1
|
Pais AIL, Lino Alves J, Belinha J. A Neural Network-Accelerated Approach for Orthopedic Implant Design and Evaluation Through Strain Shielding Analysis. Biomimetics (Basel) 2025; 10:238. [PMID: 40277637 DOI: 10.3390/biomimetics10040238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/13/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
The design of orthopedic implants is a complex challenge, requiring the careful balance of mechanical performance and biological integration to ensure long-term success. This study focuses on the development of a porous femoral stem implant aimed at reducing stiffness and mitigating stress shielding effects. To accelerate the design process, neural networks were trained to predict the optimal density distribution of the implant, enabling rapid optimization. Two initial design spaces were evaluated, revealing the necessity of incorporating the femur's anatomical features into the design process. The trained models achieved a median error near 0 for both conventional and extended design spaces, producing optimized designs in a fraction of the computational time typically required. Finite element analysis (FEA) was employed to assess the mechanical performance of the neural network-generated implants. The results demonstrated that the neural network predictions effectively reduced stress shielding compared to a solid model in 50% of the test cases. While the graded porosity implant design did not show significant differences in stress shielding prevention compared to a uniform porosity design, it was found to be significantly stronger, highlighting its potential for enhanced durability. This work underscores the efficacy of neural network-accelerated design in improving implant development efficiency and performance.
Collapse
Affiliation(s)
- Ana Isabel Lopes Pais
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- INEGI-Institute of Science and Innovation in Mechanical and Industrial Engineering, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal
| | - Jorge Lino Alves
- Department of Mechanical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
- INEGI-Institute of Science and Innovation in Mechanical and Industrial Engineering, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal
| | - Jorge Belinha
- INEGI-Institute of Science and Innovation in Mechanical and Industrial Engineering, Rua Dr. Roberto Frias, 400, 4200-465 Porto, Portugal
- ISEP, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, n. 431, 4249-015 Porto, Portugal
| |
Collapse
|
2
|
Ibrahim P, Jameekornkul P, Panesar A, Attallah MM. The utility of additively manufactured β-Ti latticed hip implants in reducing femoral stress shielding: A finite element study. J Mech Behav Biomed Mater 2025; 168:106999. [PMID: 40209337 DOI: 10.1016/j.jmbbm.2025.106999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/19/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
Total or partial hip replacement procedures have become one of the most frequently performed surgical procedures worldwide. However, a significant and increasing percentage of these patients return for revision surgeries due to stress shielding phenomena and the following implications such as aseptic implant loosening. Various strategies are under investigation to reduce the mechanical properties gap between the implant and the femur tissues. In this study, different development aspects have been merged to improve the design of hip implants and minimise the stress shielding. A low elastic modulus β-Ti TNTZO alloy has been used as the implant material. An actively optimised lattice structure has been embedded into the implant to tune its mechanical properties according to the bone properties of the patient. The study showed that using TNTZO reduced the average stress shielding of the implant by 31 % compared to commercial CoCr implants. Moreover, with two-step TNTZO lattice optimisation, the stress shielding was fully eliminated in all the femur sections, which accelerates the healing process of the bone and extends its long-term life. The study presented a scope for further optimisation to address other objectives, such as implant stiffness and eliminating stress concentration zones.
Collapse
Affiliation(s)
- Peter Ibrahim
- School of Metallurgy and Materials, University of Birmingham, Edgbaston, B15 2TT, UK; Mechanical Engineering Department, Faculty of Engineering, Cairo University, Egypt
| | | | - Ajit Panesar
- Department of Aeronautics, Imperial College London, SW7 2AZ, UK
| | - Moataz M Attallah
- School of Metallurgy and Materials, University of Birmingham, Edgbaston, B15 2TT, UK.
| |
Collapse
|
3
|
Ziaie B, Velay X, Saleem W. Developing porous hip implants implementing topology optimization based on the bone remodelling model and fatigue failure. J Mech Behav Biomed Mater 2025; 163:106864. [PMID: 39700652 DOI: 10.1016/j.jmbbm.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
In contemporary orthopaedic practice, total hip arthroplasty (THA) is a reliable surgical technique for hip joint replacement. However, introducing solid implants into human bone tissue can lead to complications, notably stress shielding and cortical hypertrophy. These issues often stem from mechanical mismatches, particularly stiffness disparities, between the solid implants and the bone tissue. A potential solution lies in adopting porous implant structures with lower stiffness and tuneable mechanical properties based on morphological parameters such as porosity, relative density, and unit cell sizes. This study, which is of significant importance to orthopaedic implant development, aims to develop porous implants that meet biological and manufacturing requirements, employing topology optimization methods to address the challenges associated with conventional solid implants. To achieve this objective, we conducted finite element analyses to compare the stress distribution within healthy bones with solid and newly developed porous implants under real-life loading conditions. The porous implants were designed with triply periodic minimal surface structures, featuring uniform relative density and gradient relative density mapping derived from topology optimization results considering additive manufacturing capabilities and biological constraints. Our findings provide critical insights into the impact on the bone's mechanical environment about the choice of implant. Specifically, solid implants significantly decrease applied stress within the cortical bone, leading to stress shielding and subsequent bone resorption, consistent with bone remodelling principles and Wolff's law. However, replacing the solid implant with uniform porosity with maximum compliance and employing gradient porous implants based on topology optimization methods significantly increases the strain energy density ratio. Specifically, the uniform gyroid, uniform diamond, gradient gyroid, and gradient diamond stems exhibited increases of 43%, 39%, 27%, and 25%, respectively, compared to the solid stem, effectively mitigating the stress shielding effect. However, amongst porous stems, only gradient designs could meet the mechanical strength requirements with a safety factor greater than one, rendering them suitable replacements for solid implants aimed at addressing associated complications. These results hold promise, particularly with the advancements in additive manufacturing methods capable of fabricating these porous implants with acceptable precision.
Collapse
Affiliation(s)
- Babak Ziaie
- Department of Mechanical and Manufacturing Engineering, Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland; Centre for Precision Engineering Material and Manufacturing Research (PEM Research Centre), Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland; Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland.
| | - Xavier Velay
- Department of Mechanical and Manufacturing Engineering, Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland; Centre for Precision Engineering Material and Manufacturing Research (PEM Research Centre), Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland
| | - Waqas Saleem
- Centre for Precision Engineering Material and Manufacturing Research (PEM Research Centre), Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland; School of Mechanical Engineering, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Zhu Y, Jiang Y, Cao Q, Liu H, Lei L, Guan T. Study on Optimization of the Structural Mechanical Properties of Personalized Porous Implant Prosthesis. ACS Biomater Sci Eng 2024; 10:6954-6963. [PMID: 39475555 DOI: 10.1021/acsbiomaterials.4c00268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Porous implant prostheses can effectively reduce the stress shielding effect. Still, the single elastic modulus prosthesis cannot adapt to the individual skeletal variability, so it is necessary to optimize the structural parameters of the prosthesis to overcome the individual variability. In this regard, this study analyzes the law of structural parameters and mechanical properties after selecting the type of porous structure (diamond structure). It proposes the optimization method of the structural parameters on this basis. First, the functional relationship equations between the unit mass of the porous implant prosthesis, the elastic modulus of the porous implant prosthesis, and the structural parameters were established respectively. Second, the support rod length and radius of the porous implant prosthesis are optimized by a genetic algorithm to form the optimization design method of the porous implant prosthesis. Finally, the feasibility and effectiveness of the optimized design of the porosity implanted prosthesis were verified by animal experiments, and the optimized implanted prosthesis with optimized structural parameters increased bone growth by 20-30% compared to the control group in the animal body. The proposed method provides a theoretical basis and technical support for the rehabilitation of patients and the production of prostheses by physicians.
Collapse
Affiliation(s)
- Ye Zhu
- School of Mechanical Engineering, Dalian Jiao Tong University, Dalian 116028, China
| | - Yong Jiang
- Department of Spine Surgery, Dalian Second People's Hospital, Dalian 116011, China
| | - Qian Cao
- Department of Radiology, Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Hongchi Liu
- School of Mechanical Engineering, Dalian Jiao Tong University, Dalian 116028, China
| | - Lei Lei
- School of Mechanical Engineering, Dalian Jiao Tong University, Dalian 116028, China
| | - Tianmin Guan
- School of Mechanical Engineering, Dalian Jiao Tong University, Dalian 116028, China
| |
Collapse
|
5
|
Ziaie B, Velay X, Saleem W. Advanced porous hip implants: A comprehensive review. Heliyon 2024; 10:e37818. [PMID: 39328514 PMCID: PMC11425102 DOI: 10.1016/j.heliyon.2024.e37818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/16/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
The field of orthopaedic implants has experienced significant advancements in recent years, transforming the approach to orthopaedic treatments. Amongst these advancements, porous structures have emerged as a promising solution to address the limitations of traditional solid implants. This comprehensive review paper offers a thorough overview of the importance of advanced porous hip implants, focusing on three key areas bone morphology and biomechanical parameters, complications associated with solid implants, and the benefits of porous structures and porous implants. Understanding the intricate interplay between bone morphology and biomechanical parameters is crucial when designing orthopaedic implants. Mimicking the native bone structure ensures optimal osseointegration, load distribution, and long-term success. Porous implants closely resemble natural bone structures, facilitating improved integration and biomechanical compatibility. Complications with solid implants are a significant concern in orthopaedic procedures. Stress shielding, cortical hypertrophy, and micromotion can lead to implant failure or revision surgeries. By contrast, porous structures promise to mitigate these issues by promoting bone ingrowth, reducing stress concentrations, and providing stability at the bone-implant interface. The benefits of porous structures and porous implants go beyond addressing solid implant complications. These structures enhance bone in-growth potential, strengthening integration and long-term stability. The interconnected porosity promotes nutrient diffusion and new blood vessel formation, supporting healing and minimizing infection risk. Furthermore, porous implants exhibit improved mechanical properties, such as lower elastic modulus and higher energy absorption, that better match those of bone. This feature helps alleviate stress shielding and enhances the overall performance and longevity of the implant. In conclusion, advanced porous implants have tremendous potential in orthopaedics. By closely mimicking native bone structure and reducing complications associated with solid implants, they can revolutionize orthopaedic treatments. Further research and development are warranted to fully exploit the potential of these innovative solutions and improve patient outcomes.
Collapse
Affiliation(s)
- Babak Ziaie
- Department of Mechanical and Manufacturing Engineering, Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland
- Centre for Precision Engineering Material and Manufacturing Research (PEM Research Centre), Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland
- Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, Ash Lane, F91 YW50, Sligo, Ireland
| | - Xavier Velay
- Department of Mechanical and Manufacturing Engineering, Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland
- Centre for Precision Engineering Material and Manufacturing Research (PEM Research Centre), Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland
| | - Waqas Saleem
- Centre for Precision Engineering Material and Manufacturing Research (PEM Research Centre), Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland
- School of Mechanical Engineering, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Deng T, Gong S, Cheng Y, Wang J, Zhang H, Li K, Nie Y, Shen B. Stochastic lattice-based porous implant design for improving the stress transfer in unicompartmental knee arthroplasty. J Orthop Surg Res 2024; 19:499. [PMID: 39175032 PMCID: PMC11340161 DOI: 10.1186/s13018-024-05006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Unicompartmental knee arthroplasty (UKA) has been proved to be a successful treatment for osteoarthritis patients. However, the stress shielding caused by mismatch in mechanical properties between human bones and artificial implants remains as a challenging issue. This study aimed to properly design a bionic porous tibial implant and evaluate its biomechanical effect in reconstructing stress transfer pathway after UKA surgery. METHODS Voronoi structures with different strut sizes and porosities were designed and manufactured with Ti6Al4V through additive manufacturing and subjected to quasi-static compression tests. The Gibson-Ashby model was used to relate mechanical properties with design parameters. Subsequently, finite element models were developed for porous UKA, conventional UKA, and native knee to evaluate the biomechanical effect of tibial implant with designed structures during the stance phase. RESULTS The internal stress distribution on the tibia plateau in the medial compartment of the porous UKA knee was found to closely resemble that of the native knee. Furthermore, the mean stress values in the medial regions of the tibial plateau of the porous UKA knee were at least 44.7% higher than that of the conventional UKA knee for all subjects during the most loading conditions. The strain shielding reduction effect of the porous UKA knee model was significant under the implant and near the load contact sites. For subject 1 to 3, the average percentages of nodes in bone preserving and building region (strain values range from 400 to 3000 μm/m) of the porous UKA knee model, ranging from 68.7 to 80.5%, were higher than that of the conventional UKA knee model, ranging from 61.6 to 68.6%. CONCLUSIONS The comparison results indicated that the tibial implant with designed Voronoi structure offered better biomechanical functionality on the tibial plateau after UKA. Additionally, the model and associated analysis provide a well-defined design process and dependable selection criteria for design parameters of UKA implants with Voronoi structures.
Collapse
Grants
- 2020YFB1711500 the National Key Research and Development Program of China
- ZYYC21004 the 1•3•5 project for disciplines of excellence, West China Hospital, Sichuan University
- ZYGX2022YGRH007 Medico-Engineering Cooperation Funds from University of Electronic Science and Technology by the Fundamental Research Funds for the Central Universities
- 2023YFB4606700 National Key Research and Development Program
- ZYAI24038 1•3•5 project for disciplines of excellence, West China Hospital, Sichuan University
- 2022SCUH0015 0-1 Innovation Project of Sichuan University
- 2023HXFH024 1·3·5 project for disciplines of excellence-Clinical Research Fund, West China Hospital, Sichuan University
- the Interdisciplinary Crossing and Integration of Medicine and Engineering for Talent Training Fund, West China Hospital, Sichuan University
- 1·3·5 project for disciplines of excellence–Clinical Research Fund, West China Hospital, Sichuan University
Collapse
Affiliation(s)
- Tao Deng
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Shan Gong
- Sichuan University-Pittsburgh Institute, Sichuan University, Chengdu, 610207, China
| | - Yiwei Cheng
- Sichuan University-Pittsburgh Institute, Sichuan University, Chengdu, 610207, China
| | - Junqing Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Kang Li
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
- Med-X Center for Informatics, Sichuan University, Chengdu, Sichuan, 610041, P.R. China.
| | - Yong Nie
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bin Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
7
|
Jyoti, Ghosh R. Printable functionally graded tibial implant for TAR: FE study comparing implant materials, FGM properties, and implant designs. Comput Biol Med 2024; 177:108645. [PMID: 38796883 DOI: 10.1016/j.compbiomed.2024.108645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/25/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Tibial implants with functionally graded material (FGM) for total ankle replacement (TAR) can provide stiffness similar to the host tibia bone. The FGM implants with low stiffness reduce stress shielding but may increase implant-bone micromotion. A trade-off between stress shielding and implant-bone micromotion is required if FGMs are to substitute traditionally used Ti and CoCr metal implants. The FGM properties such as material gradation law and volume fraction index may influence the performance of FGM implants. Along with the FGM properties, the design of FGM implants may also have a role to play. The objective of this study was to examine FGM tibial implants for TAR, by comparing implant materials, FGM properties, and implant designs. For this purpose, finite element analysis (FEA) was conducted on 3D FE models of the intact and the implanted tibia bone. The tibial implants were composed of CoCr and Ti, besides them, the FGM of Ti and HA was developed. The FGM implants were modelled using exponential, power, and sigmoid laws. Additionally, for power and sigmoid laws, different volume fraction indices were taken. The effect of implant design was observed by using keel type and stem type TAR fixation designs. The results indicated that FGM implants are better than traditional metal implants. The power law is most suitable for developing FGM implants because it reduces stress shielding. For both power law and sigmoid law, low values of the volume fraction index are preferrable. Therefore, FGM implant developed using power law with 0.1 vol fraction index is ideal with the lowest stress shielding and marginally increased implant-bone micromotion. FGM implants are more useful for keel type fixation design than stem type design. To conclude, with FGMs the major complication of stress shielding can be solved and the longevity and durability of TAR implants can be enhanced.
Collapse
Affiliation(s)
- Jyoti
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Rajesh Ghosh
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India.
| |
Collapse
|
8
|
Minku, Mukherjee K, Ghosh R. Assessment of bone ingrowth around beaded coated tibial implant for total ankle replacement using mechanoregulatory algorithm. Comput Biol Med 2024; 175:108551. [PMID: 38703546 DOI: 10.1016/j.compbiomed.2024.108551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
The long-term performance of porous coated tibial implants for total ankle replacement (TAR) primarily depends on the extent of bone ingrowth at the bone-implant interface. Although attempts were made for primary fixation for immediate post-operative stability, no investigation was conducted on secondary fixation. The aim of this study is to assess bone ingrowth around the porous beaded coated tibial implant for TAR using a mechanoregulatory algorithm. A realistic macroscale finite element (FE) model of the implanted tibia was developed based on computer tomography (CT) data to assess implant-bone micromotions and coupled with microscale FE models of the implant-bone interface to predict bone ingrowth around tibial implant for TAR. The macroscale FE model was subjected to three near physiological loading conditions to evaluate the site-specific implant-bone micromotion, which were then incorporated into the corresponding microscale model to mimic the near physiological loading conditions. Results of the study demonstrated that the implant experienced tangential micromotion ranged from 0 to 71 μm with a mean of 3.871 μm. Tissue differentiation results revealed that bone ingrowth across the implant ranged from 44 to 96 %, with a mean of around 70 %. The average Young's modulus of the inter-bead tissue layer varied from 1444 to 4180 MPa around the different regions of the implant. The analysis postulates that when peak micromotion touches 30 μm around different regions of the implant, it leads to pronounced fibrous tissues on the implant surface. The highest amount of bone ingrowth was observed in the central regions, and poor bone ingrowth was seen in the anterior parts of the implant, which indicate improper osseointegration around this region. This macro-micro mechanical FE framework can be extended to improve the implant design to enhance the bone ingrowth and in future to develop porous lattice-structured implants to predict and enhance osseointegration around the implant.
Collapse
Affiliation(s)
- Minku
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Kaushik Mukherjee
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rajesh Ghosh
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India.
| |
Collapse
|
9
|
Minku, Ghosh R. A macro-micro FE and ANN framework to assess site-specific bone ingrowth around the porous beaded-coated implant: an example with BOX® tibial implant for total ankle replacement. Med Biol Eng Comput 2024; 62:1639-1654. [PMID: 38321323 DOI: 10.1007/s11517-024-03034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024]
Abstract
The use of mechanoregulatory schemes based on finite element (FE) analysis for the evaluation of bone ingrowth around porous surfaces is a viable approach but requires significant computational time and effort. The aim of this study is to develop a combined macro-micro FE and artificial neural network (ANN) framework for rapid and accurate prediction of the site-specific bone ingrowth around the porous beaded-coated tibial implant for total ankle replacement (TAR). A macroscale FE model of the implanted tibia was developed based on CT data. Subsequently, a microscale FE model of the implant-bone interface was created for performing bone ingrowth simulations using mechanoregulatory algorithms. An ANN was trained for rapid and accurate prediction of bone ingrowth. The results predicted by ANN are well comparable to FE-predicted results. Predicted site-specific bone ingrowth using ANN around the implant ranges from 43.04 to 98.24%, with a mean bone ingrowth of around 74.24%. Results suggested that the central region exhibited the highest bone ingrowth, which is also well corroborated with the recent explanted study on BOX®. The proposed methodology has the potential to simulate bone ingrowth rapidly and effectively at any given site over any implant surface.
Collapse
Affiliation(s)
- Minku
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India
| | - Rajesh Ghosh
- Biomechanics Research Laboratory, School of Mechanical & Materials Engineering, Indian Institute of Technology Mandi, Kamand, Mandi, 175075, Himachal Pradesh, India.
| |
Collapse
|
10
|
Soliman MM, Islam MT, Chowdhury MEH, Alqahtani A, Musharavati F, Alam T, Alshammari AS, Misran N, Soliman MS, Mahmud S, Khandakar A. Advancement in total hip implant: a comprehensive review of mechanics and performance parameters across diverse novelties. J Mater Chem B 2023; 11:10507-10537. [PMID: 37873807 DOI: 10.1039/d3tb01469j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The UK's National Joint Registry (NJR) and the American Joint Replacement Registry (AJRR) of 2022 revealed that total hip replacement (THR) is the most common orthopaedic joint procedure. The NJR also noted that 10-20% of hip implants require revision within 1 to 10 years. Most of these revisions are a result of aseptic loosening, dislocation, implant wear, implant fracture, and joint incompatibility, which are all caused by implant geometry disparity. The primary purpose of this review article is to analyze and evaluate the mechanics and performance factors of advancement in hip implants with novel geometries. The existing hip implants can be categorized based on two parts: the hip stem and the joint of the implant. Insufficient stress distribution from implants to the femur can cause stress shielding, bone loss, excessive micromotion, and ultimately, implant aseptic loosening due to inflammation. Researchers are designing hip implants with a porous lattice and functionally graded material (FGM) stems, femur resurfacing, short-stem, and collared stems, all aimed at achieving uniform stress distribution and promoting adequate bone remodeling. Designing hip implants with a porous lattice FGM structure requires maintaining stiffness, strength, isotropy, and bone development potential. Mechanical stability is still an issue with hip implants, femur resurfacing, collared stems, and short stems. Hip implants are being developed with a variety of joint geometries to decrease wear, improve an angular range of motion, and strengthen mechanical stability at the joint interface. Dual mobility and reverse femoral head-liner hip implants reduce the hip joint's dislocation limits. In addition, researchers reveal that femoral headliner joints with unidirectional motion have a lower wear rate than traditional ball-and-socket joints. Based on research findings and gaps, a hypothesis is formulated by the authors proposing a hip implant with a collared stem and porous lattice FGM structure to address stress shielding and micromotion issues. A hypothesis is also formulated by the authors suggesting that the utilization of a spiral or gear-shaped thread with a matched contact point at the tapered joint of a hip implant could be a viable option for reducing wear and enhancing stability. The literature analysis underscores substantial research opportunities in developing a hip implant joint that addresses both dislocation and increased wear rates. Finally, this review explores potential solutions to existing obstacles in developing a better hip implant system.
Collapse
Affiliation(s)
- Md Mohiuddin Soliman
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Mohammad Tariqul Islam
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Muhammad E H Chowdhury
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| | - Abdulrahman Alqahtani
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City 11952, Saudi Arabia
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Farayi Musharavati
- Department of Mechanical & Industrial Engineering, Qatar University, Doha 2713, Qatar.
| | - Touhidul Alam
- Pusat Sains Ankasa (ANGKASA), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia.
| | - Ahmed S Alshammari
- Department of Electrical Engineering, College of Engineering, University Hail, Hail 81481, Saudi Arabia.
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Norbahiah Misran
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Mohamed S Soliman
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
- Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan, 81528, Egypt
| | - Sakib Mahmud
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| | - Amith Khandakar
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
11
|
Computational assessment of growth of connective tissues around textured hip stem subjected to daily activities after THA. Med Biol Eng Comput 2023; 61:525-540. [PMID: 36534373 DOI: 10.1007/s11517-022-02729-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Longer-term stability of uncemented femoral stem depends on ossification at bone-implant interface. Although attempts have been made to assess the amount of bone growth using finite element (FE) analysis in combination with a mechanoregulatory algorithm, there has been little research on tissue differentiation patterns on hip stems with proximal macro-textures. The primary goal of this investigation is to qualitatively compare the formation of connective tissues around a femoral implant with/without macro-textures on its proximal surfaces. This study also predicts formation of different tissue phenotypes and their spatio-temporal distribution around a macro-textured femoral stem under routine activities. Results from the study show that non-textured implants (80 to 94%) encourage fibroplasia compared to that in textured implants (71 to 85.38%) under similar routine activity, which might trigger aseptic loosening of implant. Formation of bone was more on medio-lateral sides and towards proximal regions of Gruen zones 2 and 6, which was found to be in line with clinical observations. Fibroplasia was higher under stair climbing (85 to 91%) compared to that under normal walking (71 to 85.38%). This study suggests that stair climbing, although falls under recommended activity, might be detrimental to patient compared to normal walking in the initial rehabilitation period.
Collapse
|
12
|
Naghavi SA, Tamaddon M, Garcia-Souto P, Moazen M, Taylor S, Hua J, Liu C. A novel hybrid design and modelling of a customised graded Ti-6Al-4V porous hip implant to reduce stress-shielding: An experimental and numerical analysis. Front Bioeng Biotechnol 2023; 11:1092361. [PMID: 36777247 PMCID: PMC9910359 DOI: 10.3389/fbioe.2023.1092361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Stress shielding secondary to bone resorption is one of the main causes of aseptic loosening, which limits the lifespan of hip prostheses and exacerbates revision surgery rates. In order to minimise post-hip replacement stress variations, this investigation proposes a low-stiffness, porous Ti6Al4V hip prosthesis, developed through selective laser melting (SLM). The stress shielding effect and potential bone resorption properties of the porous hip implant were investigated through both in vitro quasi-physiological experimental assays, together with finite element analysis. A solid hip implant was incorporated in this investigation for contrast, as a control group. The stiffness and fatigue properties of both the solid and the porous hip implants were measured through compression tests. The safety factor of the porous hip stem under both static and dynamic loading patterns was obtained through simulation. The porous hip implant was inserted into Sawbone/PMMA cement and was loaded to 2,300 N (compression). The proposed porous hip implant demonstrated a more natural stress distribution, with reduced stress shielding (by 70%) and loss in bone mass (by 60%), when compared to a fully solid hip implant. Solid and porous hip stems had a stiffness of 2.76 kN/mm and 2.15 kN/mm respectively. Considering all daily activities, the porous hip stem had a factor of safety greater than 2. At the 2,300 N load, maximum von Mises stresses on the hip stem were observed as 112 MPa on the medial neck and 290 MPa on the distal restriction point, whereby such values remained below the endurance limit of 3D printed Ti6Al4V (375 MPa). Overall, through the strut thickness optimisation process for a Ti6Al4V porous hip stem, stress shielding and bone resorption can be reduced, therefore proposing a potential replacement for the generic solid implant.
Collapse
Affiliation(s)
- Seyed Ataollah Naghavi
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, United Kingdom
| | - Maryam Tamaddon
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, United Kingdom
| | - Pilar Garcia-Souto
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Stephen Taylor
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, United Kingdom
| | - Jia Hua
- School of Science and Technology, Middlesex University, London, United Kingdom
| | - Chaozong Liu
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, United Kingdom,*Correspondence: Chaozong Liu,
| |
Collapse
|
13
|
Additively manufactured controlled porous orthopedic joint replacement designs to reduce bone stress shielding: a systematic review. J Orthop Surg Res 2023; 18:42. [PMID: 36647070 PMCID: PMC9841707 DOI: 10.1186/s13018-022-03492-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Total joint replacements are an established treatment for patients suffering from reduced mobility and pain due to severe joint damage. Aseptic loosening due to stress shielding is currently one of the main reasons for revision surgery. As this phenomenon is related to a mismatch in mechanical properties between implant and bone, stiffness reduction of implants has been of major interest in new implant designs. Facilitated by modern additive manufacturing technologies, the introduction of porosity into implant materials has been shown to enable significant stiffness reduction; however, whether these devices mitigate stress-shielding associated complications or device failure remains poorly understood. METHODS In this systematic review, a broad literature search was conducted in six databases (Scopus, Web of Science, Medline, Embase, Compendex, and Inspec) aiming to identify current design approaches to target stress shielding through controlled porous structures. The search keywords included 'lattice,' 'implant,' 'additive manufacturing,' and 'stress shielding.' RESULTS After the screening of 2530 articles, a total of 46 studies were included in this review. Studies focusing on hip, knee, and shoulder replacements were found. Three porous design strategies were identified, specifically uniform, graded, and optimized designs. The latter included personalized design approaches targeting stress shielding based on patient-specific data. All studies reported a reduction of stress shielding achieved by the presented design. CONCLUSION Not all studies used quantitative measures to describe the improvements, and the main stress shielding measures chosen varied between studies. However, due to the nature of the optimization approaches, optimized designs were found to be the most promising. Besides the stiffness reduction, other factors such as mechanical strength can be considered in the design on a patient-specific level. While it was found that controlled porous designs are overall promising to reduce stress shielding, further research and clinical evidence are needed to determine the most superior design approach for total joint replacement implants.
Collapse
|
14
|
Liu B, Wang H, Zhang M, Li J, Zhang N, Luan Y, Fang C, Cheng CK. Capability of auxetic femoral stems to reduce stress shielding after total hip arthroplasty. J Orthop Translat 2023; 38:220-228. [DOI: 10.1016/j.jot.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/05/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
|
15
|
Biomechanical performance of Ti-PEEK dental implants in bone: An in-silico analysis. J Mech Behav Biomed Mater 2022; 134:105422. [PMID: 36037710 DOI: 10.1016/j.jmbbm.2022.105422] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/20/2022]
Abstract
Stress-shielding is caused by a significant mismatch in stiffness between bone tissue and Ti alloy dental implants. Therefore, in this study, a Ti-PEEK composite implant was examined and compared with conventional titanium, to determine the behavior of the host bone. Twelve 3D finite element models were modeled with two conditions of marginal cortical bone (with and without marginal bone loss). Six implant designs were constructed. Implant (A) was made with a conventional design (dense titanium), implants (B), (C) and (D) are designed with Ti-PEEK composite (outer layer made of PEEK and inner structures made of Ti with hexagonal, cylindrical, and cross shapes for implants (B), (C) and (D), respectively), the implant (E) is designed with Ti at the upper half section and PEEK at the bottom half section, and the implant (F) is designed with PEEK at the upper half section and Ti at the bottom half section. An axial load of 200 N was applied to the buccal cusp and central fossa of the occlusal surface. The displacements, stress, and equivalent strain were analyzed at the level of bone tissue. The mechanostat of Frost was used to determine the behavior of the cancellous bone under these biomechanical conditions. Results showed that strains were greater in cancellous bone with marginal bone loss than in healthy bone (w/o MBL). When compared to implants (B)-(F), conventional implant (A) did not produce as much strain. Thus, results and analyses suggest that the Ti-PEEK implants outperform compared with the implant (A) in the case of no marginal bone loss. However, the implants (A) and (E) perform equally in terms of bone loss.
Collapse
|
16
|
Mechanical and Fatigue Behavior of Cellular Structure Ti-6Al-4V Alloy Femoral Stems: A Finite Element Analysis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Repetitive loads acting on the hip joint fluctuate according to the type of activities produced by the human body. Repetitive loading is one of the factors that leads to fatigue failure of the implanted stems. The objective of this study is to develop lightweight femoral stems with cubic porous structures that will survive under fatigue loading. Cubic porous structures with different volumetric porosities were designed and subjected to compressive loading using finite element analysis (FEA) to measure the elastic moduli, yield strength, and ultimate tensile strength. These porous structures were employed to design femoral stems containing mechanical properties under compressive loading close to the intact bone. Several arrangements of radial geometrical porous functionally graded (FG) and homogenous Ti-6Al-4V porous femoral stems were designed and grouped under three average porosities of 30%, 50%, and 70% respectively. The designed stems were simulated inside the femoral bone with physiological loads demonstrating three walking speeds of 1, 3, and 5 km/h using ABAQUS. Stresses at the layers of the functionally graded stem were measured and compared with the yield strength of the relevant porous structure to check the possibility of yielding under the subjected load. The Soderberg approach is employed to compute the safety factor (Nf > 1.0) for each design under each loading condition. Several designs were shortlisted as potential candidates for orthopedic implants.
Collapse
|
17
|
Design of Titanium Alloy Femoral Stem Cellular Structure for Stress Shielding and Stem Stability: Computational Analysis. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The main objective of this study is to design titanium alloy femoral stems with cubic porous structures that will be able to reduce stress shielding and promote stem stability. These porous structure designs were introduced into titanium alloy femoral stems as homogeneous and functionally graded porous structures. First, the cubic cellular structures were simulated under compressive loading to measure the yield and modulus of elasticity for various porosity ranges. Based on the selected porosity range, fifteen different arrangements of radial geometrical functionally graded (FG) designs were developed with average porosities of 30, 50, and 70% respectively. Finite element models were developed with physiological loads presenting three different walking speeds (1, 3, and 5 km/h), where the average human body weight was assumed. Stresses at the bone Gruen zones were measured to check the percentage of stress transfer to the bone for each porous stem design and were compared with the bulk stem. Several FG stem designs were shortlisted for further investigation as candidates for hip implants.
Collapse
|
18
|
Liu B, Wang H, Zhang N, Zhang M, Cheng CK. Femoral Stems With Porous Lattice Structures: A Review. Front Bioeng Biotechnol 2021; 9:772539. [PMID: 34869289 PMCID: PMC8637819 DOI: 10.3389/fbioe.2021.772539] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/29/2021] [Indexed: 01/16/2023] Open
Abstract
Cementless femoral stems are prone to stress shielding of the femoral bone, which is caused by a mismatch in stiffness between the femoral stem and femur. This can cause bone resorption and resultant loosening of the implant. It is possible to reduce the stress shielding by using a femoral stem with porous structures and lower stiffness. A porous structure also provides a secondary function of allowing bone ingrowth, thus improving the long-term stability of the prosthesis. Furthermore, due to the advent of additive manufacturing (AM) technology, it is possible to fabricate femoral stems with internal porous lattices. Several review articles have discussed porous structures, mainly focusing on the geometric design, mechanical properties and influence on bone ingrowth. However, the safety and effectiveness of porous femoral stems depend not only on the characteristic of porous structure but also on the macro design of the femoral stem; for example, the distribution of the porous structure, the stem geometric shape, the material, and the manufacturing process. This review focuses on porous femoral stems, including the porous structure, macro geometric design of the stem, performance evaluation, research methods used for designing and evaluating the femoral stems, materials and manufacturing techniques. In addition, this review will evaluate whether porous femoral stems can reduce stress shielding and increase bone ingrowth, in addition to analyzing their shortcomings and related risks and providing ideas for potential design improvements.
Collapse
Affiliation(s)
- Bolun Liu
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Huizhi Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ningze Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Min Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Cheng-Kung Cheng
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Mehboob H, Tarlochan F, Mehboob A, Chang SH, Ramesh S, Harun WSW, Kadirgama K. A novel design, analysis and 3D printing of Ti-6Al-4V alloy bio-inspired porous femoral stem. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:78. [PMID: 32816091 PMCID: PMC7441076 DOI: 10.1007/s10856-020-06420-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 07/27/2020] [Indexed: 05/07/2023]
Abstract
The current study is proposing a design envelope for porous Ti-6Al-4V alloy femoral stems to survive under fatigue loads. Numerical computational analysis of these stems with a body-centered-cube (BCC) structure is conducted in ABAQUS. Femoral stems without shell and with various outer dense shell thicknesses (0.5, 1.0, 1.5, and 2 mm) and inner cores (porosities of 90, 77, 63, 47, 30, and 18%) are analyzed. A design space (envelope) is derived by using stem stiffnesses close to that of the femur bone, maximum fatigue stresses of 0.3σys in the porous part, and endurance limits of the dense part of the stems. The Soderberg approach is successfully employed to compute the factor of safety Nf > 1.1. Fully porous stems without dense shells are concluded to fail under fatigue load. It is thus safe to use the porous stems with a shell thickness of 1.5 and 2 mm for all porosities (18-90%), 1 mm shell with 18 and 30% porosities, and 0.5 mm shell with 18% porosity. The reduction in stress shielding was achieved by 28%. Porous stems incorporated BCC structures with dense shells and beads were successfully printed.
Collapse
Affiliation(s)
- Hassan Mehboob
- Department of Engineering Management, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Faris Tarlochan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar.
| | - Ali Mehboob
- School of Mechanical Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul, 156-756, Republic of Korea
| | - Seung-Hwan Chang
- School of Mechanical Engineering, Chung-Ang University, 221, Heukseok-Dong, Dongjak-Gu, Seoul, 156-756, Republic of Korea
| | - S Ramesh
- Center of Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wan Sharuzi Wan Harun
- Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang, Gambang, Malaysia
| | - Kumaran Kadirgama
- Faculty of Mechanical & Automotive Engineering Technology, Universiti Malaysia Pahang, Gambang, Malaysia
| |
Collapse
|