1
|
Norouz Dolatabadi E, Akbarzadeh Zaky MR, Hashim Abbas F, Eftekhari Milani A, André H, Alizadeh E. Recent advances on modeling retinal disease: Towards efficient gene/drug therapy. Exp Eye Res 2025; 256:110416. [PMID: 40320033 DOI: 10.1016/j.exer.2025.110416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/22/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Advanced modeling biotechnologies are required to understand retinal diseases and develop effective treatments based on the patient's genetic background, lifestyle, and environment. In this work, recent advances in different types of study models that are used in the retinal disease area of research will be explored. The retinal models to be covered are: in vivo systems (human and animal), in vitro organisms (cell lines, primary cells, patient-derived stem cells, microfluidics, organoids, and spheroids), ex vivo models (explant cultures and retinal tissue preparations), and in silico models (computational and mathematical). Moreover, the unique comprehension of models of retinal disease, advantages, and disadvantages will be scrutinized. Finally, innovations/improvements derived from models towards gene and pharmacological therapy that display promise for treating retinal illnesses are elucidated.
Collapse
Affiliation(s)
- Elham Norouz Dolatabadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Fatima Hashim Abbas
- Department of Aesthetic and Laser Techniques, College of Health and Medical Techniques, Al-Mustagbal University, Babylon, Iraq
| | | | - Helder André
- Department of Clinical Neuroscience, Karolinska Institute, Karolinska, Sweden
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Endocrin Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Tambroni N, Tomassetti G, Lombardi S, Repetto R. A mechanical model of ocular bulb vibrations and implications for acoustic tonometry. PLoS One 2024; 19:e0294825. [PMID: 38236823 PMCID: PMC10796012 DOI: 10.1371/journal.pone.0294825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
In this study, we propose a comprehensive mechanical model of ocular bulb vibrations and discuss its implications for acoustic tonometry. The model describes the eye wall as a spherical, pre-stressed elastic shell containing a viscoelastic material and accounts for the interaction between the elastic corneoscleral shell and the viscoelastic vitreous humor. We investigate the natural frequencies of the system and the corresponding vibration modes, expanding the solution in terms of scalar and vector spherical harmonics. From a quantitative point of view, our findings reveal that the eyebulb vibration frequencies significantly depend on IOP. This dependency has two origins: "geometric" stiffening, due to an increase of the pre-stress, and "material" stiffening, due to the nonlinearity of the stress-strain curve of the sclera. The model shows that the second effect is by far dominant. We also find that the oscillation frequencies depend on ocular rigidity, but this dependency is important only at relatively large values of IOP. Thus close to physiological conditions, IOP is the main determinant of ocular vibration frequencies. The vitreous rheological properties are found to mostly influence vibration damping. This study contributes to the understanding of the mechanical behavior of the eye under dynamic conditions and thus has implications for non-contact intraocular pressure measurement techniques, such as acoustic tonometry. The model can also be relevant for other ocular pathological conditions, such as traumatic retinal detachment, which are believed to be influenced by the dynamic behavior of the eye.
Collapse
Affiliation(s)
- Nicoletta Tambroni
- Department of Civil, Chemical and Enivironmental Engineering, University of Genoa, Genoa, Italy
| | - Giuseppe Tomassetti
- Department of Industrial, Electronic, and Mechanical Engineering, Roma Tre University, Rome, Italy
| | | | - Rodolfo Repetto
- Department of Civil, Chemical and Enivironmental Engineering, University of Genoa, Genoa, Italy
| |
Collapse
|
3
|
Wang R, Lovenberg C, Hess O, Todorich B. ROLE OF OPTICAL COHERENCE TOMOGRAPHY IN MANAGEMENT OF ACUTE POSTERIOR VITREOUS DETACHMENT AND ITS COMPLICATIONS. Retina 2023; 43:371-378. [PMID: 36728028 DOI: 10.1097/iae.0000000000003741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Currently, no consensus exists on the role of optical coherence tomography (OCT) imaging in the setting of acute posterior vitreous detachment (PVD). The authors outline the clinical utility of OCT in the management of acute PVD and its complications. METHODS Literature review of OCT findings in association with acute PVD and report of illustrative cases. RESULTS Optical coherence tomography imaging in the setting of acute PVD can provide details of vitreoretinal interface that are difficult to appreciate on biomicroscopy alone including partial PVDs, focal vitreoretinal adhesions and traction, and subclinical macular changes. The presence of vitreous hyperreflective dots on OCT in the premacular space, especially if severe, is highly correlated with the presence of peripheral retinal breaks and development of epiretinal membrane. Advancements in OCT technology, including enhanced vitreous imaging OCT, swept-source OCT, wide-angle OCT, and widefield OCT, allow for increased resolution and expanded field of imaging of the vitreoretinal interface. CONCLUSION Optical coherence tomography imaging is an emerging standard of care in the setting of patients presenting with new flashes and floaters. The authors highlight the benefits of OCT imaging in patients with acute PVD, which includes recognition of the status of the vitreoretinal interface, assistance in identifying high-risk PVDs, and performance of risk assessment that predict future macular pathologic condition.
Collapse
Affiliation(s)
- Rui Wang
- Department of Ophthalmology, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | | | - Olivia Hess
- Stanford University School of Medicine, Stanford, California
| | - Bozho Todorich
- Lehigh Eye Specialists, P.C., Allentown, Pennsylvania
- Susquehanna Retina Center, P.C., Lemoyne, Pennsylvania
| |
Collapse
|
4
|
Zhang P, Yan W, Yan H. Changes in the vitreous body after experimental vitreous hemorrhage in rabbit: An interdisciplinary study. PLoS One 2023; 18:e0281165. [PMID: 36745670 PMCID: PMC9901783 DOI: 10.1371/journal.pone.0281165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To explore the changes in vitreous body after vitreous hemorrhage and assess its prognosis from the perspective of vitreoretinal interface. METHODS The experiment was performed on 32 New Zealand rabbits (64 eyes), weighing 2500-3000 g for 4 months and unlimited gender, which was injected with 0.2 mL of autologous blood into the center of vitreous cavity-the study group (right eyes), and the control one was treated in the same manner with equal volumes of saline. The rabbits were randomly and equally divided into the following four batches according to the days of observation: Days 3, 7, 14, and 30 after injection. IOP and severity grading were evaluated before rabbits' execution and eyeballs were enucleated. The anterior segment was separated to flow out the vitreous body naturally to detect the liquefaction degree and viscosity. Then, chemical composition of electrolytes, PCT and bFGF were determined by colorimetry and enzyme-linked immunosorbent assay (ELISA). Finally, the incidence of posterior vitreous detachment (PVD) was observed after vitreous sampled. The studies were double-blind. RESULTS After injection, the extent of vitreous opacity and coagulum size decreased over time. Both the degree of liquefaction and the length of tow differed significantly between two groups at different time points (all p < 0.001). The liquefaction degree in the study group rose obviously from the Day 14, which the viscosity declined significantly on the initial time. Biochemical markers fluctuated temporarily, except for basic fibroblast growth factor (bFGF), which continued to rise and was correlated with the liquefaction degree (r = 0.658, p < 0.001). Besides, the incidence of PVD increased from the 14th day (p < 0.05), and it was highly positively correlated with the number of macrophages (r = 0.934; p < 0.001). CONCLUSION After vitreous hemorrhage, the changes of the vitreous body are relatively minor earlier (2-4 weeks), but irreversible later. Specifically, the degree of liquefaction increases with a decrease in viscosity, and the chemotaxis of macrophages and bFGF induce incomplete PVD.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Xi’an People’s Hospital (Xi’an Fourth Hospital), Shaanxi Eye Hospital, Affiliated Xi’an Fourth Hospital, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Department of Ophthalmology, General Hospital of Central Theater Command, PLA, Wuhan, Hubei, China
| | - Weijia Yan
- Department of Ophthalmology, University of Heidelberg, Heidelberg, Germany
| | - Hong Yan
- Xi’an People’s Hospital (Xi’an Fourth Hospital), Shaanxi Eye Hospital, Affiliated Xi’an Fourth Hospital, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
5
|
Lake SR, Bottema MJ, Williams KA, Lange T, Reynolds KJ. Retinal Shape-Based Classification of Retinal Detachment and Posterior Vitreous Detachment Eyes. Ophthalmol Ther 2023; 12:155-165. [PMID: 36271185 PMCID: PMC9834476 DOI: 10.1007/s40123-022-00597-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/11/2022] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Retinal detachment is a sight-threatening emergency, with more than half of those affected suffering permanent visual impairment. A diagnostic test to identify eyes at risk before vision is threatened would enable exploration of prophylactic treatment. This report presents the use of irregularities in retinal shape, quantified from optical coherence tomography (OCT) images, as a biomarker for retinal detachment. METHODS OCT images were taken from posterior and mid-peripheral retina of 264 individuals [97 after a posterior vitreous detachment (PVD), 99 after vitrectomy for retinal detachment and 68 after laser for a retinal tear]. Diagnoses were taken from history, examination and OCT. Retinal irregularity was quantified in the frequency domain, and the distribution of irregularity across the regions of the eye was explored to identify features exhibiting the greatest difference between retinal detachment and PVD eyes. Two of these features plus axial length were used to train a quadratic discriminant analysis classifier. Classifier performance was assessed by its sensitivity and specificity in identifying retinal detachment eyes and visualised with a receiver operating characteristic (ROC) curve. RESULTS Validation set specificity was 84% (44/52 PVD eyes correctly labelled) and sensitivity 35% (23/64 retinal detachment eyes identified, p = 0.02). Area under the ROC curve was 0.75 (95% confidence intervals 0.58-0.85). Retinal detachment eyes were significantly more irregular than PVD eyes in the superior retina (0.70 mm versus 0.49 mm, p < 0.05) and supero-temporal retina (1.12 mm versus 0.80 mm, p < 0.05). Lower sensitivity (16/68, 24%) was seen for eyes with a retinal tear without detachment, that were intermediate in size between retinal detachment and PVD eyes. Axial length on its own was a poor classifier. Neither irregularity nor classification were affected by surgery for retinal detachment or the development of PVD. CONCLUSIONS The classifier identified 1/3 of retinal detachment eyes in this sample. In future work, these features can be evaluated as a test for retinal detachment prior to PVD.
Collapse
Affiliation(s)
- Stewart R. Lake
- Flinders Institute for Health and Medical Research, Flinders University, Adelaide, Australia ,Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Murk J. Bottema
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Keryn A. Williams
- Flinders Institute for Health and Medical Research, Flinders University, Adelaide, Australia
| | - Tyra Lange
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Karen J. Reynolds
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Adelaide, Australia
| |
Collapse
|
6
|
Luo RH, Tram NK, Parekh AM, Puri R, Reilly MA, Swindle-Reilly KE. The Roles of Vitreous Biomechanics in Ocular Disease, Biomolecule Transport, and Pharmacokinetics. Curr Eye Res 2023; 48:195-207. [PMID: 35179421 DOI: 10.1080/02713683.2022.2033271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE The biomechanical properties of the vitreous humor and replication of these properties to develop substitutes for the vitreous humor have rapidly become topics of interest over the last two decades. In particular, the behavior of the vitreous humor as a viscoelastic tissue has been investigated to identify its role in a variety of processes related to biotransport, aging, and age-related pathologies of the vitreoretinal interface. METHODS A thorough search and review of peer-reviewed publications discussing the biomechanical properties of the vitreous humor in both human and animal specimens was conducted. Findings on the effects of biomechanics on vitreoretinal pathologies and vitreous biotransport were analyzed and discussed. RESULTS The pig and rabbit vitreous have been found to be most mechanically similar to the human vitreous. Age-related liquefaction of the vitreous creates two mechanically unique phases, with an overall effect of softening the vitreous. However, the techniques used to acquire this mechanical data are limited by the in vitro testing methods used, and the vitreous humor has been hypothesized to behave differently in vivo due in part to its swelling properties. The impact of liquefaction and subsequent detachment of the vitreous humor from the posterior retinal surface is implicated in a variety of tractional pathologies of the retina and macula. Liquefaction also causes significant changes in the biotransport properties of the eye, allowing for significantly faster movement of molecules compared to the healthy vitreous. Recent developments in computational and ex vivo models of the vitreous humor have helped with understanding its behavior and developing materials capable of replacing it. CONCLUSIONS A better understanding of the biomechanical properties of the vitreous humor and how these relate to its structure will potentially aid in improving clinical metrics for vitreous liquefaction, design of biomimetic vitreous substitutes, and predicting pharmacokinetics for intravitreal drug delivery.
Collapse
Affiliation(s)
- Richard H Luo
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Nguyen K Tram
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Ankur M Parekh
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Raima Puri
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Matthew A Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, USA
| | - Katelyn E Swindle-Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA.,Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Cheng Y, Ren T, Wang N. Biomechanical homeostasis in ocular diseases: A mini-review. Front Public Health 2023; 11:1106728. [PMID: 36733902 PMCID: PMC9886686 DOI: 10.3389/fpubh.2023.1106728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/18/2023] Open
Abstract
Diabetes mellitus-induced hyperglycemia is responsible for multiple pathological ocular alternations from vasculopathy to biomechanical dyshomeostasis. Biomechanical homeostasis is crucial to maintain the normal physiological condition of the eyes. Biomechanical features vary in eye tissues regarding different anatomical positions, tissue components, and cellular functions. The disturbance in biomechanical homeostasis may result in different ocular diseases. In this review, we provide a preliminary sketch of the latest evidence on the mechano-environment of the eyeball and its possible influencing factors, thereby underscoring the relationship between the dyshomeostasis of ocular biomechanics and common eye diseases (e.g., diabetic retinopathy, keratoconus, glaucoma, spaceflight-associated neuro-ocular syndrome, retinal vein occlusion and myopia, etc.). Together with the reported evidence, we further discuss and postulate the potential role of biomechanical homeostasis in ophthalmic pathology. Some latest strategies to investigate the biomechanical properties in ocular diseases help unveil the pathological changes at multiple scales, offering references for making new diagnostic and treatment strategies targeting mechanobiology.
Collapse
Affiliation(s)
- Ying Cheng
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Tianmin Ren
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ningli Wang
- Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Eye Center, Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China,Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China,Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China,*Correspondence: Ningli Wang ✉
| |
Collapse
|
8
|
Phillips JD, Hwang ES, Morgan DJ, Creveling CJ, Coats B. Structure and mechanics of the vitreoretinal interface. J Mech Behav Biomed Mater 2022; 134:105399. [PMID: 35963021 PMCID: PMC9552593 DOI: 10.1016/j.jmbbm.2022.105399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/17/2022] [Accepted: 07/24/2022] [Indexed: 12/24/2022]
Abstract
Vitreoretinal mechanics plays an important role in retinal trauma and many sight-threatening diseases. In age-related pathologies, such as posterior vitreous detachment and vitreomacular traction, lingering vitreoretinal adhesions can lead to macular holes, epiretinal membranes, retinal tears and detachment. In age-related macular degeneration, vitreoretinal traction has been implicated in the acceleration of the disease due to the stimulation of vascular growth factors. Despite this strong mechanobiological influence on trauma and disease in the eye, fundamental understanding of the mechanics at the vitreoretinal interface is limited. Clarification of adhesion mechanisms and the role of vitreoretinal mechanics in healthy eyes and disease is necessary to develop innovative treatments for these pathologies. In this review, we evaluate the existing literature on the structure and function of the vitreoretinal interface to gain insight into age- and region-dependent mechanisms of vitreoretinal adhesion. We explore the role of vitreoretinal adhesion in ocular pathologies to identify knowledge gaps and future research areas. Finally, we recommend future mechanics-based studies to address the critical needs in the field, increase fundamental understanding of vitreoretinal mechanisms and disease, and inform disease treatments.
Collapse
Affiliation(s)
- Joseph D Phillips
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Eileen S Hwang
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | - Denise J Morgan
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, United States
| | | | - Brittany Coats
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
9
|
Tram NK, Maxwell CJ, Swindle-Reilly KE. Macro- and Microscale Properties of the Vitreous Humor to Inform Substitute Design and Intravitreal Biotransport. Curr Eye Res 2020; 46:429-444. [PMID: 33040616 DOI: 10.1080/02713683.2020.1826977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Research on the vitreous humor and development of hydrogel vitreous substitutes have gained a rapid increase in interest within the past two decades. However, the properties of the vitreous humor and vitreous substitutes have yet to be consolidated. In this paper, the mechanical properties of the vitreous humor and hydrogel vitreous substitutes were systematically reviewed. The number of publications on the vitreous humor and vitreous substitutes over the years, as well as their respective testing conditions and testing techniques were analyzed. The mechanical properties of the human vitreous were found to be most similar to the vitreous of pigs and rabbits. The storage and loss moduli of the hydrogel vitreous substitutes developed were found to be orders of magnitude higher in comparison to the native human vitreous. However, the reported modulus for human vitreous, which was most commonly tested in vitro, has been hypothesized to be different in vivo. Future studies should focus on testing the mechanical properties of the vitreous in situ or in vivo. In addition to its mechanical properties, the vitreous humor has other biotransport mechanisms and biochemical functions that establish a redox balance and maintain an oxygen gradient inside the vitreous chamber to protect intraocular tissues from oxidative damage. Biomimetic hydrogel vitreous substitutes have the potential to provide ophthalmologists with additional avenues for treating and controlling vitreoretinal diseases while preventing complications after vitrectomy. Due to the proximity and interconnectedness of the vitreous humor to other ocular tissues, particularly the lens and the retina, more interest has been placed on understanding the properties of the vitreous humor in recent years. A better understanding of the properties of the vitreous humor will aid in improving the design of biomimetic vitreous substitutes and enhancing intravitreal biotransport.
Collapse
Affiliation(s)
- Nguyen K Tram
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Courtney J Maxwell
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Katelyn E Swindle-Reilly
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA.,Department of Ophthalmology & Visual Science, The Ohio State University, Columbus, OH, USA
| |
Collapse
|