1
|
Bräsel B, Geiger M, Linkhorst J, Wessling M. Transport and clogging dynamics of flexible rods in pore constrictions. SOFT MATTER 2024; 20:6767-6778. [PMID: 39136054 DOI: 10.1039/d4sm00734d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The transport and clogging behavior of flexible particles in confined flows is a complex interplay between elastic and hydrodynamic forces and wall interactions. While the motion of non-spherical particles in unbounded flows is well understood, their behavior in confined spaces remains less explored. This study introduces a coupled computational fluid dynamics-discrete element method (CFD-DEM) approach to investigate the transport and clogging dynamics of flexible rod-shaped particles in confined pore constrictions. The spatio-temporal analysis reveals the influence of the rod's initial conditions and flexibility on its transport dynamics through a pore constriction. The simulation results demonstrate an increase in the lateral drift of the rod upon exiting the pore that can be scaled with channel height confinement. The clogging dynamics are explored based on hydrodynamic and mechanical forces, unveiling conditions for mechanical clogging through sieving. The developed method allows for the deconvolution of the forces that contribute to particle trajectories in confined flow, which is highly relevant in particle separation processes, fibrous-shaped virus filtration, biological flows, and related applications. The method is embedded into the open-source CFDEM framework, facilitating future extensions to explore multiple particle dynamics, intermolecular forces, external influences, and complex geometries.
Collapse
Affiliation(s)
- Berinike Bräsel
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany.
| | - Matthias Geiger
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany.
| | - John Linkhorst
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany.
| | - Matthias Wessling
- Chemical Process Engineering AVT.CVT, RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany.
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstraße 50, 52074 Aachen, Germany
| |
Collapse
|
2
|
Zhao Y, Xie J. Numerical analysis of blood flow through stenosed microvessels using a multi-phase model. Heliyon 2024; 10:e29843. [PMID: 38694061 PMCID: PMC11058301 DOI: 10.1016/j.heliyon.2024.e29843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024] Open
Abstract
Blood flow in arterioles have attracted considerable research attention due to their clinical implications. However, the fluid structure interaction between red blood cells and plasma in the blood poses formidable difficulty to the computational efforts. In this contribution, we seek to represent the red blood cells in the blood as a continuous non-Newtonian phase and construct a multi-phase model for the blood flow in microvessels. The methods are presented and validated using a channel with sudden expansion. And the resulting blood flow inside a stenosed microvessel is investigated at different inlet velocity amplitudes and hematocrits. It is show that the increase of both inlet velocity amplitude and inlet hematocrit leads to longer and thicker cell-rich layer downstream the stenosis. Besides, it is found that the maximum values of wall shear stress scales up with inlet velocity amplitudes and hematocrits. These results show the validity of the proposed computational model and provide helpful insights into blood flow behaviors inside stenosed vessels.
Collapse
Affiliation(s)
- Yuhong Zhao
- Department of Blood Transfusion, The Frist Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| | - Jue Xie
- Department of Blood Transfusion, The Frist Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, Zhejiang, China
| |
Collapse
|
3
|
Elhanafy A, Elsagheer S, Ookawara S, Nada S. Numerical simulation of cellular blood flow in curved micro-vessels with saccular aneurysms: Effect of curvature degree and hematocrit level. BIOMICROFLUIDICS 2024; 18:034101. [PMID: 38726374 PMCID: PMC11078268 DOI: 10.1063/5.0203220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024]
Abstract
The dynamics of cellular blood flow in curved vessels considerably differ from those in straight vessels. It is reported that clotting development is significantly affected by vessel shape irregularities. Thus, the current study aims to investigate the effect of curvature degree and hematocrit level on cellular blood flow in a curved micro-vessel with a saccular aneurysm. Accordingly, a three-dimensional numerical simulation is performed using a validated code developed for cellular blood flow problems. The obtained results show that the cell-free layer thickness is highly dependent on the curvature degree and hematocrit level, which may have a remarkable impact on the apparent viscosity of blood as well as the dynamics of other particles such as drug particulates. The near-wall region exhibits the highest degree of cell deformation, whereas the red blood cells within the aneurysm zone remain nearly undeformed. Meanwhile, the velocity of the red blood cells decreases with the increase in curvature degree, which can affect the quality of the oxygenation process. Because of the saccular aneurysm, a considerable decrease in plasma velocity is predicted. Moreover, no secondary flows are detected in the curved vessel except in the aneurysm zone. An increase in the curvature degree is expected to reduce the blood flow rate by about 10%. Furthermore, low wall shear stress values are predicted in the straight case compared to the values at the apex of the curved vessel, which may affect the structure and function of the endothelial cells of the vessel wall and, hence, increase the aneurysm rupture possibility.
Collapse
Affiliation(s)
| | | | - Shinichi Ookawara
- Department of Chemical Engineering, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Sameh Nada
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
4
|
Liu S, Chen S, Xiao L, Zhang K, Qi Y, Li H, Cheng Y, Hu Z, Lin C. Unraveling the motion and deformation characteristics of red blood cells in a deterministic lateral displacement device. Comput Biol Med 2024; 168:107712. [PMID: 38006825 DOI: 10.1016/j.compbiomed.2023.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/16/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Deterministic Lateral Displacement (DLD) device has gained widespread recognition and trusted for filtering blood cells. However, there remains a crucial need to explore the complex interplay between deformable cells and flow within the DLD device to improve its design. This paper presents an approach utilizing a mesoscopic cell-level numerical model based on dissipative particle dynamics to effectively capture this complex phenomenon. To establish the model's credibility, a series of numerical simulations were conducted and the numerical results were validated with nominal experimental data from the literature. These include single cell stretching experiment, comparisons of the morphological characteristics of cells in DLD, and comparison the specific row-shift fraction of DLD required to initiate the zigzag mode. Additionally, we investigate the effect of cell rigidity, which serves as an indicator of cell health, on average flow velocity, trajectory, and asphericity. Moreover, we extend the existing theory of predicting zigzag mode for solid spherical particles to encompass the behavior of red blood cells. To achieve this, we introduce a new concept of effective diameter and demonstrate its applicability in providing highly accurate predictions across a wide range of conditions.
Collapse
Affiliation(s)
- Shuai Liu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, China
| | - Shuo Chen
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, China.
| | - Lanlan Xiao
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Kaixuan Zhang
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yuan Qi
- Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, 200433, China
| | - Hao Li
- Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, 200433, China
| | - Yuan Cheng
- Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, 200433, China
| | - Zixin Hu
- Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, 200433, China; Fudan Zhangjiang Institute, Shanghai, 201203, China; Shanghai Pudong Hospital, Shanghai, 201399, China
| | - Chensen Lin
- Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, 200433, China; Fudan Zhangjiang Institute, Shanghai, 201203, China; Shanghai Pudong Hospital, Shanghai, 201399, China.
| |
Collapse
|
5
|
Lee CA, Farooqi HMU, Paeng DG. Axial shear rate: A hemorheological factor for erythrocyte aggregation under Womersley flow in an elastic vessel based on numerical simulation. Comput Biol Med 2023; 157:106767. [PMID: 36933414 DOI: 10.1016/j.compbiomed.2023.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023]
Abstract
Erythrocyte aggregation (EA) is a highly dynamic, vital phenomenon to interpreting human hemorheology, which would be helpful for the diagnosis and prediction of circulatory anomalies. Previous studies of EA on erythrocyte migration and the Fåhraeus Effect are based on the microvasculature. They have not considered the natural pulsatility of the blood flow or large vessels and mainly focused on shear rate along radial direction under steady flow to comprehend the dynamic properties of EA. To our knowledge, the rheological characteristics of non-Newtonian fluids under Womersley flow have not reflected the spatiotemporal behaviors of EA or the distribution of erythrocyte dynamics (ED). Hence, it needs to interpret the ED affected by temporal and spatial flow variation to understand the effect of EA under Womersley flow. Here, we demonstrated the numerically simulated ED to decipher EA's rheological role in axial shear rate under Womersley flow. In the present study, the temporal and spatial variations of the local EA were found to mainly depend on the axial shear rate under Womersley flow in an elastic vessel, while mean EA decreased with radial shear rate. The localized distribution of parabolic or M-shape clustered EA was found in a range of the axial shear rate profile (-15 to 15s-1) at low radial shear rates during a pulsatile cycle. However, the linear formation of rouleaux was realized without local clusters in a rigid wall where the axial shear rate is zero. In vivo, the axial shear rate is usually considered insignificant, especially in straight arteries, but it has a great impact on the disturbed blood flow due to the geometrical properties, such as bifurcations, stenosis, aneurysm, and the cyclic variation of pressure. Our findings regarding axial shear rate provide new insight into the local dynamic distribution of EA, which is a critical player in blood viscosity. These will provide a basis for the computer-aided diagnosis of hemodynamic-based cardiovascular diseases by decreasing the uncertainty in the pulsatile flow calculation.
Collapse
Affiliation(s)
- Cheong-Ah Lee
- Department of Ocean System Engineering, Jeju National University, Jeju-do, Republic of Korea
| | | | - Dong-Guk Paeng
- Department of Ocean System Engineering, Jeju National University, Jeju-do, Republic of Korea.
| |
Collapse
|
6
|
Xiao L, Chu J, Lin C, Zhang K, Chen S, Yang L. Simulation of a tumor cell flowing through a symmetric bifurcated microvessel. Biomech Model Mechanobiol 2023; 22:297-308. [PMID: 36287312 DOI: 10.1007/s10237-022-01649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022]
Abstract
Microvessel bifurcations serve as the major sites of tumor cell adhesion and further extravasation. In this study, the movement, deformation, and adhesion of a circulating tumor cell flowing in a symmetric microvessel with diverging and converging bifurcations were simulated by dissipative particle dynamics combined with a spring-based network model. Effects of the initial position of the CTC, externally-applied acceleration and the presence of RBCs on the motion of the CTC were investigated. The results demonstrated that the CTC released at the centerline of the parent vessel would attach to the vessel wall when arriving at the apex of diverging bifurcation and slide into the daughter branch determined by its centroid deflection and finally form firm adhesion at relatively lower flow rates. As the external acceleration increases, the increasing shear force enlarges the contact area for the adherent CTC on the one hand and reduces the residence time on the other hand. With the presence of RBCs in the bloodstream, the collision between the adherent tumor cell at the diverging bifurcation and flowing RBCs promotes the firm adhesion of CTC at lower flow rates.
Collapse
Affiliation(s)
- Lanlan Xiao
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Jie Chu
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, China
| | - Chensen Lin
- Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, China.
| | - Kaixuan Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Shuo Chen
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, China
| | - Liu Yang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
7
|
Sun J, Han K, Xu M, Li L, Qian J, Li L, Li X. Blood Viscosity in Subjects With Type 2 Diabetes Mellitus: Roles of Hyperglycemia and Elevated Plasma Fibrinogen. Front Physiol 2022; 13:827428. [PMID: 35283762 PMCID: PMC8914209 DOI: 10.3389/fphys.2022.827428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
The viscosity of blood is an indicator in the understanding and treatment of disease. An elevated blood viscosity has been demonstrated in patients with Type 2 Diabetes Mellitus (T2DM), which might represent a risk factor for cardiovascular complications. However, the roles of glycated hemoglobin (HbA1c) and plasma fibrinogen levels on the elevated blood viscosity in subjects with T2DM at different chronic glycemic conditions are still not clear. Here, we evaluate the relationship between the blood viscosity and HbA1c as well as plasma fibrinogen levels in patients with T2DM. The experimental data show that the mean values of the T2DM blood viscosity are higher in groups with higher HbA1c levels, but the correlation between the T2DM blood viscosity and the HbA1c level is not obvious. Instead, when we investigate the influence of plasma fibrinogen level on the blood viscosity in T2DM subjects, we find that the T2DM blood viscosity is significantly and positively correlated with the plasma fibrinogen level. Further, to probe the combined effects of multiple factors (including the HbA1c and plasma fibrinogen levels) on the altered blood viscosity in T2DM, we regroup the experimental data based on the T2DM blood viscosity values at both the low and high shear rates, and our results suggest that the influence of the elevated HbA1c level on blood viscosity is quite limited, although it is an important indicator of glycemic control in T2DM patients. Instead, the elevated blood hematocrit, the enhanced red blood cell (RBC) aggregation induced by the increased plasma fibrinogen level, and the reduced RBC deformation play key roles in the determination of blood viscosity in T2DM. Together, these experimental results are helpful in identifying the key determinants for the altered T2DM blood viscosity, which can be used in future studies of the hemorheological disturbances of T2DM patients.
Collapse
Affiliation(s)
- Jiehui Sun
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Keqin Han
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Lujuan Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Jin Qian
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Deng YX, Chang HY, Li H. Recent Advances in Computational Modeling of Biomechanics and Biorheology of Red Blood Cells in Diabetes. Biomimetics (Basel) 2022; 7:15. [PMID: 35076493 PMCID: PMC8788472 DOI: 10.3390/biomimetics7010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/01/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, a metabolic disease characterized by chronically elevated blood glucose levels, affects about 29 million Americans and more than 422 million adults all over the world. Particularly, type 2 diabetes mellitus (T2DM) accounts for 90-95% of the cases of vascular disease and its prevalence is increasing due to the rising obesity rates in modern societies. Although multiple factors associated with diabetes, such as reduced red blood cell (RBC) deformability, enhanced RBC aggregation and adhesion to the endothelium, as well as elevated blood viscosity are thought to contribute to the hemodynamic impairment and vascular occlusion, clinical or experimental studies cannot directly quantify the contributions of these factors to the abnormal hematology in T2DM. Recently, computational modeling has been employed to dissect the impacts of the aberrant biomechanics of diabetic RBCs and their adverse effects on microcirculation. In this review, we summarize the recent advances in the developments and applications of computational models in investigating the abnormal properties of diabetic blood from the cellular level to the vascular level. We expect that this review will motivate and steer the development of new models in this area and shift the attention of the community from conventional laboratory studies to combined experimental and computational investigations, aiming to provide new inspirations for the development of advanced tools to improve our understanding of the pathogenesis and pathology of T2DM.
Collapse
Affiliation(s)
- Yi-Xiang Deng
- School of Engineering, Brown University, Providence, RI 02912, USA;
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA;
| | - He Li
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
9
|
Numerical simulation of spatiotemporal red blood cell aggregation under sinusoidal pulsatile flow. Sci Rep 2021; 11:9977. [PMID: 33976299 PMCID: PMC8113559 DOI: 10.1038/s41598-021-89286-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/06/2021] [Indexed: 11/08/2022] Open
Abstract
Previous studies on red blood cell (RBC) aggregation have elucidated the inverse relationship between shear rate and RBC aggregation under Poiseuille flow. However, the local parabolic rouleaux pattern in the arterial flow observed in ultrasonic imaging cannot be explained by shear rate alone. A quantitative approach is required to analyze the spatiotemporal variation in arterial pulsatile flow and the resulting RBC aggregation. In this work, a 2D RBC model was used to simulate RBC motion driven by interactional and hydrodynamic forces based on the depletion theory of the RBC mechanism. We focused on the interaction between the spatial distribution of shear rate and the dynamic motion of RBC aggregation under sinusoidal pulsatile flow. We introduced two components of shear rate, namely, the radial and axial shear rates, to understand the effect of sinusoidal pulsatile flow on RBC aggregation. The simulation results demonstrated that specific ranges of the axial shear rate and its ratio with radial shear rate strongly affected local RBC aggregation and parabolic rouleaux formation. These findings are important, as they indicate that the spatiotemporal variation in shear rate has a crucial role in the aggregate formation and local parabolic rouleaux under pulsatile flow.
Collapse
|
10
|
Xiao L, Song X, Chen S. Motion of a tumour cell under the blood flow at low Reynolds number in a curved microvessel. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1856377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- L.L. Xiao
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, People’s Republic of China
| | - X.J. Song
- School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai, People’s Republic of China
| | - S. Chen
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
11
|
Deng Y, Papageorgiou DP, Li X, Perakakis N, Mantzoros CS, Dao M, Karniadakis GE. Quantifying Fibrinogen-Dependent Aggregation of Red Blood Cells in Type 2 Diabetes Mellitus. Biophys J 2020; 119:900-912. [PMID: 32814061 PMCID: PMC7474208 DOI: 10.1016/j.bpj.2020.07.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/12/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023] Open
Abstract
Fibrinogen is regarded as the main glycoprotein in the aggregation of red blood cells (RBCs), a normally occurring phenomenon that has a major impact on blood rheology and hemodynamics, especially under pathological conditions, including type 2 diabetes mellitus (T2DM). In this study, we investigate the fibrinogen-dependent aggregation dynamics of T2DM RBCs through patient-specific predictive computational simulations that invoke key parameters derived from microfluidic experiments. We first calibrate our model parameters at the doublet (a rouleau consisting of two aggregated RBCs) level for healthy blood samples by matching the detaching force required to fully separate RBC doublets with measurements using atomic force microscopy and optical tweezers. Using results from companion microfluidic experiments that also provide in vitro quantitative information on cell-cell adhesive dynamics, we then quantify the rouleau dissociation dynamics at the doublet and multiplet (a rouleau consisting of three or more aggregated RBCs) levels for obese patients with or without T2DM. Specifically, we examine the rouleau breakup rate when it passes through microgates at doublet level and investigate the effect of rouleau alignment in altering its breakup pattern at multiplet level. This study seamlessly integrates in vitro experiments and simulations and consequently enhances our understanding of the complex cell-cell interaction, highlighting the importance of the aggregation and disaggregation dynamics of RBCs in patients at increased risk of microvascular complications.
Collapse
Affiliation(s)
- Yixiang Deng
- Division of Applied Mathematics, Brown University, Providence, Rhode Island; School of Engineering, Brown University, Providence, Rhode Island
| | - Dimitrios P Papageorgiou
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, People's Republic of China
| | - Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Boston VA Healthcare System, Boston, Massachusetts
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | |
Collapse
|