1
|
Otoo BS, Moo EK, Komeili A, Hart DA, Herzog W. From fluctuations to stability: In-Situ chondrocyte response to cyclic compressive loading. J Biomech 2025; 186:112734. [PMID: 40319787 DOI: 10.1016/j.jbiomech.2025.112734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/26/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Chondrocytes, the sole cellular components in articular cartilage, are mechanosensitive and undergo significant morphological and volumetric changes in response to mechanical loading. These changes activate ion channels, initiating cellular mechanotransduction processes crucial for maintaining cartilage health. Dynamic loading has been shown to elicit anabolic responses that preserve cartilage integrity, while prolonged mechanical unloading leads to atrophy. However, the intricacies of how chondrocytes respond to dynamic loading remain poorly understood, largely due to technical limitations in capturing real-time cellular responses during loading cycles. This study aimed to advance our understanding of chondrocyte behavior during dynamic cyclic compression loading through high-speed imaging techniques. We developed a protocol to capture changes in chondrocyte volume, shape, and surface area at critical moments of maximal and minimal tissue stress during cyclic loading. Our findings revealed that chondrocyte volume fluctuated cyclically during the first 20 loading cycles, increasing by up to 4 % during load application and decreasing by as much as 8 % during unloading. These volume fluctuations stabilized over time, returning to baseline levels after approximately 100 cycles. Volume changes over time translate to shape change, causing similar oscillatory pattern in cell width and depth strains but not height strain, which remained relatively constant throughout the loading protocol. Changes in surface area mirrored the volume changes but were less pronounced (< 2 % increase), suggesting a protective mechanism against cell membrane rupture. This research offers valuable insights into the dynamic behavior of chondrocytes during cyclic loading, highlighting the importance of considering dynamic environments in cellular biomechanics studies.
Collapse
Affiliation(s)
- Baaba S Otoo
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada.
| | - Eng Kuan Moo
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada; Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON, Canada; Department of Technical Physics, University of Eastern Finland, Kuopio, Finland.
| | - Amin Komeili
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada; Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, Canada.
| | - David A Hart
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada; Department of Surgery, University of Calgary, Calgary, AB, Canada.
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, Calgary, AB, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada; Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
2
|
Wang Y, Shi P, Liu G, Chen W, Wang YJ, Hu Y, Yang A, Wei T, Chen YC, Liang L, Liu Z, Liu YJ, Wu C. Espin enhances confined cell migration by promoting filopodia formation and contributes to cancer metastasis. EMBO Rep 2025; 26:2574-2596. [PMID: 40185977 PMCID: PMC12117036 DOI: 10.1038/s44319-025-00437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 02/22/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025] Open
Abstract
Genes regulating the finger-like cellular protrusions-filopodia have long been implicated in cancer metastasis. However, depleting the flat lamellipodia but retaining filopodia drastically hampers cell migration on spread surface, obscuring the role of filopodia in cell motility. It has been noticed recently that cells under confinement may employ distinct migratory machineries. However, the regulating factors have mainly been focused on cell blebbing, nuclear deformation and cell rear contractility, without much emphasis on cell protrusions and even less on filopodia. Here, by micropore-based screening, we identified espin as an active regulator for confined migration and that its overexpression was associated with metastasis. In comparison to fascin, espin showed stronger actin bundling in vitro and induced shorter and thicker filopodia in cells. Combining the imaging-compatible microchannels and DNA-based tension probes, we uncovered that espin overexpression induced excessive filopodia at the leading edge and along the sides, exerting force for confined migration. Our results demonstrate an important role for filopodia and the regulating protein-espin in confined cell migration and shed new light on cytoskeletal mechanisms underlying metastasis.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Peng Shi
- Cancer Institute, Suzhou Medical College, Soochow University, 215000, Suzhou, Jiangsu, China.
| | - Geyao Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Wei Chen
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei Province, China
| | - Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Yiping Hu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Ao Yang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Tonghua Wei
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Yu-Chen Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Ling Liang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Zheng Liu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei Province, China.
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
3
|
Kimura Y, Hatayama N, Sato Y, Yoshino Y. Clostridioides difficile toxin B suppresses human neutrophil migration. Anaerobe 2024; 90:102916. [PMID: 39369979 DOI: 10.1016/j.anaerobe.2024.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
We investigated the effects of Clostridioides difficile toxin B (TcdB), a major virulence factor in C. difficile infection (CDI), on human neutrophils. TcdB inhibits neutrophil migration via loss of polarity of F-actin polymerization in response to interleukin-8. TcdB facilitates CDI by allowing C. difficile to avert the host immune system.
Collapse
Affiliation(s)
- Yoshitaka Kimura
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Nami Hatayama
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshinori Sato
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yusuke Yoshino
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
4
|
Farmer A, Harris PJ. A mathematical model of cell movement and clustering due to chemotaxis. J Theor Biol 2023; 575:111646. [PMID: 37852358 DOI: 10.1016/j.jtbi.2023.111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 08/10/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
This paper presents a numerical method for modelling cell migration and aggregation due to chemotaxis where the cell is attracted towards the direction in which the concentration of a chemical signal is increasing. In the model presented here, each cell is represented by a system of springs connected together at node points on the cell's membrane and on the boundary of the cell's nucleus. The nodes located on a cell's membrane are subject to a force which is proportional to the gradient of the concentration of the chemical signal which mimics the behaviour of the chemical receptors in the cell's membrane. In particular, the model developed here will consider what happens when two (or more) cells collide and how their membranes connect to each other to form clusters of cells. The methods described in this paper will be illustrated with a number of typical examples simulating cells moving in response to a chemical signal and how they combine to form clusters.
Collapse
Affiliation(s)
- Adam Farmer
- School of Architecture, Technology and Engineering, University of Brighton, Brighton, UK; Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK
| | - Paul J Harris
- School of Architecture, Technology and Engineering, University of Brighton, Brighton, UK; Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, UK.
| |
Collapse
|
5
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
6
|
Peng Q, Vermolen FJ, Weihs D. Physical confinement and cell proximity increase cell migration rates and invasiveness: A mathematical model of cancer cell invasion through flexible channels. J Mech Behav Biomed Mater 2023; 142:105843. [PMID: 37104897 DOI: 10.1016/j.jmbbm.2023.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/28/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Cancer cell migration between different body parts is the driving force behind cancer metastasis, which is the main cause of mortality of patients. Migration of cancer cells often proceeds by penetration through narrow cavities in locally stiff, yet flexible tissues. In our previous work, we developed a model for cell geometry evolution during invasion, which we extend here to investigate whether leader and follower (cancer) cells that only interact mechanically can benefit from sequential transmigration through narrow micro-channels and cavities. We consider two cases of cells sequentially migrating through a flexible channel: leader and follower cells being closely adjacent or distant. Using Wilcoxon's signed-rank test on the data collected from Monte Carlo simulations, we conclude that the modelled transmigration speed for the follower cell is significantly larger than for the leader cell when cells are distant, i.e. follower cells transmigrate after the leader has completed the crossing. Furthermore, it appears that there exists an optimum with respect to the width of the channel such that cell moves fastest. On the other hand, in the case of closely adjacent cells, effectively performing collective migration, the leader cell moves 12% faster since the follower cell pushes it. This work shows that mechanical interactions between cells can increase the net transmigration speed of cancer cells, resulting in increased invasiveness. In other words, interaction between cancer cells can accelerate metastatic invasion.
Collapse
Affiliation(s)
- Qiyao Peng
- Mathematical Institute, Faculty of Science, Leiden University, Neils Bohrweg 1, 2333 CA, Leiden, The Netherlands.
| | - Fred J Vermolen
- Computational Mathematics Group, Department of Mathematics and Statistics, Faculty of Science, University of Hasselt, 3590 Diepenbeek, Belgium
| | - Daphne Weihs
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
7
|
Zhang B, Qin J. LINC00659 exacerbates endothelial progenitor cell dysfunction in deep vein thrombosis of the lower extremities by activating DNMT3A-mediated FGF1 promoter methylation. Thromb J 2023; 21:24. [PMID: 36890543 PMCID: PMC9996960 DOI: 10.1186/s12959-023-00462-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 03/10/2023] Open
Abstract
It has been shown that long non-coding RNA (lncRNA) LINC00659 was markedly upregulated in the peripheral blood of patients with deep venous thrombosis (DVT). However, the function of LINC00659 in lower extremity DVT (LEDVT) remains to be largely unrevealed. A total of 30 inferior vena cava (IVC) tissue samples and peripheral blood (60 ml per subject) were obtained from LEDVT patients (n = 15) and healthy donors (n = 15), and then LINC00659 expression was detected by RT-qPCR. The results displayed that LINC00659 is upregulated in IVC tissues and isolated endothelial group cells (EPCs) of patients with LEDVT. LINC00659 knock-down promoted the proliferation, migration, and angiogenesis ability of EPCs, while an pcDNA-eukaryotic translation initiation factor 4A3 (EIF4A3), a EIF4A3 overexpression vector, or fibroblast growth factor 1 (FGF1) small interfering RNA (siRNA) combined with LINC00659 siRNA could not enhance this effect. Mechanistically, LINC00659 bound with EIF4A3 promoter to upregulated EIF4A3 expression. Besides, EIF4A3 could facilitate FGF1 methylation and its downregulated expression by recruiting DNA methyltransferases 3A (DNMT3A) to the FGF1 promoter region. Additionally, LINC00659 inhibition could alleviate LEDVT in mice. In summary, the data indicated the roles of LINC00659 in the pathogenesis of LEDVT, and the LINC00659/EIF4A3/FGF1 axis could be a novel therapeutic target for the treatment of LEDVT.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Peripheral Vessel, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi, China.
| | - Jie Qin
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, 710061, Shanxi, China
| |
Collapse
|
8
|
Cockerell A, Wright L, Dattani A, Guo G, Smith A, Tsaneva-Atanasova K, Richards DM. Biophysical models of early mammalian embryogenesis. Stem Cell Reports 2023; 18:26-46. [PMID: 36630902 PMCID: PMC9860129 DOI: 10.1016/j.stemcr.2022.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 01/12/2023] Open
Abstract
Embryo development is a critical and fascinating stage in the life cycle of many organisms. Despite decades of research, the earliest stages of mammalian embryogenesis are still poorly understood, caused by a scarcity of high-resolution spatial and temporal data, the use of only a few model organisms, and a paucity of truly multidisciplinary approaches that combine biological research with biophysical modeling and computational simulation. Here, we explain the theoretical frameworks and biophysical processes that are best suited to modeling the early mammalian embryo, review a comprehensive list of previous models, and discuss the most promising avenues for future work.
Collapse
Affiliation(s)
- Alaina Cockerell
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Liam Wright
- Department of Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UK
| | - Anish Dattani
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ge Guo
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK; Department of Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UK; EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter EX4 4QJ, UK; Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Street, 1113 Sofia, Bulgaria
| | - David M Richards
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK; Department of Physics and Astronomy, University of Exeter, North Park Road, Exeter EX4 4QL, UK.
| |
Collapse
|
9
|
Merino-Casallo F, Gomez-Benito MJ, Hervas-Raluy S, Garcia-Aznar JM. Unravelling cell migration: defining movement from the cell surface. Cell Adh Migr 2022; 16:25-64. [PMID: 35499121 PMCID: PMC9067518 DOI: 10.1080/19336918.2022.2055520] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Cell motility is essential for life and development. Unfortunately, cell migration is also linked to several pathological processes, such as cancer metastasis. Cells' ability to migrate relies on many actors. Cells change their migratory strategy based on their phenotype and the properties of the surrounding microenvironment. Cell migration is, therefore, an extremely complex phenomenon. Researchers have investigated cell motility for more than a century. Recent discoveries have uncovered some of the mysteries associated with the mechanisms involved in cell migration, such as intracellular signaling and cell mechanics. These findings involve different players, including transmembrane receptors, adhesive complexes, cytoskeletal components , the nucleus, and the extracellular matrix. This review aims to give a global overview of our current understanding of cell migration.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza, Spain
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
10
|
Merino-Casallo F, Gomez-Benito MJ, Martinez-Cantin R, Garcia-Aznar JM. A mechanistic protrusive-based model for 3D cell migration. Eur J Cell Biol 2022; 101:151255. [PMID: 35843121 DOI: 10.1016/j.ejcb.2022.151255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/15/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022] Open
Abstract
Cell migration is essential for a variety of biological processes, such as embryogenesis, wound healing, and the immune response. After more than a century of research-mainly on flat surfaces-, there are still many unknowns about cell motility. In particular, regarding how cells migrate within 3D matrices, which more accurately replicate in vivo conditions. We present a novel in silico model of 3D mesenchymal cell migration regulated by the chemical and mechanical profile of the surrounding environment. This in silico model considers cell's adhesive and nuclear phenotypes, the effects of the steric hindrance of the matrix, and cells ability to degradate the ECM. These factors are crucial when investigating the increasing difficulty that migrating cells find to squeeze their nuclei through dense matrices, which may act as physical barriers. Our results agree with previous in vitro observations where fibroblasts cultured in collagen-based hydrogels did not durotax toward regions with higher collagen concentrations. Instead, they exhibited an adurotactic behavior, following a more random trajectory. Overall, cell's migratory response in 3D domains depends on its phenotype, and the properties of the surrounding environment, that is, 3D cell motion is strongly dependent on the context.
Collapse
Affiliation(s)
- Francisco Merino-Casallo
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Ruben Martinez-Cantin
- Robotics, Perception and Real Time Group (RoPeRT), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Computer Science and System Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Jose Manuel Garcia-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragon Institute of Engineering Research (I3A), Zaragoza 50018, Spain; Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza 50009, Spain.
| |
Collapse
|
11
|
Aparicio-Yuste R, Muenkel M, Clark AG, Gómez-Benito MJ, Bastounis EE. A Stiff Extracellular Matrix Favors the Mechanical Cell Competition that Leads to Extrusion of Bacterially-Infected Epithelial Cells. Front Cell Dev Biol 2022; 10:912318. [PMID: 35813215 PMCID: PMC9257086 DOI: 10.3389/fcell.2022.912318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Cell competition refers to the mechanism whereby less fit cells (“losers”) are sensed and eliminated by more fit neighboring cells (“winners”) and arises during many processes including intracellular bacterial infection. Extracellular matrix (ECM) stiffness can regulate important cellular functions, such as motility, by modulating the physical forces that cells transduce and could thus modulate the output of cellular competitions. Herein, we employ a computational model to investigate the previously overlooked role of ECM stiffness in modulating the forceful extrusion of infected “loser” cells by uninfected “winner” cells. We find that increasing ECM stiffness promotes the collective squeezing and subsequent extrusion of infected cells due to differential cell displacements and cellular force generation. Moreover, we discover that an increase in the ratio of uninfected to infected cell stiffness as well as a smaller infection focus size, independently promote squeezing of infected cells, and this phenomenon is more prominent on stiffer compared to softer matrices. Our experimental findings validate the computational predictions by demonstrating increased collective cell extrusion on stiff matrices and glass as opposed to softer matrices, which is associated with decreased bacterial spread in the basal cell monolayer in vitro. Collectively, our results suggest that ECM stiffness plays a major role in modulating the competition between infected and uninfected cells, with stiffer matrices promoting this battle through differential modulation of cell mechanics between the two cell populations.
Collapse
Affiliation(s)
- Raúl Aparicio-Yuste
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Instituto de Investigación en Ingeniería de Aragón (I3A), University of Zaragoza, Zaragoza, Spain
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany
| | - Marie Muenkel
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany
| | - Andrew G. Clark
- Institute of Cell Biology and Immunology/Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
- Center for Personalized Medicine, University of Tübingen, Tübingen, Germany
| | - María J. Gómez-Benito
- Department of Mechanical Engineering, Multiscale in Mechanical and Biological Engineering (M2BE), Instituto de Investigación en Ingeniería de Aragón (I3A), University of Zaragoza, Zaragoza, Spain
- *Correspondence: María J. Gómez-Benito, ; Effie E. Bastounis,
| | - Effie E. Bastounis
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence “Controlling Microbes to Fight Infections” (CMFI, EXC 2124), University of Tübingen, Tübingen, Germany
- *Correspondence: María J. Gómez-Benito, ; Effie E. Bastounis,
| |
Collapse
|
12
|
Juste-Lanas Y, Guerrero PE, Camacho-Gomez D, Hervas-Raluy S, García-Aznar JM, Gómez-Benito MJ. Confined Cell Migration and Asymmetric Hydraulic Environments to Evaluate The Metastatic Potential of Cancer Cells. J Biomech Eng 2021; 144:1129080. [PMID: 34864878 DOI: 10.1115/1.4053143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 11/08/2022]
Abstract
Metastasis, a hallmark of cancer development, is also the leading reason for most cancer-related deaths. Furthermore, cancer cells are highly adaptable to microenvironments and can migrate along pre-existing channel-like tracks of anatomical structures. However, more representative three-dimensional models are required to reproduce the heterogeneity of metastatic cell migration in vivo to further understand the metastasis mechanism and develop novel therapeutic strategies against it. Here, we designed and fabricated different microfluidic-based devices that recreate confined migration and diverse environments with asymmetric hydraulic resistances. Our results show different migratory potential between metastatic and nonmetastatic cancer cells in confined environments. Moreover, although nonmetastatic cells have not been tested against barotaxis due to their low migration capacity, metastatic cells present an enhanced preference to migrate through the lowest resistance path, being sensitive to barotaxis. This device, approaching the study of metastasis capability based on confined cell migration and barotactic cell decisions, may pave the way for the implementation of such technology to determine and screen the metastatic potential of certain cancer cells.
Collapse
Affiliation(s)
- Yago Juste-Lanas
- Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Pedro E Guerrero
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Daniel Camacho-Gomez
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Silvia Hervas-Raluy
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - J M García-Aznar
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - María José Gómez-Benito
- Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
13
|
Structural analysis of receptors and actin polarity in platelet protrusions. Proc Natl Acad Sci U S A 2021; 118:2105004118. [PMID: 34504018 PMCID: PMC8449362 DOI: 10.1073/pnas.2105004118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
During activation the platelet cytoskeleton is reorganized, inducing adhesion to the extracellular matrix and cell spreading. These processes are critical for wound healing and clot formation. Initially, this task relies on the formation of strong cellular-extracellular matrix interactions, exposed in subendothelial lesions. Despite the medical relevance of these processes, there is a lack of high-resolution structural information on the platelet cytoskeleton controlling cell spreading and adhesion. Here, we present in situ structural analysis of membrane receptors and the underlying cytoskeleton in platelet protrusions by applying cryoelectron tomography to intact platelets. We utilized three-dimensional averaging procedures to study receptors at the plasma membrane. Analysis of substrate interaction-free receptors yielded one main structural class resolved to 26 Å, resembling the αIIbβ3 integrin folded conformation. Furthermore, structural analysis of the actin network in pseudopodia indicates a nonuniform polarity of filaments. This organization would allow generation of the contractile forces required for integrin-mediated cell adhesion.
Collapse
|
14
|
Martins B, Sorrentino S, Chung WL, Tatli M, Medalia O, Eibauer M. Unveiling the polarity of actin filaments by cryo-electron tomography. Structure 2021; 29:488-498.e4. [PMID: 33476550 PMCID: PMC8111420 DOI: 10.1016/j.str.2020.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/04/2020] [Accepted: 12/23/2020] [Indexed: 01/01/2023]
Abstract
The actin cytoskeleton plays a fundamental role in numerous cellular processes, such as cell motility, cytokinesis, and adhesion to the extracellular matrix. Revealing the polarity of individual actin filaments in intact cells would foster an unprecedented understanding of cytoskeletal processes and their associated mechanical forces. Cryo-electron tomography provides the means for high-resolution structural imaging of cells. However, the low signal-to-noise ratio of cryo-tomograms obscures the high frequencies, and therefore the polarity of actin filaments cannot be directly measured. Here, we developed a method that enables us to determine the polarity of actin filaments in cellular cryo-tomograms. We applied it to reveal the actin polarity distribution in focal adhesions, and show a linear relation between actin polarity and distance from the apical boundary of the adhesion site. Determining the polarity of individual actin filaments inside cells Reconstruction of actin networks from cryo-tomograms The polarity of actin changes from mixed to uniform along focal adhesions
Collapse
Affiliation(s)
- Bruno Martins
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Simona Sorrentino
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Meltem Tatli
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Matthias Eibauer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
15
|
Serrano-Alcalde F, García-Aznar JM, Gómez-Benito MJ. Cell biophysical stimuli in lobopodium formation: a computer based approach. Comput Methods Biomech Biomed Engin 2020; 24:496-505. [PMID: 33111554 DOI: 10.1080/10255842.2020.1836622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Different cell migration modes have been identified in 3D environments, e.g., modes incorporating lamellopodia or blebs. Recently, a new type of cellular migration has been investigated: lobopodia-based migration, which appears only in three-dimensional matrices under certain conditions. The cell creates a protrusion through which the nucleus slips, dividing the cell into two parts (front and rear) with different hydrostatic pressures. In this work, we elucidate the mechanical conditions that favour this type of migration.One of the hypotheses about this type of migration is that it depends on the mechanical properties of the extracellular matrix. That is, lobopodia-based migration is dependent on whether the extracellular matrix is linearly elastic or non-linearly elastic.To determine whether the mechanical properties of the extracellular matrix are crucial in the choice of cell migration mode and which mechanotransduction mechanism the cell might use, we develop a finite element model. From our simulations, we identify two different possible mechanotransduction mechanisms that could regulate the cell to switch from a lobopodial to a lamellipodial migration mode. The first relies on a differential pressure increase inside the cytoplasm while the cell contracts, and the second relies on a change in the fluid flow direction in non-linearly elastic extracellular matrices but not in linearly elastic matrices. The biphasic nature of the cell has been determined to mediate this mechanism and the different behaviours of cells in linearly elastic and non-linearly elastic matrices.
Collapse
Affiliation(s)
- Francisco Serrano-Alcalde
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | - María José Gómez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
16
|
Wiedemann C, Amann B, Degroote RL, Witte T, Deeg CA. Aberrant Migratory Behavior of Immune Cells in Recurrent Autoimmune Uveitis in Horses. Front Cell Dev Biol 2020; 8:101. [PMID: 32211402 PMCID: PMC7076317 DOI: 10.3389/fcell.2020.00101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/07/2020] [Indexed: 11/17/2022] Open
Abstract
The participating signals and structures that enable primary immune cells migrating within dense tissues are not completely revealed until now. Especially in autoimmune diseases, mostly unknown mechanisms facilitate autoreactive immune cells to migrate to endogenous tissues, infiltrating and harming organ-specific structures. In order to gain deeper insights into the migratory behavior of primary autoreactive immune cells, we examined peripheral blood-derived lymphocytes (PBLs) of horses with equine recurrent uveitis (ERU), a spontaneous animal model for autoimmune uveitis in humans. In this study, we used a three-dimensional collagen I hydrogel matrix and monitored live-cell migration of primary lymphocytes as a reaction to different chemoattractants such as fetal calf serum (FCS), cytokines interleukin-4 (IL-4), and interferon-γ (IFN-γ), and a specific uveitis autoantigen, cellular retinaldehyde binding protein (CRALBP). Through these experiments, we uncovered distinct differences between PBLs from ERU cases and PBLs from healthy animals, with significantly higher cell motility, cell speed, and straightness during migration of PBLs from ERU horses. Furthermore, we emphasized the significance of expression levels and cellular localization of septin 7, a membrane-interacting protein with decreased abundance in PBLs of autoimmune cases. To underline the importance of septin 7 expression changes and the possible contribution to migratory behavior in autoreactive immune cells, we used forchlorfenuron (FCF) as a reversible inhibitor of septin structures. FCF-treated cells showed more directed migration through dense tissue and revealed aberrant septin 7 and F-actin structures along with different protein distribution and translocalization of the latter, uncovered by immunochemistry. Hence, we propose that septin 7 and interacting molecules play a pivotal role in the organization and regulation of cell shaping and migration. With our findings, we contribute to gaining deeper insights into the migratory behavior and septin 7-dependent cytoskeletal reorganization of immune cells in organ-specific autoimmune diseases.
Collapse
Affiliation(s)
- Carmen Wiedemann
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Barbara Amann
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Roxane L Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Tanja Witte
- Faculty of Veterinary Medicine, Equine Hospital, LMU Munich, Munich, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|