1
|
Readhead C, Mahler S, Dong Z, Sato Y, Yang C, Bronner ME. Automated non-invasive laser speckle imaging of the chick heart rate and extraembryonic blood vessels and their response to Nifedipine and Amlodipine drugs. Dev Biol 2025; 519:46-54. [PMID: 39675502 PMCID: PMC11750601 DOI: 10.1016/j.ydbio.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/08/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Using our recently developed laser speckle contrast imaging (LSCI) to visualize blood vessels and monitor blood flow noninvasively, we test the utility of the developing chick heart as a functional model for drug screening. To this end, we examined the effects of antihypertensive agents Nifedipine and Amlodipine, belonging to the L-type calcium channel antagonist family, on blood flow visualized noninvasively through the intact shell. Guided by the live view mode, the drugs were injected through the shell and ventral to HH16-19 chick embryos. Our results show a significant reduction in the chick's heart rate, blood flow, and vascular size within 5-20 min after Nifedipine or Amlodipine injection. For moderate Nifedipine concentrations, these parameters returned to initial values within 2-3 h. Nifedipine showed a rapid reduction in heart rate and blood flow dynamics at a concentration ten times lower than Amlodipine. These findings show that our LSCI system can monitor and distinguish the chick heart's response to injected drugs from the same family. This serves as proof-of-concept, paving the way for a rapid, cost-effective, and quantitative test system for screening drugs that affect the cardiovascular system of live chick embryos. Live noninvasive imaging may also provide insights into the development and functioning of the vertebrate heart.
Collapse
Affiliation(s)
- Carol Readhead
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Simon Mahler
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Zhenyu Dong
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yuki Sato
- Department of Anatomy and Cell Biology, Kyushu University, Fukuoka, Japan
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
2
|
Readhead C, Mahler S, Dong Z, Sato Y, Yang C, Bronner ME. Automated non-invasive laser speckle imaging of the chick heart rate and extraembryonic blood vessels and their response to nifedipine and amlodipine drugs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609812. [PMID: 39253508 PMCID: PMC11383000 DOI: 10.1101/2024.08.26.609812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Using our recently developed laser speckle contrast imaging (LSCI) to visualize blood vessels and monitor blood flow, here we test the utility of the chick embryo for drug screening. To this end, we examined the effects of antihypertensive agents Nifedipine and Amlodipine, belonging to the L-type calcium channel antagonist family, on blood flow visualized noninvasively through the intact shell. Guided by the live view mode, the drugs were injected through the shell and ventral to HH16-19 chick embryos. Our results show a significant reduction in the chick heart rate, blood flow, and vascular size within 5-20 minutes after Nifedipine or Amlodipine injection. For moderate Nifedipine concentrations, these parameters returned to initial values within 2-3 hours. In contrast, Amlodipine showed a rapid reduction in heart rate and blood flow dynamics at a more than ten times higher concentration than Nifedipine. These findings show that our LSCI system can monitor and distinguish the chick heart's response to injected drugs from the same family. This serves as proof-of-concept, paving the way for a rapid, cost effective, and quantitative test system for screening drugs that affect the cardiovascular system of live chick embryos. Live noninvasive imaging may also provide insights into the development and functioning of the vertebrate heart. Highlights Non-invasive Laser Speckle Contrast Imaging (LSCI) of the chick chorioallantoic membrane (CAM) in whole incubated eggsSimultaneous recording images of the CAM, dynamics of blood flow, and heart rateLive view mode to identify size, heart position, and location of the embryo in the eggAutomated system for data acquisition and analysisLongitudinal quantification of the impact of a calcium channel antagonists, nifedipidine and amlodipine on the embryonic heart rate, CAM's blood flow, size and number of vessels.
Collapse
|
3
|
Dong Z, Mahler S, Readhead C, Chen X, Dickson M, Bronner M, Yang C. Non-invasive laser speckle contrast imaging (LSCI) of extra-embryonic blood vessels in intact avian eggs at early developmental stages. BIOMEDICAL OPTICS EXPRESS 2024; 15:4605-4624. [PMID: 39346990 PMCID: PMC11427191 DOI: 10.1364/boe.530366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 10/01/2024]
Abstract
Imaging blood vessels in early-stage avian embryos has a wide range of practical applications for developmental biology studies, drug and vaccine testing, and early sex determination. Optical imaging, such as brightfield transmission imaging, offers a compelling solution due to its safe non-ionizing radiation, and operational benefits. However, it comes with challenges, such as eggshell opacity and light scattering. To address these, we have revisited an approach based on laser speckle contrast imaging (LSCI) and demonstrated a high-quality, comprehensive, and non-invasive visualization of blood vessels in few-days-old chicken eggs, with blood vessels as small as 100 µm in diameter (with LSCI profile full-width-at-half-maximum of 275 µm). We present its non-invasive use for monitoring blood flow, measuring the embryo's heartbeat, and determining the embryo's developmental stages using machine learning with 85% accuracy from stage HH15 to HH22. This method can potentially be used for non-invasive longitudinal studies of cardiovascular development and angiogenesis, as well as egg screening for the poultry industry.
Collapse
Affiliation(s)
- Zhenyu Dong
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Simon Mahler
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Carol Readhead
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Xi Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Maya Dickson
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
4
|
Ling S, Blackburn BJ, Jenkins MW, Watanabe M, Ford SM, Lapierre-Landry M, Rollins AM. Segmentation of beating embryonic heart structures from 4-D OCT images using deep learning. BIOMEDICAL OPTICS EXPRESS 2023; 14:1945-1958. [PMID: 37206115 PMCID: PMC10191668 DOI: 10.1364/boe.481657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/29/2023] [Accepted: 02/20/2023] [Indexed: 05/21/2023]
Abstract
Optical coherence tomography (OCT) has been used to investigate heart development because of its capability to image both structure and function of beating embryonic hearts. Cardiac structure segmentation is a prerequisite for the quantification of embryonic heart motion and function using OCT. Since manual segmentation is time-consuming and labor-intensive, an automatic method is needed to facilitate high-throughput studies. The purpose of this study is to develop an image-processing pipeline to facilitate the segmentation of beating embryonic heart structures from a 4-D OCT dataset. Sequential OCT images were obtained at multiple planes of a beating quail embryonic heart and reassembled to a 4-D dataset using image-based retrospective gating. Multiple image volumes at different time points were selected as key-volumes, and their cardiac structures including myocardium, cardiac jelly, and lumen, were manually labeled. Registration-based data augmentation was used to synthesize additional labeled image volumes by learning transformations between key-volumes and other unlabeled volumes. The synthesized labeled images were then used to train a fully convolutional network (U-Net) for heart structure segmentation. The proposed deep learning-based pipeline achieved high segmentation accuracy with only two labeled image volumes and reduced the time cost of segmenting one 4-D OCT dataset from a week to two hours. Using this method, one could carry out cohort studies that quantify complex cardiac motion and function in developing hearts.
Collapse
Affiliation(s)
- Shan Ling
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Brecken J. Blackburn
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael W. Jenkins
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michiko Watanabe
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
| | - Stephanie M. Ford
- Department of Pediatrics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Division of Pediatric Cardiology, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
- Division of Neonatology, Rainbow Babies and Children’s Hospital, Cleveland, Ohio, USA
| | - Maryse Lapierre-Landry
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew M. Rollins
- Department of Biomedical Engineering, School of Engineering and School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
5
|
OCT Meets micro-CT: A Subject-Specific Correlative Multimodal Imaging Workflow for Early Chick Heart Development Modeling. J Cardiovasc Dev Dis 2022; 9:jcdd9110379. [DOI: 10.3390/jcdd9110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Structural and Doppler velocity data collected from optical coherence tomography have already provided crucial insights into cardiac morphogenesis. X-ray microtomography and other ex vivo methods have elucidated structural details of developing hearts. However, by itself, no single imaging modality can provide comprehensive information allowing to fully decipher the inner workings of an entire developing organ. Hence, we introduce a specimen-specific correlative multimodal imaging workflow combining OCT and micro-CT imaging which is applicable for modeling of early chick heart development—a valuable model organism in cardiovascular development research. The image acquisition and processing employ common reagents, lab-based micro-CT imaging, and software that is free for academic use. Our goal is to provide a step-by-step guide on how to implement this workflow and to demonstrate why those two modalities together have the potential to provide new insight into normal cardiac development and heart malformations leading to congenital heart disease.
Collapse
|
6
|
Alser M, Shurbaji S, Yalcin HC. Mechanosensitive Pathways in Heart Development: Findings from Chick Embryo Studies. J Cardiovasc Dev Dis 2021; 8:jcdd8040032. [PMID: 33810288 PMCID: PMC8065436 DOI: 10.3390/jcdd8040032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/18/2022] Open
Abstract
The heart is the first organ that starts to function in a developing embryo. It continues to undergo dramatic morphological changes while pumping blood to the rest of the body. Genetic regulation of heart development is partly governed by hemodynamics. Chick embryo is a major animal model that has been used extensively in cardiogenesis research. To reveal mechanosensitive pathways, a variety of surgical interferences and chemical treatments can be applied to the chick embryo to manipulate the blood flow. Such manipulations alter expressions of mechanosensitive genes which may anticipate induction of morphological changes in the developing heart. This paper aims to present different approaches for generating clinically relevant disturbed hemodynamics conditions using this embryonic chick model and to summarize identified mechanosensitive genes using the model, providing insights into embryonic origins of congenital heart defects.
Collapse
Affiliation(s)
- Maha Alser
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (M.A.); (S.S.)
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Samar Shurbaji
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (M.A.); (S.S.)
| | - Huseyin C. Yalcin
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar; (M.A.); (S.S.)
- Correspondence: ; Tel.: +974-4403-7719
| |
Collapse
|
7
|
Computational Modeling of Blood Flow Hemodynamics for Biomechanical Investigation of Cardiac Development and Disease. J Cardiovasc Dev Dis 2021; 8:jcdd8020014. [PMID: 33572675 PMCID: PMC7912127 DOI: 10.3390/jcdd8020014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
The heart is the first functional organ in a developing embryo. Cardiac development continues throughout developmental stages while the heart goes through a serious of drastic morphological changes. Previous animal experiments as well as clinical observations showed that disturbed hemodynamics interfere with the development of the heart and leads to the formation of a variety of defects in heart valves, heart chambers, and blood vessels, suggesting that hemodynamics is a governing factor for cardiogenesis, and disturbed hemodynamics is an important source of congenital heart defects. Therefore, there is an interest to image and quantify the flowing blood through a developing heart. Flow measurement in embryonic fetal heart can be performed using advanced techniques such as magnetic resonance imaging (MRI) or echocardiography. Computational fluid dynamics (CFD) modeling is another approach especially useful when the other imaging modalities are not available and in-depth flow assessment is needed. The approach is based on numerically solving relevant physical equations to approximate the flow hemodynamics and tissue behavior. This approach is becoming widely adapted to simulate cardiac flows during the embryonic development. While there are few studies for human fetal cardiac flows, many groups used zebrafish and chicken embryos as useful models for elucidating normal and diseased cardiogenesis. In this paper, we explain the major steps to generate CFD models for simulating cardiac hemodynamics in vivo and summarize the latest findings on chicken and zebrafish embryos as well as human fetal hearts.
Collapse
|
8
|
Töger J, Zahr MJ, Aristokleous N, Markenroth Bloch K, Carlsson M, Persson P. Blood flow imaging by optimal matching of computational fluid dynamics to 4D‐flow data. Magn Reson Med 2020; 84:2231-2245. [DOI: 10.1002/mrm.28269] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/21/2020] [Accepted: 03/09/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Johannes Töger
- Department of Clinical Sciences Lund Diagnostic Radiology Lund UniversitySkåne University Hospital Lund Sweden
- Department of Clinical Sciences Lund Clinical Physiology Lund UniversitySkåne University Hospital Lund Sweden
| | - Matthew J. Zahr
- Mathematics Group Lawrence Berkeley National Laboratory Berkeley CA
- Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame IN
| | - Nicolas Aristokleous
- Department of Clinical Sciences Lund Clinical Physiology Lund UniversitySkåne University Hospital Lund Sweden
| | | | - Marcus Carlsson
- Department of Clinical Sciences Lund Clinical Physiology Lund UniversitySkåne University Hospital Lund Sweden
| | - Per‐Olof Persson
- Mathematics Group Lawrence Berkeley National Laboratory Berkeley CA
- Department of Mathematics University of California Berkeley CA
| |
Collapse
|
9
|
Ho S, Chan WX, Rajesh S, Phan-Thien N, Yap CH. Fluid dynamics and forces in the HH25 avian embryonic outflow tract. Biomech Model Mechanobiol 2019; 18:1123-1137. [PMID: 30810888 DOI: 10.1007/s10237-019-01132-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
Abstract
The embryonic outflow tract (OFT) eventually undergoes aorticopulmonary septation to form the aorta and pulmonary artery, and it is hypothesized that blood flow mechanical forces guide this process. We performed detailed studies of the geometry, wall motions, and fluid dynamics of the HH25 chick embryonic OFT just before septation, using noninvasive 4D high-frequency ultrasound and computational flow simulations. The OFT exhibited expansion and contraction waves propagating from proximal to distal end, with periods of luminal collapse at locations of the two endocardial cushions. This, combined with periods of reversed flow, resulted in the OFT cushions experiencing wall shear stresses (WSS or flow drag forces) with elevated oscillatory characteristics, which could be important to signal for further development of cushions into valves and septum. Furthermore, the OFT exhibits interesting double-helical flow during systole, where a pair of helical flow structures twisted about each other from the proximal to distal end. This coincided with the location of the future aorticopulmonary septum, which also twisted from the proximal to distal end, suggesting that this flow pattern may be guiding OFT septation.
Collapse
Affiliation(s)
- Sheldon Ho
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Wei Xuan Chan
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Shreyas Rajesh
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Nhan Phan-Thien
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Courchaine K, Gray MJ, Beel K, Thornburg K, Rugonyi S. 4-D Computational Modeling of Cardiac Outflow Tract Hemodynamics over Looping Developmental Stages in Chicken Embryos. J Cardiovasc Dev Dis 2019; 6:E11. [PMID: 30818869 PMCID: PMC6463052 DOI: 10.3390/jcdd6010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/08/2019] [Accepted: 02/21/2019] [Indexed: 12/28/2022] Open
Abstract
Cardiogenesis is interdependent with blood flow within the embryonic system. Recently, a number of studies have begun to elucidate the effects of hemodynamic forces acting upon and within cells as the cardiovascular system begins to develop. Changes in flow are picked up by mechanosensors in endocardial cells exposed to wall shear stress (the tangential force exerted by blood flow) and by myocardial and mesenchymal cells exposed to cyclic strain (deformation). Mechanosensors stimulate a variety of mechanotransduction pathways which elicit functional cellular responses in order to coordinate the structural development of the heart and cardiovascular system. The looping stages of heart development are critical to normal cardiac morphogenesis and have previously been shown to be extremely sensitive to experimental perturbations in flow, with transient exposure to altered flow dynamics causing severe late stage cardiac defects in animal models. This paper seeks to expand on past research and to begin establishing a detailed baseline for normal hemodynamic conditions in the chick outflow tract during these critical looping stages. Specifically, we will use 4-D (3-D over time) optical coherence tomography to create in vivo geometries for computational fluid dynamics simulations of the cardiac cycle, enabling us to study in great detail 4-D velocity patterns and heterogeneous wall shear stress distributions on the outflow tract endocardium. This information will be useful in determining the normal variation of hemodynamic patterns as well as in mapping hemodynamics to developmental processes such as morphological changes and signaling events during and after the looping stages examined here.
Collapse
Affiliation(s)
- Katherine Courchaine
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA.
| | - MacKenzie J Gray
- School of Public Health, Portland State University, Portland, OR 97035, USA.
| | | | - Kent Thornburg
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
11
|
Battista NA, Lane AN, Liu J, Miller LA. Fluid dynamics in heart development: effects of hematocrit and trabeculation. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2018; 35:493-516. [PMID: 29161412 PMCID: PMC7970531 DOI: 10.1093/imammb/dqx018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 10/26/2017] [Indexed: 12/20/2022]
Abstract
Recent in vivo experiments have illustrated the importance of understanding the haemodynamics of heart morphogenesis. In particular, ventricular trabeculation is governed by a delicate interaction between haemodynamic forces, myocardial activity, and morphogen gradients, all of which are coupled to genetic regulatory networks. The underlying haemodynamics at the stage of development in which the trabeculae form is particularly complex, given the balance between inertial and viscous forces. Small perturbations in the geometry, scale, and steadiness of the flow can lead to changes in the overall flow structures and chemical morphogen gradients, including the local direction of flow, the transport of morphogens, and the formation of vortices. The immersed boundary method was used to solve the two-dimensional fluid-structure interaction problem of fluid flow moving through a two chambered heart of a zebrafish (Danio rerio), with a trabeculated ventricle, at 96 hours post fertilization (hpf). Trabeculae heights and hematocrit were varied, and simulations were conducted for two orders of magnitude of Womersley number, extending beyond the biologically relevant range (0.2-12.0). Both intracardial and intertrabecular vortices formed in the ventricle for biologically relevant parameter values. The bifurcation from smooth streaming flow to vortical flow depends upon the trabeculae geometry, hematocrit, and Womersley number, $Wo$. This work shows the importance of hematocrit and geometry in determining the bulk flow patterns in the heart at this stage of development.
Collapse
Affiliation(s)
- Nicholas A. Battista
- Department of Mathematics and Statistics, The College of New Jersey, Ewing, NJ 08628, USA, Department of Mathematics, CB 3250, University of North Carolina, Chapel Hill, NC 27599, USA and Department of Biology, 3280, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Andrea N. Lane
- Department of Mathematics, CB 3250, University of North Carolina, Chapel Hill, NC 27599, USA and Department of Biostatistics, UNC Gillings School of Global Public Health, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- McAllister Heart Institute, UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA and Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Laura A. Miller
- Department of Mathematics, CB 3250, University of North Carolina, Chapel Hill, NC 27599, USA and Department of Biology, 3280, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
12
|
Courchaine K, Rugonyi S. Quantifying blood flow dynamics during cardiac development: demystifying computational methods. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170330. [PMID: 30249779 PMCID: PMC6158206 DOI: 10.1098/rstb.2017.0330] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2018] [Indexed: 12/27/2022] Open
Abstract
Blood flow conditions (haemodynamics) are crucial for proper cardiovascular development. Indeed, blood flow induces biomechanical adaptations and mechanotransduction signalling that influence cardiovascular growth and development during embryonic stages and beyond. Altered blood flow conditions are a hallmark of congenital heart disease, and disrupted blood flow at early embryonic stages is known to lead to congenital heart malformations. In spite of this, many of the mechanisms by which blood flow mechanics affect cardiovascular development remain unknown. This is due in part to the challenges involved in quantifying blood flow dynamics and the forces exerted by blood flow on developing cardiovascular tissues. Recent technologies, however, have allowed precise measurement of blood flow parameters and cardiovascular geometry even at early embryonic stages. Combined with computational fluid dynamics techniques, it is possible to quantify haemodynamic parameters and their changes over development, which is a crucial step in the quest for understanding the role of mechanical cues on heart and vascular formation. This study summarizes some fundamental aspects of modelling blood flow dynamics, with a focus on three-dimensional modelling techniques, and discusses relevant studies that are revealing the details of blood flow and their influence on cardiovascular development.This article is part of the Theo Murphy meeting issue 'Mechanics of development'.
Collapse
Affiliation(s)
- Katherine Courchaine
- Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
13
|
Courchaine K, Rykiel G, Rugonyi S. Influence of blood flow on cardiac development. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:95-110. [PMID: 29772208 PMCID: PMC6109420 DOI: 10.1016/j.pbiomolbio.2018.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/06/2018] [Accepted: 05/08/2018] [Indexed: 12/11/2022]
Abstract
The role of hemodynamics in cardiovascular development is not well understood. Indeed, it would be remarkable if it were, given the dauntingly complex array of intricately synchronized genetic, molecular, mechanical, and environmental factors at play. However, with congenital heart defects affecting around 1 in 100 human births, and numerous studies pointing to hemodynamics as a factor in cardiovascular morphogenesis, this is not an area in which we can afford to remain in the dark. This review seeks to present the case for the importance of research into the biomechanics of the developing cardiovascular system. This is accomplished by i) illustrating the basics of some of the highly complex processes involved in heart development, and discussing the known influence of hemodynamics on those processes; ii) demonstrating how altered hemodynamic environments have the potential to bring about morphological anomalies, citing studies in multiple animal models with a variety of perturbation methods; iii) providing examples of widely used technological innovations which allow for accurate measurement of hemodynamic parameters in embryos; iv) detailing the results of studies in avian embryos which point to exciting correlations between various hemodynamic manipulations in early development and phenotypic defect incidence in mature hearts; and finally, v) stressing the relevance of uncovering specific biomechanical pathways involved in cardiovascular formation and remodeling under adverse conditions, to the potential treatment of human patients. The time is ripe to unravel the contributions of hemodynamics to cardiac development, and to recognize their frequently neglected role in the occurrence of heart malformation phenotypes.
Collapse
Affiliation(s)
- Katherine Courchaine
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA
| | - Graham Rykiel
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA
| | - Sandra Rugonyi
- Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland OR, USA.
| |
Collapse
|
14
|
Rennie MY, Stovall S, Carson JP, Danilchik M, Thornburg KL, Rugonyi S. Hemodynamics Modify Collagen Deposition in the Early Embryonic Chicken Heart Outflow Tract. J Cardiovasc Dev Dis 2017; 4:jcdd4040024. [PMID: 29367553 PMCID: PMC5753125 DOI: 10.3390/jcdd4040024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
Blood flow is critical for normal cardiac development. Hemodynamic stimuli outside of normal ranges can lead to overt cardiac defects, but how early heart tissue remodels in response to altered hemodynamics is poorly understood. This study investigated changes in tissue collagen in response to hemodynamic overload in the chicken embryonic heart outflow tract (OFT) during tubular heart stages (HH18 to HH24, ~24 h). A suture tied around the OFT at HH18 was tightened to constrict the lumen for ~24 h (constriction range at HH24: 15–60%). Expression of fibril collagens I and III and fibril organizing collagens VI and XIV were quantified at the gene and protein levels via qPCR and quantitative immunofluorescence. Collagen I was slightly elevated upstream of the band and in the cushions in banded versus control OFTs. Changes in collagen III were not observed. Collagen VI deposition was elevated downstream of the band, but not overall. Collagen XIV deposition increased throughout the OFT, and strongly correlated to lumen constriction. Interestingly, organization of collagen I fibrils was observed for the tighter banded embryos in regions that also showed increase in collagen XIV deposition, suggesting a potentially key role for collagens I and XIV in the structural adaptation of embryonic heart tissue to hemodynamic overload.
Collapse
Affiliation(s)
- Monique Y Rennie
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Stephanie Stovall
- Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| | - James P Carson
- Texas Advanced Computing Center, University of Texas, Austin, TX 78758, USA.
| | - Michael Danilchik
- Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Kent L Thornburg
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Sandra Rugonyi
- Knight Cardiovascular Institute, Center for Developmental Health, Oregon Health & Science University, Portland, OR 97239, USA.
- Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
15
|
Menon V, Eberth JF, Junor L, Potts AJ, Belhaj M, Dipette DJ, Jenkins MW, Potts JD. Removing vessel constriction on the embryonic heart results in changes in valve gene expression, morphology, and hemodynamics. Dev Dyn 2017; 247:531-541. [PMID: 28884516 DOI: 10.1002/dvdy.24588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The formation of healthy heart valves throughout embryonic development is dependent on both genetic and epigenetic factors. Hemodynamic stimuli are important epigenetic regulators of valvulogenesis, but the resultant molecular pathways that control valve development are poorly understood. Here we describe how the heart and valves recover from the removal of a partial constriction (banding) of the OFT/ventricle junction (OVJ) that temporarily alters blood flow velocity through the embryonic chicken heart (HH stage 16/17). Recovery is described in terms of 24- and 48-hr gene expression, morphology, and OVJ hemodynamics. RESULTS Collectively, these studies show that after 24 hr of recovery, important epithelial-mesenchymal transformation (EMT) genes TGFßRIII and Cadherin 11 (CDH11) transcript levels normalize return to control levels, in contrast to Periostin and TGFß,3 which remain altered. In addition, after 48 hr of recovery, TGFß3 and CDH11 transcript levels remain normalized, whereas TGFßRIII and Periostin are down-regulated. Analyses of OFT cushion volumes in the hearts show significant changes, as does the ratio of cushion to cell volume at 24 hr post band removal (PBR). Morphologically, the hearts show visible alteration following band removal when compared to their control age-matched counterparts. CONCLUSIONS Although some aspects of the genetic/cellular profiles affected by altered hemodynamics seem to be reversed, not all gene expression and cardiac growth normalize following 48 hr of band removal. Developmental Dynamics 247:531-541, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vinal Menon
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - John F Eberth
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina.,Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
| | - Lorain Junor
- Instrumentation Resource Facility, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Alexander J Potts
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Marwa Belhaj
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Donald J Dipette
- Department of Internal Medicine, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.,Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio
| | - Jay D Potts
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina.,Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
16
|
Ho S, Tan GXY, Foo TJ, Phan-Thien N, Yap CH. Organ Dynamics and Fluid Dynamics of the HH25 Chick Embryonic Cardiac Ventricle as Revealed by a Novel 4D High-Frequency Ultrasound Imaging Technique and Computational Flow Simulations. Ann Biomed Eng 2017; 45:2309-2323. [PMID: 28744840 DOI: 10.1007/s10439-017-1882-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/05/2017] [Indexed: 01/31/2023]
Abstract
Past literature has provided evidence that a normal mechanical force environment of blood flow may guide normal development while an abnormal environment can lead to congenital malformations, thus warranting further studies on embryonic cardiovascular flow dynamics. In the current study, we developed a non-invasive 4D high-frequency ultrasound technique, and use it to analyze cardiovascular organ dynamics and flow dynamics. Three chick embryos at stage HH25 were scanned with high frequency ultrasound in cine-B-mode at multiple planes spaced at 0.05 mm. 4D images of the heart and nearby arteries were generated via temporal and spatial correlation coupled with quadratic mean ensemble averaging. Dynamic mesh CFD was performed to understand the flow dynamics in the ventricle of the 2 hearts. Our imaging technique has sufficiently high resolution to enable organ dynamics quantification and CFD. Fine structures such as the aortic arches and details such as the cyclic distension of the carotid arteries were captured. The outflow tract completely collapsed during ventricular diastole, possible serving the function of a valve to prevent regurgitation. CFD showed that ventricular wall shear stress (WSS) were in the range of 0.1-0.5 Pa, and that the left side of the common ventricle experienced lower WSS than the right side. The pressure gradient from the inlet to the outlet of the ventricle was positive over most of the cardiac cycle, and minimal regurgitation flow was observed, despite the absence of heart valves. We developed a new image-based CFD method to elucidate cardiac organ dynamics and flow dynamics of embryonic hearts. The embryonic heart appeared to be optimized to generate net forward flow despite the absence of valves, and the WSS environment appeared to be side-specific.
Collapse
Affiliation(s)
- Sheldon Ho
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Germaine Xin Yi Tan
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Toon Jin Foo
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Nhan Phan-Thien
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
17
|
Ford SM, McPheeters MT, Wang YT, Ma P, Gu S, Strainic J, Snyder C, Rollins AM, Watanabe M, Jenkins MW. Increased regurgitant flow causes endocardial cushion defects in an avian embryonic model of congenital heart disease. CONGENIT HEART DIS 2017; 12:322-331. [PMID: 28211263 PMCID: PMC5467887 DOI: 10.1111/chd.12443] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND The relationship between changes in endocardial cushion and resultant congenital heart diseases (CHD) has yet to be established. It has been shown that increased regurgitant flow early in embryonic heart development leads to endocardial cushion defects, but it remains unclear how abnormal endocardial cushions during the looping stages might affect the fully septated heart. The goal of this study was to reproducibly alter blood flow in vivo and then quantify the resultant effects on morphology of endocardial cushions in the looping heart and on CHDs in the septated heart. METHODS Optical pacing was applied to create regurgitant flow in embryonic hearts, and optical coherence tomography (OCT) was utilized to quantify regurgitation and morphology. Embryonic quail hearts were optically paced at 3 Hz (180 bpm, well above intrinsic rate 60-110 bpm) at stage 13 of development (3-4 weeks human) for 5 min. Pacing fatigued the heart and led to at least 1 h of increased regurgitant flow. Resultant morphological changes were quantified with OCT imaging at stage 19 (cardiac looping-4-5 weeks human) or stage 35 (4 chambered heart-8 weeks human). RESULTS All paced embryos imaged at stage 19 displayed structural changes in cardiac cushions. The amount of regurgitant flow immediately after pacing was inversely correlated with cardiac cushion size 24-h post pacing (P value < .01). The embryos with the most regurgitant flow and smallest cushions after pacing had a decreased survival rate at 8 days (P < .05), indicating that those most severe endocardial cushion defects were lethal. Of the embryos that survived to stage 35, 17/18 exhibited CHDs including valve defects, ventricular septal defects, hypoplastic ventricles, and common AV canal. CONCLUSION The data illustrate a strong inverse relationship in which regurgitant flow precedes abnormal and smaller cardiac cushions, resulting in the development of CHDs.
Collapse
Affiliation(s)
- Stephanie M Ford
- Rainbow Babies and Children's Hospital Division of Neonatology, University Hospitals, Cleveland, Ohio, USA
| | - Matthew T McPheeters
- Department of Pediatric Cardiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Yves T Wang
- Case Western Reserve University Department of Biomedical Engineering, Cleveland, Ohio, USA
| | - Pei Ma
- Case Western Reserve University Department of Biomedical Engineering, Cleveland, Ohio, USA
| | - Shi Gu
- Case Western Reserve University Department of Biomedical Engineering, Cleveland, Ohio, USA
| | - James Strainic
- Rainbow Babies and Children's Hospital Division of Pediatric Cardiology, University Hospitals, Cleveland, Ohio, USA
| | - Christopher Snyder
- Rainbow Babies and Children's Hospital Division of Pediatric Cardiology, University Hospitals, Cleveland, Ohio, USA
| | - Andrew M Rollins
- Case Western Reserve University Department of Biomedical Engineering, Cleveland, Ohio, USA
| | - Michiko Watanabe
- Department of Pediatric Cardiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Michael W Jenkins
- Department of Pediatric Cardiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The study of cardiac development is critical to inform management strategies for congenital and acquired heart disease. This review serves to highlight some of the advances in this field over the past year. RECENT FINDINGS Three main areas of study are included that have been particularly innovative and progressive. These include more precise gene targeting in animal models of disease and in moving from animal models to human disease, more precise in-vitro models including three-dimensional structuring and inclusion of hemodynamic components, and expanding the concepts of genetic regulation of heart development and disease. SUMMARY Targeted genetics in animal models are able to make use of tissue and time-specific promotors that drive gene expression or knockout with high specificity. In-vitro models can recreate flow patterns in blood vessels and across cardiac valves. Noncoding RNAs, once thought to be of no consequence to gene transcription and translation, prove to be key regulators of genetic function in health and disease.
Collapse
|
19
|
Midgett M, Chivukula VK, Dorn C, Wallace S, Rugonyi S. Blood flow through the embryonic heart outflow tract during cardiac looping in HH13-HH18 chicken embryos. J R Soc Interface 2016; 12:20150652. [PMID: 26468069 DOI: 10.1098/rsif.2015.0652] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Blood flow is inherently linked to embryonic cardiac development, as haemodynamic forces exerted by flow stimulate mechanotransduction mechanisms that modulate cardiac growth and remodelling. This study evaluated blood flow in the embryonic heart outflow tract (OFT) during normal development at each stage between HH13 and HH18 in chicken embryos, in order to characterize changes in haemodynamic conditions during critical cardiac looping transformations. Two-dimensional optical coherence tomography was used to simultaneously acquire both structural and Doppler flow images, in order to extract blood flow velocity and structural information and estimate haemodynamic measures. From HH13 to HH18, peak blood flow rate increased by 2.4-fold and stroke volume increased by 2.1-fold. Wall shear rate (WSR) and lumen diameter data suggest that changes in blood flow during HH13-HH18 may induce a shear-mediated vasodilation response in the OFT. Embryo-specific four-dimensional computational fluid dynamics modelling at HH13 and HH18 complemented experimental observations and indicated heterogeneous WSR distributions over the OFT. Characterizing changes in haemodynamics during cardiac looping will help us better understand the way normal blood flow impacts proper cardiac development.
Collapse
Affiliation(s)
- Madeline Midgett
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Venkat Keshav Chivukula
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Calder Dorn
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Samantha Wallace
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
20
|
Chivukula VK, Goenezen S, Liu A, Rugonyi S. Effect of Outflow Tract Banding on Embryonic Cardiac Hemodynamics. J Cardiovasc Dev Dis 2015; 3. [PMID: 27088080 PMCID: PMC4827265 DOI: 10.3390/jcdd3010001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We analyzed heart wall motion and blood flow dynamics in chicken embryos using in vivo optical coherence tomography (OCT) imaging and computational fluid dynamics (CFD) embryo-specific modeling. We focused on the heart outflow tract (OFT) region of day 3 embryos, and compared normal (control) conditions to conditions after performing an OFT banding intervention, which alters hemodynamics in the embryonic heart and vasculature. We found that hemodynamics and cardiac wall motion in the OFT are affected by banding in ways that might not be intuitive a priori. In addition to the expected increase in ventricular blood pressure, and increase blood flow velocity and, thus, wall shear stress (WSS) at the band site, the characteristic peristaltic-like motion of the OFT was altered, further affecting flow and WSS. Myocardial contractility, however, was affected only close to the band site due to the physical restriction on wall motion imposed by the band. WSS were heterogeneously distributed in both normal and banded OFTs. Our results show how banding affects cardiac mechanics and can lead, in the future, to a better understanding of mechanisms by which altered blood flow conditions affect cardiac development leading to congenital heart disease.
Collapse
Affiliation(s)
- Venkat Keshav Chivukula
- Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195, USA;
| | - Sevan Goenezen
- Department of Mechanical Engineering, Texas A&M University, College Station, TX 77840, USA;
| | - Aiping Liu
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, ECB 2145, Madison, WI 53706, USA;
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Ave. M/C CH13B, Portland, OR 97239, USA;
- Correspondence: ; Tel.: +1-503-419-9310; Fax: +1-503-418-9311
| |
Collapse
|