pressures. A grid velocity function was adopted for the valve motion during the systolic period. RESULTS The largest wall shear stress level is detected in the clockwise positioned aortic root at the sinutubular junction. Two counter-rotating vortex cores are formed within the aortic root of both the central and extreme root configurations, however, in the clockwise root the vortex system becomes more symmetric. This also coincides with more entrainment of the valve jet and more turbulence production along the shear layer. CONCLUSION A clockwise rotational position of the aortic root imparts an increased wall shear stress at the sinutubular junction and proximal ascending aorta in comparison to other root rotation positions. This may pose increased risk for dilation of the sinutubular junction and ascending aorta in the patient with a clockwise positioned aortic root compared to other normal positional configurations.
Collapse
Affiliation(s)
- Elias Sundström
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Raghuvir Jonnagiri
- Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Iris Gutmark-Little
- Division of Endocrine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ephraim Gutmark
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati, Cincinnati, OH, 45267, USA.,Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Paul Critser
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Michael D Taylor
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Justin T Tretter
- Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45267, USA
| |
Collapse
|
13
|
Shokina N, Bauer A, Teschner G, Buchenberg WB, Tropea C, Egger H, Hennig J, Krafft AJ. MR-based wall shear stress measurements in fully developed turbulent flow using the Clauser plot method. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:16-21. [PMID: 31158791 DOI: 10.1016/j.jmr.2019.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
In arterial blood flow wall shear stress (WSS) quantifies the frictional force that flowing blood exerts on a vessel wall. WSS can be directly estimated from phase-contrast (PC) MR velocity measurements and has been suggested as a biomarker in cardio-vascular diseases. We present and investigate the application of the Clauser plot method for estimating WSS in fully developed turbulent stationary flow using PC velocity measurements. The Clauser plot method estimates WSS from the logarithmic region of boundary layer in fully developed turbulent stationary flow. The Clauser plot method was evaluated using 2D PC-MR phantom measurements at 3 T for different in-plane resolutions at various Reynolds numbers. WSS values derived from the Clauser plot were compared to results from Laser Doppler Velocimetry (LDV) measurements and theoretical results calculated using the friction factor formula for smooth pipe flow. For all Reynolds numbers, WSS values derived from the Clauser plot were in good agreement with results from LDV measurements and values using the friction factor formula (relative deviations ∼5%). Furthermore, Clauser plot derived results were almost independent of spatial resolution, in contrast to WSS results obtained with our in-house software tool for MR-based WSS quantification showing relative deviations of more than 100%. In fully developed turbulent flow, the Clauser plot method provides highly consistent WSS independent of the underlying spatial resolution. Therefore, it renders a valuable approach for MR-based WSS estimates in controllable flow settings. Although its direct in vivo applicability is severely limited because of the different flow character, it may serve as helpful approach for validation of MR-based WSS quantification algorithms prior to their clinical application.
Collapse
Affiliation(s)
- Nina Shokina
- Dept. of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Andreas Bauer
- Institute for Fluid Mechanics and Aerodynamics, Department of Mechanical Engineering, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gabriel Teschner
- Institute for Numerical Analysis and Scientific Computing, Department of Mathematics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Waltraud B Buchenberg
- Dept. of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Cameron Tropea
- Institute for Fluid Mechanics and Aerodynamics, Department of Mechanical Engineering, Technische Universität Darmstadt, Darmstadt, Germany
| | - Herbert Egger
- Institute for Numerical Analysis and Scientific Computing, Department of Mathematics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Jürgen Hennig
- Dept. of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Axel J Krafft
- Dept. of Radiology, Medical Physics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
14
|
Jain K. Transition to turbulence in an oscillatory flow through stenosis. Biomech Model Mechanobiol 2019; 19:113-131. [PMID: 31359287 DOI: 10.1007/s10237-019-01199-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/05/2019] [Indexed: 12/16/2022]
Abstract
Onset of flow transition in a sinusoidally oscillating flow through a rigid, constant area circular pipe with a smooth sinusoidal obstruction in the center of the pipe is studied by performing direct numerical simulations, with resolutions close to the Kolmogorov microscales. The studied pipe is stenosed in the center with a 75% reduction in area in two distinct configurations-one that is symmetric to the axis of the parent pipe and the other that is offset by 0.05 diameters to introduce an eccentricity, which disturbs the flow thereby triggering the onset of flow transition. The critical Reynolds number at which the flow transitions to turbulence for a zero-mean oscillatory flow through a stenosis is shown to be nearly tripled in comparison with studies of pulsating unidirectional flow through the same stenosis. The onset of transition is further explored with three different flow pulsation frequencies resulting in a total of 90 simulations conducted on a supercomputer. It is found that the critical Reynolds number at which the oscillatory flow transitions is not affected by the pulsation frequencies. The locations of flow breakdown and re-stabilization post-stenosis are, however, respectively shifted closer to the stenosis throat with increasing pulsation frequencies. The results show that oscillatory physiological flows, while more stable, exhibit fluctuations due to geometric complexity and have implications in studies of dispersion and solute transport in the cerebrospinal fluid flow and understanding of pathological conditions.
Collapse
Affiliation(s)
- Kartik Jain
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, 70569, Stuttgart, Germany.
| |
Collapse
|
15
|
The influence of hematocrit on the hemodynamics of artificial heart valve using fluid-structure interaction analysis. Comput Biol Med 2019; 110:79-92. [DOI: 10.1016/j.compbiomed.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/01/2019] [Indexed: 01/10/2023]
|
16
|
Stenosis Indicators Applied to Patient-Specific Renal Arteries without and with Stenosis. FLUIDS 2019. [DOI: 10.3390/fluids4010026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pulsatile flow in the abdominal aorta and the renal arteries of three patients was studied numerically. Two of the patients had renal artery stenosis. The aim of the study was to assess the use of four types of indicators for determining the risk of new stenosis after revascularization of the affected arteries. The four indicators considered include the time averaged wall shear stress (TAWSS), the oscillatory shear index (OSI), the relative reference time (RRT) and a power law model based in platelet activation modeling but applied to the endothelium, named endothelium activation indicator (EAI). The results show that the indicators can detect the existing stenosis but are less successful in the revascularized cases. The TAWSS and, more clearly, the EAI approach seem to be better in predicting the risk for stenosis relapse at the original location and close to the post-stenotic dilatation. The shortcomings of the respective indicators are discussed along with potential improvements to endothelial activation modeling and its use as an indicator for risks of restenosis.
Collapse
|
17
|
Wen J, Trolle C, Viuff MH, Ringgaard S, Laugesen E, Gutmark EJ, Subramaniam DR, Backeljauw P, Gutmark-Little I, Andersen NH, Mortensen KH, Gravholt CH. Impaired aortic distensibility and elevated central blood pressure in Turner Syndrome: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2018; 20:80. [PMID: 30541571 PMCID: PMC6292015 DOI: 10.1186/s12968-018-0497-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/23/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Women with Turner Syndrome have an increased risk for aortic dissection. Arterial stiffening is a risk factor for aortic dilatation and dissection. Here we investigate if arterial stiffening can be observed in Turner Syndrome patients and is an initial step in the development of aortic dilatation and subsequent dissection. METHODS Fifty-seven women with Turner Syndrome (48 years [29-66]) and thirty-six age- and sex-matched controls (49 years [26-68]) were included. Distensibility, blood pressure, carotid-femoral pulse wave velocity (PWV), the augmentation index (Aix) and central blood pressure were determined using cardiovascular magnetic resonance, a 24-h blood pressure measurement and applanation tonometry. Aortic distensibility was determined at three locations: ascending aorta, transverse aortic arch, and descending aorta. RESULTS Mean aortic distensibility in the descending aorta was significantly lower in Turner Syndrome compared to healthy controls (P = 0.02), however, this was due to a much lower distensibility among Turner Syndrome with coarctation, while Turner Syndrome without coarctation had similar distensibility as controls. Both the mean heart rate adjusted Aix (31.4% vs. 24.4%; P = 0.02) and central diastolic blood pressure (78.8 mmHg vs. 73.7 mmHg; P = 0.02) were higher in Turner Syndrome compared to controls, and these indices correlated significantly with ambulatory night-time diastolic blood pressure. The presence of aortic coarctation (r = - 0.44, P = 0.005) and a higher central systolic blood pressure (r = - 0.34, P = 0.03), age and presence of diabetes were inversely correlated with aortic distensibility in TS. CONCLUSION Aortic wall function in the descending aorta is impaired in Turner Syndrome with lower distensibility among those with coarctation of the aorta, and among all Turner Syndrome higher Aix, and elevated central diastolic blood pressure when compared to sex- and age-matched controls. TRIAL REGISTRATION The study was registered at ClinicalTrials.gov ( #NCT01678274 ) on September 3, 2012.
Collapse
Affiliation(s)
- Jan Wen
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Christian Trolle
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Mette H. Viuff
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Steffen Ringgaard
- Department of Clinical Medicine, MR Research Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Esben Laugesen
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
| | - Ephraim J. Gutmark
- Department of Aerospace Engineering and Engineering Mechanics, CEAS, University of Cincinnati, Cincinnati, OH USA
- UC Department of Otolaryngology – Head and Neck Surgery, Cincinnati, OH USA
| | | | - Philippe Backeljauw
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Iris Gutmark-Little
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Niels H. Andersen
- Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Kristian H. Mortensen
- Cardiovascular Imaging Department, Cardio-respiratory Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, WC1N 3JH UK
| | - Claus H. Gravholt
- Department of Endocrinology and Internal Medicine and Medical Research Laboratories, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
18
|
Zhao Q, Shi K, Yang ZG, Diao KY, Xu HY, Liu X, Guo YK. Predictors of aortic dilation in patients with coarctation of the aorta: evaluation with dual-source computed tomography. BMC Cardiovasc Disord 2018; 18:124. [PMID: 29929466 PMCID: PMC6013956 DOI: 10.1186/s12872-018-0863-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/12/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Coarctation of aorta (CoA) may progressively develop aortic dilation at other site of the aorta and can lead to fatal aortic diseases. We aimed to evaluate the occurrence of aortic dilation and related predictors in patients with CoA using dual-source computed tomography (DSCT). METHODS Fifty-three patients with CoA identified by DSCT were retrospectively reviewed. Aortic diameters were measured at six different levels and standardized as z-scores based on the square root of body surface area. Coarctation site-diaphragm ratio (CDR) was used to describe the degree of narrowing. A total of 26 patients were included in mild group (CDR > 50%) and 27 in severe group (CDR < 50%) according to the severity of coarctation. Student's t-test and Spearman correlation coefficients, univariate and multivariable logistic regression analyses were used to assess the risk factors including age, degree of narrowing and other malformations for aortic dilation. RESULTS Severe group had significantly larger z-scores of ascending aorta (2.41 ± 0.39 vs. 2.10 ± 0.57, p < 0.05) and post-coarctation aorta (2.17 ± 0.48 vs. 1.68 ± 0.43, p < 0.001) compared with mild group. Degree of coarctation was associated with the z-scores of the ascending aorta (r = - 0.356, p < 0.05) and post-coarctation aorta (r = - 0.414, p < 0.05). Collateral circulation was related to the z-scores of ascending aorta (r = 0.375, p < 0.05). Increased severity of coarctation was independent predictor of ascending (odds ratio 7.46; 95% CI 1.19-46.76; p < 0.05) and post-coarctation aortic dilation(odds ratio 8.42; 95% CI 1.84-38.56; p < 0.05). CONCLUSIONS Ascending and post-coarctation aortic diameters or dilations were both associated with the degree of coarctation. By comprehensively evaluating the aortic diameters and associated malformations including collateral circulation, DSCT can aid in stratification of risk for aortic dilation in patients with CoA.
Collapse
Affiliation(s)
- Qin Zhao
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041 Sichuan China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041 Sichuan China
| | - Zhi-gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041 Sichuan China
| | - Kai-yue Diao
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041 Sichuan China
| | - Hua-yan Xu
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041 Sichuan China
| | - Xi Liu
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041 Sichuan China
| | - Ying-kun Guo
- Department of Radiology, West China Second University Hospital, Sichuan University, 20# Section 3 South Renmin Road, Chengdu, 610041 Sichuan China
| |
Collapse
|
19
|
Ece B, Yiğit H, Ergün E, Koşar PN. Elongated transverse aortic arch in subjects without turner syndrome: A preliminary computed tomography study. Clin Anat 2018; 31:887-890. [PMID: 29770485 DOI: 10.1002/ca.23209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/02/2018] [Indexed: 11/05/2022]
Abstract
The purpose of the present study was to investigate the presence of an elongated transverse aortic arch (ETA), which has been reported to be specific for Turner syndrome, in a population without Turner syndrome. A set of 1,012 patients (713 men, 299 women) under 40 years old, who underwent thoracic CT examination in our radiology department between July 2016 and December 2016, were included in the study. CT scans were performed by 16-slice scanners. CT images were retrieved from the picture archiving and communication system and retrospectively re-assessed by two radiologists. Diagnostic criteria for ETA, which are late take-off of the left subclavian artery (LSA), convex kinking of the inferior aortic arch along the lesser curvature and flattening of the transverse aortic arch, were searched in each case. The mean age of the study population was 25.5 ± 10.0 years. Late take-off of the LSA was detected in 17 (1.7%) subjects (10 men, 7 women). In six of these, the other criteria for ETA were not met. However, in the other 11 (1.1% of the study population) cases, in addition to late take-off of the LSA, aortic morphology was compatible with ETA. The dimensions of the aortic root and the ascending and descending aorta were within normal limits in all 17 cases. Our results supported the presence of ETA in subjects without Turner syndrome with ∼1.1% frequency. This is the first preliminary report regarding the frequency of ETA in non-Turner subjects. Clin. Anat. 31:887-890, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- B Ece
- Department of Radiology, Ankara Training and Research Hospital, Ankara, Turkey
| | - H Yiğit
- Department of Radiology, Ankara Training and Research Hospital, Ankara, Turkey
| | - E Ergün
- Department of Radiology, Ankara Training and Research Hospital, Ankara, Turkey
| | - P N Koşar
- Department of Radiology, Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
20
|
Poon EKW, Thondapu V, Hayat U, Barlis P, Yap CY, Kuo PH, Wang Q, Ma J, Zhu SJ, Moore S, Ooi ASH. Elevated Blood Viscosity and Microrecirculation Resulting From Coronary Stent Malapposition. J Biomech Eng 2018; 140:2673009. [DOI: 10.1115/1.4039306] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Indexed: 01/09/2023]
Abstract
One particular complexity of coronary artery is the natural tapering of the vessel with proximal segments having larger caliber and distal tapering as the vessel get smaller. The natural tapering of a coronary artery often leads to proximal incomplete stent apposition (ISA). ISA alters coronary hemodynamics and creates pathological path to develop complications such as in-stent restenosis, and more worryingly, stent thrombosis (ST). By employing state-of-the-art computer-aided design software, generic stent hoops were virtually deployed in an idealized tapered coronary artery with decreasing malapposition distance. Pulsatile blood flow simulations were carried out using computational fluid dynamics (CFD) on these computer-aided design models. CFD results reveal unprecedented details in both spatial and temporal development of microrecirculation environments throughout the cardiac cycle (CC). Arterial tapering also introduces secondary microrecirculation. These primary and secondary microrecirculations provoke significant fluctuations in arterial wall shear stress (WSS). There has been a direct correlation with changes in WSS and the development of atherosclerosis. Further, the presence of these microrecirculations influence strongly on the local levels of blood viscosity in the vicinity of the malapposed stent struts. The observation of secondary microrecirculations and changes in blood rheology is believed to complement the wall (-based) shear stress, perhaps providing additional physical explanations for tissue accumulation near ISA detected from high resolution optical coherence tomography (OCT).
Collapse
Affiliation(s)
- Eric K. W. Poon
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Vikas Thondapu
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia
- Faculty of Medicine, Dentistry, and Health Sciences, Department of Medicine, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Umair Hayat
- Faculty of Medicine, Dentistry and Health Sciences, Department of Medicine, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Peter Barlis
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Chooi Yin Yap
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Po-Hung Kuo
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Qisen Wang
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Jiawei Ma
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Shuang J. Zhu
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| | - Stephen Moore
- IBM Research Australia, Carlton 3053, Victoria, Australia e-mail:
| | - Andrew S. H. Ooi
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia e-mail:
| |
Collapse
|
21
|
Murtuza B, Alsoufi B. Current Readings on Surgery for the Neonate With Hypoplastic Aortic Arch. Semin Thorac Cardiovasc Surg 2017; 29:S1043-0679(17)30294-0. [PMID: 29180283 DOI: 10.1053/j.semtcvs.2017.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 11/11/2022]
Abstract
Aortic arch hypoplasia is commonly present in neonates born with ductal-dependent coarctation of the aorta. The ideal surgical repair of neonates with proximal arch hypoplasia continues to be debated. Controversy exists about the fate of the hypoplastic proximal aortic arch following surgical repair and whether that will eventually grow to normal size upon relief of the distal obstruction or will persist as a residual lesion that can affect the long-term outlook of those patients. There is new evidence that residual proximal arch hypoplasia and the shape of the reconstructed arch both have an important impact on vascular remodeling and on the subsequent development of hypertension. Those concerns about late outcomes despite what was originally deemed a successful repair in infancy, coupled with improved cardiopulmonary bypass and cerebral perfusion techniques that allow surgeons to address proximal arch hypoplasia with low morbidity, have rekindled the debate on how to address proximal arch hypoplasia, with the aim to offer a neonatal surgery that would last for a lifetime and provide both optimal early recovery and late freedom from hypertension and related complications.
Collapse
Affiliation(s)
- Bari Murtuza
- Division of Cardiothoracic Surgery, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia
| | - Bahaaldin Alsoufi
- Division of Cardiothoracic Surgery, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
22
|
Mohammadi H, Cartier R, Mongrain R. 3D physiological model of the aortic valve incorporating small coronary arteries. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2017; 33:e2829. [PMID: 27591390 DOI: 10.1002/cnm.2829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/04/2016] [Accepted: 08/26/2016] [Indexed: 06/06/2023]
Abstract
The diseases of the coronary arteries and the aortic root are still the leading causes of mortality and morbidity worldwide. In this study, a 3D global fluid-structure interaction of the aortic root with inclusion of anatomically inspired small coronary arteries using the finite element method is presented. This innovative model allows to study the impact and interaction of root biomechanics on coronary hemodynamics and brings a new understanding to small coronary vessels hemodynamics. For the first time, the velocity profiles and shear stresses are reported in distal coronary arteries as a result of the aortic flow conditions in a global fluid-structure interaction model.
Collapse
Affiliation(s)
- Hossein Mohammadi
- Mechanical Engineering Department, McGill University, Montreal, Quebec, H3A 0C3, Canada
| | - Raymond Cartier
- Department of Cardiovascular Surgery, Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada
| | - Rosaire Mongrain
- Mechanical Engineering Department, McGill University, Montreal, Quebec, H3A 0C3, Canada
- Department of Cardiovascular Surgery, Montreal Heart Institute, Montreal, Quebec, H1T 1C8, Canada
| |
Collapse
|
23
|
Subramaniam DR, Stoddard WA, Mortensen KH, Ringgaard S, Trolle C, Gravholt CH, Gutmark EJ, Mylavarapu G, Backeljauw PF, Gutmark-Little I. Continuous measurement of aortic dimensions in Turner syndrome: a cardiovascular magnetic resonance study. J Cardiovasc Magn Reson 2017; 19:20. [PMID: 28231838 PMCID: PMC5324249 DOI: 10.1186/s12968-017-0336-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 02/02/2017] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Severity of thoracic aortic disease in Turner syndrome (TS) patients is currently described through measures of aorta size and geometry at discrete locations. The objective of this study is to develop an improved measurement tool that quantifies changes in size and geometry over time, continuously along the length of the thoracic aorta. METHODS Cardiovascular magnetic resonance (CMR) scans for 15 TS patients [41 ± 9 years (mean age ± standard deviation (SD))] were acquired over a 10-year period and compared with ten healthy gender and age-matched controls. Three-dimensional aortic geometries were reconstructed, smoothed and clipped, which was followed by identification of centerlines and planes normal to the centerlines. Geometric variables, including maximum diameter and cross-sectional area, were evaluated continuously along the thoracic aorta. Distance maps were computed for TS and compared to the corresponding maps for controls, to highlight any asymmetry and dimensional differences between diseased and normal aortae. Furthermore, a registration scheme was proposed to estimate localized changes in aorta geometry between visits. The estimated maximum diameter from the continuous method was then compared with corresponding manual measurements at 7 discrete locations for each visit and for changes between visits. RESULTS Manual measures at the seven positions and the corresponding continuous measurements of maximum diameter for all visits considered, correlated highly (R-value = 0.77, P < 0.01). There was good agreement between manual and continuous measurement methods for visit-to-visit changes in maximum diameter. The continuous method was less sensitive to inter-user variability [0.2 ± 2.3 mm (mean difference in diameters ± SD)] and choice of smoothing software [0.3 ± 1.3 mm]. Aortic diameters were larger in TS than controls in the ascending [TS: 13.4 ± 2.1 mm (mean distance ± SD), Controls: 12.6 ± 1 mm] and descending [TS: 10.2 ± 1.3 mm (mean distance ± SD), Controls: 9.5 ± 0.9 mm] thoracic aorta as observed from the distance maps. CONCLUSIONS An automated methodology is presented that enables rapid and precise three-dimensional measurement of thoracic aortic geometry, which can serve as an improved tool to define disease severity and monitor disease progression. TRIAL REGISTRATION ClinicalTrials.gov Identifier - NCT01678274 . Registered - 08.30.2012.
Collapse
Affiliation(s)
| | - William A. Stoddard
- Department of Aerospace Engineering and Engineering Mechanics, CEAS, University of Cincinnati, Cincinnati, OH USA
| | - Kristian H. Mortensen
- Cardio-respiratory Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Steffen Ringgaard
- Institute for Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Christian Trolle
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
| | - Claus H. Gravholt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus C, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | - Ephraim J. Gutmark
- Department of Aerospace Engineering and Engineering Mechanics, CEAS, University of Cincinnati, Cincinnati, OH USA
- UC Department of Otolaryngology, Head and Neck Surgery, Cincinnati, OH USA
| | - Goutham Mylavarapu
- Division of Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
| | - Philippe F. Backeljauw
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| | - Iris Gutmark-Little
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA
| |
Collapse
|
24
|
Yiğit H, Ergün E. Elongation of transverse aortic arch; not specific for Turner Syndrome. Clin Anat 2016; 30:555-556. [PMID: 27935115 DOI: 10.1002/ca.22816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/30/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Hasan Yiğit
- Associate Professor of Radiology, Department of Radiology, Ankara Training and Research Hospital, Ankara, Turkey
| | - Elif Ergün
- Associate Professor of Radiology, Department of Radiology, Ankara Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
25
|
Haller C, Chetan D, Saedi A, Parker R, Van Arsdell GS, Caldarone CA, Honjo O. Geometry of the Aortic Arch After Initial Hybrid or Norwood Palliation. Ann Thorac Surg 2016; 102:2077-2086. [DOI: 10.1016/j.athoracsur.2016.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/20/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|