1
|
Niccum M, Avitabile CM, Albizem D, Meluskey H, Penney C, Hanna BD, O’Byrne ML, Bshouty Z, Frank DB. Pulmonary Vascular Compromise is Associated with Survival in Pediatric Pulmonary Hypertension: A New Computational Model. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.25.25324654. [PMID: 40196279 PMCID: PMC11974946 DOI: 10.1101/2025.03.25.25324654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background Pediatric pulmonary arterial hypertension (PAH) has a long asymptomatic period with progressive vascular loss. A recent computational model of simulated PAH in humans has demonstrated that up to 70% of the pulmonary vasculature is lost before clinical PAH criteria are met. We sought to evaluate this model in pediatric subjects with PAH and evaluate whether estimated pulmonary vascular compromise (PVC) can predict survival and other clinical outcomes. Methods and Results Retrospective and prospective cohort data were collected for all subjects with PAH between 1999 and 2022 treated at our center. Cardiac catheterization and clinical data were compared with PVC estimated by the computational model. Transplant-free survival was associated with lower PVC (72% vs 88%, p<0.001). Freedom from transplant/death was also associated with a decrease in PVC over time with no significant change in PVC in subjects who died or underwent transplant. By Kaplan-Meier analysis, 10-year survival was 54% (IQR 35%, 81%) when PVC was more than 80%, compared with 100% survival (IQR 100%, 100%) when PVC was less than 80% (p<0.001). By Cox proportional hazard regression, PVC was associated with mortality (HR 1.1, p=0.008). Lower PVC was associated with better percent predicted 6-minute walk distance (-0.25, 95% CI [-0.35, -0.14], p<0.001), lower log brain natriuretic peptide (0.12, 95% CI [0.07, 0.18], p<0.001), and lower estimated 1-year mortality (0.01, 95% CI [0.01, 0.02], p<0.001). Conclusions Estimated PVC predicts transplant-free survival and other clinical outcomes in pediatric PAH and provides an adjunctive tool to potentially capture pulmonary vascular loss early in disease.
Collapse
Affiliation(s)
- Maria Niccum
- Department of Pediatrics, Division of Cardiology, Perelman School of Medicine at the University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Catherine M. Avitabile
- Department of Pediatrics, Division of Cardiology, Perelman School of Medicine at the University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Dana Albizem
- Department of Pediatrics, Division of Cardiology, Perelman School of Medicine at the University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Heather Meluskey
- Department of Pediatrics, Division of Cardiology, Perelman School of Medicine at the University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Christopher Penney
- Division of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Brian D. Hanna
- Department of Pediatrics, Division of Cardiology, Perelman School of Medicine at the University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | | | - Zoheir Bshouty
- University of Manitoba, Sections of Respiratory and Critical Care Medicine, RS-317, Respiratory Hospital, 810 Sherbrooke Street, Winnipeg, Manitoba, Canada R3A 1R8
| | - David B. Frank
- Department of Pediatrics, Division of Cardiology, Perelman School of Medicine at the University of Pennsylvania, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
2
|
Loomba RS, Savorgnan F, Acosta S, Elhoff JJ, Farias JS, Villarreal EG, Flores S. Clinical Interventions and Hemodynamic Monitoring in the Setting of Left Ventricular Systolic Heart Failure in Children: Insights From a Physiologic Simulator. Am J Ther 2024; 31:e531-e540. [PMID: 39292830 DOI: 10.1097/mjt.0000000000001711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
BACKGROUND In pediatric critical care, vasoactive/inotropic support is widely used in patients with heart failure, but it remains controversial because the influence of multiple medications and the interplay between their inotropic and vasoactive effects on a given patient are hard to predict. Robust evidence supporting their use and quantifying their effects in this group of patients is scarce. STUDY QUESTION The aim of this study was to characterize the effect of vasoactive medications on various cardiovascular parameters in pediatric patient with decreased ejection fraction. STUDY DESIGN Clinical-data based physiologic simulator study. MEASURE AND OUTCOMES We used a physics-based computer simulator for quantifying the response of cardiovascular parameters to the administration of various types of vasoactive/inotropic medications in pediatric patients with decreased ejection fraction. The simulator allowed us to study the impact of increasing medication dosage and the simultaneous administration of some vasoactive agents. Correlation and linear regression analyses yielded the quantified effects on the vasoactive/inotropic support. RESULTS Cardiac output and systemic venous saturation significantly increased with the administration of dobutamine and milrinone in isolation, and combination of milrinone with dobutamine, dopamine, or epinephrine. Both parameters decreased with the administration of epinephrine and norepinephrine in isolation. No significant change in these hemodynamic parameters was observed with the administration of dopamine in isolation. CONCLUSIONS Milrinone and dobutamine were the only vasoactive medications that, when used in isolation, improved systemic oxygen delivery. Milrinone in combination with dobutamine, dopamine, or epinephrine also increased systemic oxygen delivery. The induced increment on afterload can negatively affect systemic oxygen delivery.
Collapse
Affiliation(s)
- Rohit S Loomba
- Division of Cardiology, Advocate Children's Hospital, Oak Lawn, IL
- Department of Pediatrics, Chicago Medical School/Rosalind Franklin University of Medicine and Science, North Chicago, IL
| | - Fabio Savorgnan
- Section of Critical Care Medicine and Cardiology, Texas Children's Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX; and
| | - Sebastian Acosta
- Section of Critical Care Medicine and Cardiology, Texas Children's Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX; and
| | - Justin J Elhoff
- Section of Critical Care Medicine and Cardiology, Texas Children's Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX; and
| | - Juan S Farias
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Enrique G Villarreal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo Leon, Mexico
| | - Saul Flores
- Section of Critical Care Medicine and Cardiology, Texas Children's Hospital, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX; and
| |
Collapse
|
3
|
Szafron JM, Yang W, Feinstein JA, Rabinovitch M, Marsden AL. A computational growth and remodeling framework for adaptive and maladaptive pulmonary arterial hemodynamics. Biomech Model Mechanobiol 2023; 22:1935-1951. [PMID: 37658985 PMCID: PMC10929588 DOI: 10.1007/s10237-023-01744-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/05/2023] [Indexed: 09/05/2023]
Abstract
Hemodynamic loading is known to contribute to the development and progression of pulmonary arterial hypertension (PAH). This loading drives changes in mechanobiological stimuli that affect cellular phenotypes and lead to pulmonary vascular remodeling. Computational models have been used to simulate mechanobiological metrics of interest, such as wall shear stress, at single time points for PAH patients. However, there is a need for new approaches that simulate disease evolution to allow for prediction of long-term outcomes. In this work, we develop a framework that models the pulmonary arterial tree through adaptive and maladaptive responses to mechanical and biological perturbations. We coupled a constrained mixture theory-based growth and remodeling framework for the vessel wall with a morphometric tree representation of the pulmonary arterial vasculature. We show that non-uniform mechanical behavior is important to establish the homeostatic state of the pulmonary arterial tree, and that hemodynamic feedback is essential for simulating disease time courses. We also employed a series of maladaptive constitutive models, such as smooth muscle hyperproliferation and stiffening, to identify critical contributors to development of PAH phenotypes. Together, these simulations demonstrate an important step toward predicting changes in metrics of clinical interest for PAH patients and simulating potential treatment approaches.
Collapse
Affiliation(s)
- Jason M Szafron
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
- Cardiovascular Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Weiguang Yang
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
| | - Jeffrey A Feinstein
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
- Cardiovascular Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Marlene Rabinovitch
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA
- Cardiovascular Institute, Stanford University, Palo Alto, CA, 94305, USA
| | - Alison L Marsden
- Department of Pediatrics (Cardiology), Stanford University, Stanford, CA, 94305, USA.
- Cardiovascular Institute, Stanford University, Palo Alto, CA, 94305, USA.
| |
Collapse
|
4
|
Han SW, Puelz C, Rusin CG, Penny DJ, Coleman R, Peskin CS. Computer simulation of surgical interventions for the treatment of refractory pulmonary hypertension. MATHEMATICAL MEDICINE AND BIOLOGY : A JOURNAL OF THE IMA 2023; 40:1-23. [PMID: 35984836 DOI: 10.1093/imammb/dqac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022]
Abstract
This paper describes computer models of three interventions used for treating refractory pulmonary hypertension (RPH). These procedures create either an atrial septal defect, a ventricular septal defect or, in the case of a Potts shunt, a patent ductus arteriosus. The aim in all three cases is to generate a right-to-left shunt, allowing for either pressure or volume unloading of the right side of the heart in the setting of right ventricular failure, while maintaining cardiac output. These shunts are created, however, at the expense of introducing de-oxygenated blood into the systemic circulation, thereby lowering the systemic arterial oxygen saturation. The models developed in this paper are based on compartmental descriptions of human hemodynamics and oxygen transport. An important parameter included in our models is the cross-sectional area of the surgically created defect. Numerical simulations are performed to compare different interventions and various shunt sizes and to assess their impact on hemodynamic variables and oxygen saturations. We also create a model for exercise and use it to study exercise tolerance in simulated pre-intervention and post-intervention RPH patients.
Collapse
Affiliation(s)
- Seong Woo Han
- Courant Institute of Mathematical Sciences, New York University
- Department of Computer and Information Science, University of Pennsylvania
| | - Charles Puelz
- Courant Institute of Mathematical Sciences, New York University
- Department of Pediatrics, Division of Cardiology, Baylor College of Medicine and Texas Children's Hospital
| | - Craig G Rusin
- Department of Pediatrics, Division of Cardiology, Baylor College of Medicine and Texas Children's Hospital
| | - Daniel J Penny
- Department of Pediatrics, Division of Cardiology, Baylor College of Medicine and Texas Children's Hospital
| | - Ryan Coleman
- Department of Pediatrics, Division of Critical Care Medicine, Baylor College of Medicine and Texas Children's Hospital
| | | |
Collapse
|
5
|
Ebrahimi BS, Tawhai MH, Kumar H, Burrowes KS, Hoffman EA, Wilsher ML, Milne D, Clark AR. A computational model of contributors to pulmonary hypertensive disease: impacts of whole lung and focal disease distributions. Pulm Circ 2021; 11:20458940211056527. [PMID: 34820115 PMCID: PMC8607494 DOI: 10.1177/20458940211056527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/01/2021] [Indexed: 11/29/2022] Open
Abstract
Pulmonary hypertension has multiple etiologies and so can be difficult to diagnose, prognose, and treat. Diagnosis is typically made via invasive hemodynamic measurements in the main pulmonary artery and is based on observed elevation of mean pulmonary artery pressure. This static mean pressure enables diagnosis, but does not easily allow assessment of the severity of pulmonary hypertension, nor the etiology of the disease, which may impact treatment. Assessment of the dynamic properties of pressure and flow data obtained from catheterization potentially allows more meaningful assessment of the strain on the right heart and may help to distinguish between disease phenotypes. However, mechanistic understanding of how the distribution of disease in the lung leading to pulmonary hypertension impacts the dynamics of blood flow in the main pulmonary artery and/or the pulmonary capillaries is lacking. We present a computational model of the pulmonary vasculature, parameterized to characteristic features of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension to help understand how the two conditions differ in terms of pulmonary vascular response to disease. Our model incorporates key features known to contribute to pulmonary vascular function in health and disease, including anatomical structure and multiple contributions from gravity. The model suggests that dynamic measurements obtained from catheterization potentially distinguish between distal and proximal vasculopathy typical of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension. However, the model suggests a non-linear relationship between these data and vascular structural changes typical of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension which may impede analysis of these metrics to distinguish between cohorts.
Collapse
Affiliation(s)
| | - Merryn H. Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Haribalan Kumar
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Kelly S. Burrowes
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa, Iowa City, IA,
USA
| | - Margaret L. Wilsher
- Respiratory Services, Auckland City Hospital, Auckland, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland,
Auckland, New Zealand
| | - David Milne
- Department of Radiology, Auckland City Hospital, Auckland, New Zealand
| | - Alys R. Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Dong ML, Lan IS, Yang W, Rabinovitch M, Feinstein JA, Marsden AL. Computational simulation-derived hemodynamic and biomechanical properties of the pulmonary arterial tree early in the course of ventricular septal defects. Biomech Model Mechanobiol 2021; 20:2471-2489. [PMID: 34585299 DOI: 10.1007/s10237-021-01519-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 09/12/2021] [Indexed: 01/15/2023]
Abstract
Untreated ventricular septal defects (VSDs) can lead to pulmonary arterial hypertension (PAH) characterized by elevated pulmonary artery (PA) pressure and vascular remodeling, known as PAH associated with congenital heart disease (PAH-CHD). Though previous studies have investigated hemodynamic effects on vascular mechanobiology in late-stage PAH, hemodynamics leading to PAH-CHD initiation have not been fully quantified. We hypothesize that abnormal hemodynamics from left-to-right shunting in early stage VSDs affects PA biomechanical properties leading to PAH initiation. To model PA hemodynamics in healthy, small, moderate, and large VSD conditions prior to the onset of vascular remodeling, computational fluid dynamics simulations were performed using a 3D finite element model of a healthy 1-year-old's proximal PAs and a body-surface-area-scaled 0D distal PA tree. VSD conditions were modeled with increased pulmonary blood flow to represent degrees of left-to-right shunting. In the proximal PAs, pressure, flow, strain, and wall shear stress (WSS) increased with increasing VSD size; oscillatory shear index decreased with increasing VSD size in the larger PA vessels. WSS was higher in smaller diameter vessels and increased with VSD size, with the large VSD condition exhibiting WSS >100 dyn/cm[Formula: see text], well above values typically used to study dysfunctional mechanotransduction pathways in PAH. This study is the first to estimate hemodynamic and biomechanical metrics in the entire pediatric PA tree with VSD severity at the stage leading to PAH initiation and has implications for future studies assessing effects of abnormal mechanical stimuli on endothelial cells and vascular wall mechanics that occur during PAH-CHD initiation and progression.
Collapse
Affiliation(s)
- Melody L Dong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Ingrid S Lan
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Weiguang Yang
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Jeffrey A Feinstein
- Department of Pediatrics and Bioengineering, Stanford University, Stanford, CA, USA
| | - Alison L Marsden
- Department of Pediatrics and Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Tang H, Dai Z, Wang M, Guo B, Wang S, Wen J, Li T. Lumped-Parameter Circuit Platform for Simulating Typical Cases of Pulmonary Hypertensions from Point of Hemodynamics. J Cardiovasc Transl Res 2020; 13:826-852. [PMID: 31933143 PMCID: PMC7541384 DOI: 10.1007/s12265-020-09953-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/02/2020] [Indexed: 12/14/2022]
Abstract
Pulmonary hypertension (PH) presents unusual hemodynamic states characterized by abnormal high blood pressure in pulmonary artery. The objective of this study is to simulate how the hemodynamics develops in typical PH cases without treatment. A lumped-parameter circuit platform of human circulation system is set up to simulate hemodynamic abnormalities of PH in different etiologies and pathogenesis. Four typical cases are considered, which are distal pulmonary artery stenosis, left ventricular diastolic dysfunction, ventricular septal defect, and mitral stenosis. The authors propose regulation laws for chambers and vessels to adapt the abnormal hemodynamic conditions for each PH case. The occurrence and development of each PH case are simulated over time using the lumped-parameter circuit platform. The blood pressure, blood flow, pressure-volume relations for chambers and vessels are numerically calculated for each case of PH progression. The model results could be a quite helpful to understand the hemodynamic mechanism of typical PHs. Graphical Abstract.
Collapse
Affiliation(s)
- Hong Tang
- School of Biomedical EngineeringDalian University of Technology, Dalian City, China.
| | - Ziyin Dai
- School of Biomedical EngineeringDalian University of Technology, Dalian City, China
| | - Miao Wang
- School of Biomedical EngineeringDalian University of Technology, Dalian City, China
| | - Binbin Guo
- School of Biomedical EngineeringDalian University of Technology, Dalian City, China
| | - Shunyu Wang
- The Second Hospital of Dalian Medical University, Dalian City, China
| | - Jiabin Wen
- The Second Hospital of Dalian Medical University, Dalian City, China
| | - Ting Li
- School of Information and Communication EngineeringDalian Minzu University, Dalian City, China
| |
Collapse
|
8
|
Liu W, Wang Z. Current Understanding of the Biomechanics of Ventricular Tissues in Heart Failure. Bioengineering (Basel) 2019; 7:E2. [PMID: 31861916 PMCID: PMC7175293 DOI: 10.3390/bioengineering7010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Heart failure is the leading cause of death worldwide, and the most common cause of heart failure is ventricular dysfunction. It is well known that the ventricles are anisotropic and viscoelastic tissues and their mechanical properties change in diseased states. The tissue mechanical behavior is an important determinant of the function of ventricles. The aim of this paper is to review the current understanding of the biomechanics of ventricular tissues as well as the clinical significance. We present the common methods of the mechanical measurement of ventricles, the known ventricular mechanical properties including the viscoelasticity of the tissue, the existing computational models, and the clinical relevance of the ventricular mechanical properties. Lastly, we suggest some future research directions to elucidate the roles of the ventricular biomechanics in the ventricular dysfunction to inspire new therapies for heart failure patients.
Collapse
Affiliation(s)
- Wenqiang Liu
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
| | - Zhijie Wang
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
9
|
Finsberg H, Xi C, Zhao X, Tan JL, Genet M, Sundnes J, Lee LC, Zhong L, Wall ST. Computational quantification of patient-specific changes in ventricular dynamics associated with pulmonary hypertension. Am J Physiol Heart Circ Physiol 2019; 317:H1363-H1375. [PMID: 31674809 DOI: 10.1152/ajpheart.00094.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) causes an increase in the mechanical loading imposed on the right ventricle (RV) that results in progressive changes to its mechanics and function. Here, we quantify the mechanical changes associated with PAH by assimilating clinical data consisting of reconstructed three-dimensional geometry, pressure, and volume waveforms, as well as regional strains measured in patients with PAH (n = 12) and controls (n = 6) within a computational modeling framework of the ventricles. Modeling parameters reflecting regional passive stiffness and load-independent contractility as indexed by the tissue active tension were optimized so that simulation results matched the measurements. The optimized parameters were compared with clinical metrics to find usable indicators associated with the underlying mechanical changes. Peak contractility of the RV free wall (RVFW) γRVFW,max was found to be strongly correlated and had an inverse relationship with the RV and left ventricle (LV) end-diastolic volume ratio (i.e., RVEDV/LVEDV) (RVEDV/LVEDV)+ 0.44, R2 = 0.77). Correlation with RV ejection fraction (R2 = 0.50) and end-diastolic volume index (R2 = 0.40) were comparatively weaker. Patients with with RVEDV/LVEDV > 1.5 had 25% lower γRVFW,max (P < 0.05) than that of the control. On average, RVFW passive stiffness progressively increased with the degree of remodeling as indexed by RVEDV/LVEDV. These results suggest a mechanical basis of using RVEDV/LVEDV as a clinical index for delineating disease severity and estimating RVFW contractility in patients with PAH.NEW & NOTEWORTHY This article presents patient-specific data assimilation of a patient cohort and physical description of clinical observations.
Collapse
Affiliation(s)
- Henrik Finsberg
- Simula Research Laboratory, Oslo, Norway.,Center for Cardiological Innovation, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Ce Xi
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan
| | | | - Ju Le Tan
- National Heart Center Singapore, Singapore
| | - Martin Genet
- Mechanics Department and Solid Mechanics Laboratory, École Polytechnique/Le Centre national de la recherche scientifique/Paris-Saclay University, Palaiseau, France.,M3DISIM research team, Institut national de recherche en informatique et en automatique/Paris-Saclay University, Palaiseau, France
| | - Joakim Sundnes
- Simula Research Laboratory, Oslo, Norway.,Center for Cardiological Innovation, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Lik Chuan Lee
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan
| | - Liang Zhong
- National Heart Center Singapore, Singapore.,Duke-National University of Singapore Medical School, Singapore
| | - Samuel T Wall
- Simula Research Laboratory, Oslo, Norway.,Center for Cardiological Innovation, Oslo, Norway
| |
Collapse
|
10
|
Qureshi MU, Colebank MJ, Paun LM, Ellwein Fix L, Chesler N, Haider MA, Hill NA, Husmeier D, Olufsen MS. Hemodynamic assessment of pulmonary hypertension in mice: a model-based analysis of the disease mechanism. Biomech Model Mechanobiol 2018; 18:219-243. [DOI: 10.1007/s10237-018-1078-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022]
|
11
|
Puelz C, Acosta S, Rivière B, Penny DJ, Brady KM, Rusin CG. A computational study of the Fontan circulation with fenestration or hepatic vein exclusion. Comput Biol Med 2017; 89:405-418. [PMID: 28881280 DOI: 10.1016/j.compbiomed.2017.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/02/2017] [Accepted: 08/22/2017] [Indexed: 12/14/2022]
Abstract
Fontan patients may undergo additional surgical modifications to mitigate complications like protein-losing enteropathy, liver cirrhosis, and other issues in their splanchnic circulation. Recent case reports show promise for several types of modifications, but the subtle effects of these surgeries on the circulation are not well understood. In this paper, we employ mathematical modeling of blood flow to systematically quantify the impact of these surgical changes on extracardiac Fontan hemodynamics. We investigate two modifications: (1) the fenestrated Fontan and (2) the Fontan with hepatic vein exclusion. Closed-loop hemodynamic models are used, which consist of one-dimensional networks for the major vessels and zero-dimensional models for the heart and organ beds. Numerical results suggest the hepatic vein exclusion has the greatest overall impact on the hemodynamics, followed by the largest sized fenestration. In particular, the hepatic vein exclusion drastically lowers portal venous pressure while the fenestration decreases pulmonary artery pressure. Both modifications increase flow to the intestines, a finding consistent with their utility in clinical practice for combating complications in the splanchnic circulation.
Collapse
Affiliation(s)
- Charles Puelz
- Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA.
| | - Sebastián Acosta
- Department of Pediatrics-Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Béatrice Rivière
- Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA
| | - Daniel J Penny
- Department of Pediatrics-Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Ken M Brady
- Department of Anesthesiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Craig G Rusin
- Department of Pediatrics-Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|