1
|
Song X, Wang J, Sun K, Lee C. Analysis of Umbilical Artery Hemodynamics in Development of Intrauterine Growth Restriction Using Computational Fluid Dynamics with Doppler Ultrasound. Bioengineering (Basel) 2024; 11:1169. [PMID: 39593828 PMCID: PMC11591627 DOI: 10.3390/bioengineering11111169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Intrauterine growth restriction (IUGR), the failure of the fetus to achieve his/her growth potential, is a common and complex problem in pregnancy. Clinically, IUGR is usually monitored using Doppler ultrasound of the umbilical artery (UA). The Doppler waveform is generally divided into three typical patterns in IUGR development, from normal blood flow (Normal), to the loss of end diastolic blood flow (LDBF), and even to the reversal of end diastolic blood flow (RDBF). Unfortunately, Doppler ultrasound hardly provides complete UA hemodynamics in detail, while the present in silico computational fluid dynamics (CFD) can provide this with the necessary ultrasound information. In this paper, CFD is employed to simulate the periodic UA blood flow for three typical states of IUGR, which shows comprehensive information on blood flow velocity, pressure, and wall shear stress (WSS). A new finding is the "hysteresis effect" between the UA blood flow velocity and pressure drop in which the former always changes after the latter by 0.1-0.2 times a cardiac cycle due to the unsteady flow. The degree of hysteresis is a promising indicator characterizing the evolution of IUGR. CFD successfully shows the hemodynamic details in different development situations of IUGR, and undoubtedly, its results would also help clinicians to further understand the relationship between the UA blood flow status and fetal growth restriction.
Collapse
Affiliation(s)
- Xue Song
- School of Energy and Power Engineering, Shandong University, Ji’nan 250061, China; (X.S.); (K.S.); (C.L.)
| | - Jingying Wang
- School of Energy and Power Engineering, Shandong University, Ji’nan 250061, China; (X.S.); (K.S.); (C.L.)
| | - Ke Sun
- School of Energy and Power Engineering, Shandong University, Ji’nan 250061, China; (X.S.); (K.S.); (C.L.)
| | - Chunhian Lee
- School of Energy and Power Engineering, Shandong University, Ji’nan 250061, China; (X.S.); (K.S.); (C.L.)
- School of Aeronautic Science and Engineering, Beihang University (BUAA), Beijing 100191, China
| |
Collapse
|
2
|
Van Schoor K, Bruet E, Jones EAV, Migeotte I. Origin and flow-mediated remodeling of the murine and human extraembryonic circulation systems. Front Physiol 2024; 15:1395006. [PMID: 38818524 PMCID: PMC11137303 DOI: 10.3389/fphys.2024.1395006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024] Open
Abstract
The transduction of mechanical stimuli produced by blood flow is an important regulator of vascular development. The vitelline and umbilico-placental circulations are extraembryonic vascular systems that are required for proper embryonic development in mammalian embryos. The morphogenesis of the extraembryonic vasculature and the cardiovascular system of the embryo are hemodynamically and molecularly connected. Here we provide an overview of the establishment of the murine and human vitelline and umbilico-placental vascular systems and how blood flow influences various steps in their development. A deeper comprehension of extraembryonic vessel development may aid the establishment of stem-cell based embryo models and provide novel insights to understanding pregnancy complications related to the umbilical cord and placenta.
Collapse
Affiliation(s)
- Kristof Van Schoor
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Emmanuel Bruet
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elizabeth Anne Vincent Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Katholieke Universiteit Leuven (KU Leuven), Leuven, Belgium
- Department of Cardiology CARIM School for Cardiovascular Diseases Maastricht University, Maastricht, Netherlands
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire Jacques E. Dumont, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
3
|
Fricke K, Ryd D, Weismann CG, Hanséus K, Hedström E, Liuba P. Fetal cardiac magnetic resonance imaging of the descending aorta in suspected left-sided cardiac obstructions. Front Cardiovasc Med 2023; 10:1285391. [PMID: 38107261 PMCID: PMC10725198 DOI: 10.3389/fcvm.2023.1285391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023] Open
Abstract
Background Severe left-sided cardiac obstructions are associated with high morbidity and mortality if not detected in time. The correct prenatal diagnosis of coarctation of the aorta (CoA) is difficult. Fetal cardiac magnetic resonance imaging (CMR) may improve the prenatal diagnosis of complex congenital heart defects. Flow measurements in the ascending aorta could aid in predicting postnatal CoA, but its accurate visualization is challenging. Objectives To compare the flow in the descending aorta (DAo) and umbilical vein (UV) in fetuses with suspected left-sided cardiac obstructions with and without the need for postnatal intervention and healthy controls by fetal phase-contrast CMR flow. A second objective was to determine if adding fetal CMR to echocardiography (echo) improves the fetal CoA diagnosis. Methods Prospective fetal CMR phase-contrast flow in the DAo and UV and echo studies were conducted between 2017 and 2022. Results A total of 46 fetuses with suspected left-sided cardiac obstructions [11 hypoplastic left heart syndrome (HLHS), five critical aortic stenosis (cAS), and 30 CoA] and five controls were included. Neonatal interventions for left-sided cardiac obstructions (n = 23) or comfort care (n = 1 with HLHS) were pursued in all 16 fetuses with suspected HLHS or cAS and in eight (27%) fetuses with true CoA. DAo or UV flow was not different in fetuses with and without need of intervention. However, DAo and UV flows were lower in fetuses with either retrograde isthmic systolic flow [DAo flow 253 (72) vs. 261 (97) ml/kg/min, p = 0.035; UV flow 113 (75) vs. 161 (81) ml/kg/min, p = 0.04] or with suspected CoA and restrictive atrial septum [DAo flow 200 (71) vs. 268 (94) ml/kg/min, p = 0.04; UV flow 89 vs. 159 (76) ml/kg/min, p = 0.04] as well as in those without these changes. Adding fetal CMR to fetal echo predictors for postnatal CoA did not improve the diagnosis of CoA. Conclusion Fetal CMR-derived DAo and UV flow measurements do not improve the prenatal diagnosis of left-sided cardiac obstructions, but they could be important in identifying fetuses with a more severe decrease in blood flow across the left side of the heart. The physiological explanation may be a markedly decreased left ventricular cardiac output with subsequent retrograde systolic isthmic flow and decreased total DAo flow.
Collapse
Affiliation(s)
- Katrin Fricke
- Cardiology, Pediatric Heart Center, Skåne University Hospital, Lund, Sweden
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Daniel Ryd
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund, Sweden
| | - Constance G. Weismann
- Cardiology, Pediatric Heart Center, Skåne University Hospital, Lund, Sweden
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Pediatric Cardiology and Pediatric Intensive Care, Ludwig-Maximilian University, Munich, Germany
| | - Katarina Hanséus
- Cardiology, Pediatric Heart Center, Skåne University Hospital, Lund, Sweden
| | - Erik Hedström
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Clinical Physiology and Nuclear Medicine, Skåne University Hospital, Lund, Sweden
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Diagnostic Radiology, Skåne University Hospital, Lund, Sweden
| | - Petru Liuba
- Cardiology, Pediatric Heart Center, Skåne University Hospital, Lund, Sweden
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Denizli R, Tanaçan A, Sakcak B, Farisoğulları N, Ağaoğlu Z, Turgut E, Kara Ö, Şahin D. Evaluation of the Caval aortic index in fetal growth restriction: A case-control study in a tertiary center. Int J Gynaecol Obstet 2023; 163:186-193. [PMID: 37128746 DOI: 10.1002/ijgo.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVE To examine the inferior vena cava (IVC) diameter, aortic diameter, and caval aortic index in fetuses with growth restriction and to compare the findings with fetuses from uncomplicated pregnancies at similar gestational weeks. METHODS This prospective study was conducted with a total of 176 pregnant women. According to the diagnostic criteria, 84 pregnancies diagnosed with fetal growth restriction (FGR) were compared with a control group of 92 uncomplicated pregnancies at similar gestational weeks. RESULTS The aortic and IVC diameter values were significantly lower in the FGR group (P < 0.001), whereas the caval aortic index was similar between the two groups. The examination of the ultrasound parameters of the cases with FGR according to the neonatal intensive care requirement revealed similar aortic diameter and caval aortic index values but a significantly smaller IVC diameter in the cases requiring neonatal intensive care (P = 0.022). CONCLUSION We determined that the aortic and IVC diameter values were smaller in the fetuses with growth restriction, but the caval aortic index was similar in the two groups. The measurement of the IVC diameter in FGR may be useful in predicting the neonatal intensive care requirements of these fetuses.
Collapse
Affiliation(s)
- Ramazan Denizli
- Department of Obstetrics and Gynecology, Ministry of Health, Ankara City Hospital, Ankara, Turkey
| | - Atakan Tanaçan
- Department of Obstetrics and Gynecology, Ministry of Health, Ankara City Hospital, Ankara, Turkey
- University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| | - Bedri Sakcak
- Department of Obstetrics and Gynecology, Ministry of Health, Ankara City Hospital, Ankara, Turkey
| | - Nihat Farisoğulları
- Department of Obstetrics and Gynecology, Ministry of Health, Ankara City Hospital, Ankara, Turkey
| | - Zahid Ağaoğlu
- Department of Obstetrics and Gynecology, Ministry of Health, Ankara City Hospital, Ankara, Turkey
| | - Ezgi Turgut
- Department of Obstetrics and Gynecology, Ministry of Health, Ankara City Hospital, Ankara, Turkey
| | - Özgür Kara
- Department of Obstetrics and Gynecology, Ministry of Health, Ankara City Hospital, Ankara, Turkey
| | - Dilek Şahin
- Department of Obstetrics and Gynecology, Ministry of Health, Ankara City Hospital, Ankara, Turkey
- University of Health Sciences, Ankara City Hospital, Ankara, Turkey
| |
Collapse
|
5
|
Zhang D, Lindsey SE. Recasting Current Knowledge of Human Fetal Circulation: The Importance of Computational Models. J Cardiovasc Dev Dis 2023; 10:240. [PMID: 37367405 PMCID: PMC10299027 DOI: 10.3390/jcdd10060240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Computational hemodynamic simulations are becoming increasingly important for cardiovascular research and clinical practice, yet incorporating numerical simulations of human fetal circulation is relatively underutilized and underdeveloped. The fetus possesses unique vascular shunts to appropriately distribute oxygen and nutrients acquired from the placenta, adding complexity and adaptability to blood flow patterns within the fetal vascular network. Perturbations to fetal circulation compromise fetal growth and trigger the abnormal cardiovascular remodeling that underlies congenital heart defects. Computational modeling can be used to elucidate complex blood flow patterns in the fetal circulatory system for normal versus abnormal development. We present an overview of fetal cardiovascular physiology and its evolution from being investigated with invasive experiments and primitive imaging techniques to advanced imaging (4D MRI and ultrasound) and computational modeling. We introduce the theoretical backgrounds of both lumped-parameter networks and three-dimensional computational fluid dynamic simulations of the cardiovascular system. We subsequently summarize existing modeling studies of human fetal circulation along with their limitations and challenges. Finally, we highlight opportunities for improved fetal circulation models.
Collapse
Affiliation(s)
| | - Stephanie E. Lindsey
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
6
|
Mechanical forces on trophoblast motility and its potential role in spiral artery remodeling during pregnancy. Placenta 2022; 123:46-53. [DOI: 10.1016/j.placenta.2022.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/13/2022] [Indexed: 11/22/2022]
|
7
|
Saw SN, Dai Y, Yap CH. A Review of Biomechanics Analysis of the Umbilical-Placenta System With Regards to Diseases. Front Physiol 2021; 12:587635. [PMID: 34475826 PMCID: PMC8406807 DOI: 10.3389/fphys.2021.587635] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Placenta is an important organ that is crucial for both fetal and maternal health. Abnormalities of the placenta, such as during intrauterine growth restriction (IUGR) and pre-eclampsia (PE) are common, and an improved understanding of these diseases is needed to improve medical care. Biomechanics analysis of the placenta is an under-explored area of investigation, which has demonstrated usefulness in contributing to our understanding of the placenta physiology. In this review, we introduce fundamental biomechanics concepts and discuss the findings of biomechanical analysis of the placenta and umbilical cord, including both tissue biomechanics and biofluid mechanics. The biomechanics of placenta ultrasound elastography and its potential in improving clinical detection of placenta diseases are also discussed. Finally, potential future work is listed.
Collapse
Affiliation(s)
- Shier Nee Saw
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yichen Dai
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Krause BJ. Novel insights for the role of nitric oxide in placental vascular function during and beyond pregnancy. J Cell Physiol 2021; 236:7984-7999. [PMID: 34121195 DOI: 10.1002/jcp.30470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023]
Abstract
More than 30 years have passed since endothelial nitric oxide synthesis was described using the umbilical artery and vein endothelium. That seminal report set the cornerstone for unveiling the molecular aspects of endothelial function. In parallel, the understanding of placental physiology has gained growing interest, due to its crucial role in intrauterine development, with considerable long-term health consequences. This review discusses the evidence for nitric oxide (NO) as a critical player of placental development and function, with a special focus on endothelial nitric oxide synthase (eNOS) vascular effects. Also, the regulation of eNOS-dependent vascular responses in normal pregnancy and pregnancy-related diseases and their impact on prenatal and postnatal vascular health are discussed. Recent and compelling evidence has reinforced that eNOS regulation results from a complex network of processes, with novel data concerning mechanisms such as mechano-sensing, epigenetic, posttranslational modifications, and the expression of NO- and l-arginine-related pathways. In this regard, most of these mechanisms are expressed in an arterial-venous-specific manner and reflect traits of the fetal systemic circulation. Several studies using umbilical endothelial cells are not aimed to understand placental function but general endothelial function, reinforcing the influence of the placenta on general knowledge in physiology.
Collapse
Affiliation(s)
- Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| |
Collapse
|
9
|
Kasiteropoulou D, Topalidou A, Downe S. A computational fluid dynamics modelling of maternal-fetal heat exchange and blood flow in the umbilical cord. PLoS One 2020; 15:e0231997. [PMID: 32722669 PMCID: PMC7386597 DOI: 10.1371/journal.pone.0231997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/27/2020] [Indexed: 11/18/2022] Open
Abstract
Human fetal thermoregulation, maternal-fetal heat exchange, and the role of the umbilical cord in these processes are not well understood. Ethical and technical limitations have restricted current knowledge to animal studies, that do not reflect human morphology. Here, we present the first 3-dimensional computational model of the human umbilical cord with finite element analysis, aiming to compute the maternal-fetal heat exchange. By modelling both the umbilical vein and the two umbilical arteries, we found that the coiled geometry of the umbilical artery, in comparison with the primarily straight umbilical vein, affects blood flow parameters such as velocity, pressure, temperature, shear strain rate and static entropy. Specifically, by enhancing the heat transfer coefficient, we have shown that the helical structure of the umbilical arteries plays a vital role in the temperature drop of the blood, along the arterial length from the fetal end to the placental end. This suggests the importance of the umbilical cord structure in maternal-fetal heat exchange and fetal heat loss, opening the way for future research with modified models and scenarios, as the basis for early detection of potential heat-transfer related complications, and/or assurance of fetal wellbeing.
Collapse
Affiliation(s)
| | - Anastasia Topalidou
- Research in Childbirth and Health Unit, School of Community Health and Midwifery, Faculty of Health and Wellbeing, University of Central Lancashire, Preston, United Kingdom
| | - Soo Downe
- Research in Childbirth and Health Unit, School of Community Health and Midwifery, Faculty of Health and Wellbeing, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|
10
|
Tun WM, Yap CH, Saw SN, James JL, Clark AR. Differences in placental capillary shear stress in fetal growth restriction may affect endothelial cell function and vascular network formation. Sci Rep 2019; 9:9876. [PMID: 31285454 PMCID: PMC6614400 DOI: 10.1038/s41598-019-46151-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/19/2019] [Indexed: 11/09/2022] Open
Abstract
Fetal growth restriction (FGR) affects 5-10% of pregnancies, leading to clinically significant fetal morbidity and mortality. FGR placentae frequently exhibit poor vascular branching, but the mechanisms driving this are poorly understood. We hypothesize that vascular structural malformation at the organ level alters microvascular shear stress, impairing angiogenesis. A computational model of placental vasculature predicted elevated placental micro-vascular shear stress in FGR placentae (0.2 Pa in severe FGR vs 0.05 Pa in normal placentae). Endothelial cells cultured under predicted FGR shear stresses migrated significantly slower and with greater persistence than in shear stresses predicted in normal placentae. These cell behaviors suggest a dominance of vessel elongation over branching. Taken together, these results suggest (1) poor vascular development increases vessel shear stress, (2) increased shear stress induces cell behaviors that impair capillary branching angiogenesis, and (3) impaired branching angiogenesis continues to drive elevated shear stress, jeopardizing further vascular formation. Inadequate vascular branching early in gestation could kick off this cyclic loop and continue to negatively impact placental angiogenesis throughout gestation.
Collapse
Affiliation(s)
- Win M Tun
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Shier Nee Saw
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
11
|
Saw SN, Tay JJH, Poh YW, Yang L, Tan WC, Tan LK, Clark A, Biswas A, Mattar CNZ, Yap CH. Altered Placental Chorionic Arterial Biomechanical Properties During Intrauterine Growth Restriction. Sci Rep 2018; 8:16526. [PMID: 30409992 PMCID: PMC6224524 DOI: 10.1038/s41598-018-34834-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a pregnancy complication due to placental dysfunction that prevents the fetus from obtaining enough oxygen and nutrients, leading to serious mortality and morbidity risks. There is no treatment for IUGR despite having a prevalence of 3% in developed countries, giving rise to an urgency to improve our understanding of the disease. Applying biomechanics investigation on IUGR placental tissues can give important new insights. We performed pressure-diameter mechanical testing of placental chorionic arteries and found that in severe IUGR cases (RI > 90th centile) but not in IUGR cases (RI < 90th centile), vascular distensibility was significantly increased from normal. Constitutive modeling demonstrated that a simplified Fung-type hyperelastic model was able to describe the mechanical properties well, and histology showed that severe IUGR had the lowest collagen to elastin ratio. To demonstrate that the increased distensibility in the severe IUGR group was related to their elevated umbilical resistance and pulsatility indices, we modelled the placental circulation using a Windkessel model, and demonstrated that vascular compliance (and not just vascular resistance) directly affected blood flow pulsatility, suggesting that it is an important parameter for the disease. Our study showed that biomechanics study on placenta could extend our understanding on placenta physiology.
Collapse
Affiliation(s)
- Shier Nee Saw
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Jess Jia Hwee Tay
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yu Wei Poh
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Liying Yang
- Department of Obstetrics & Gynecology, Singapore General Hospital, Singapore, Singapore
| | - Wei Ching Tan
- Department of Obstetrics & Gynecology, Singapore General Hospital, Singapore, Singapore
| | - Lay Kok Tan
- Department of Obstetrics & Gynecology, Singapore General Hospital, Singapore, Singapore
| | - Alys Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Arijit Biswas
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
| | - Citra Nurfarah Zaini Mattar
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|