1
|
Ye Y, Huang H, Li H, Wu G. Role of chemical groups in regulating membrane tension of mBMSCs under stretch stimulation. Colloids Surf B Biointerfaces 2025; 252:114644. [PMID: 40132336 DOI: 10.1016/j.colsurfb.2025.114644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/08/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
As a crucial mechanobiological regulator, the tension of the cell membrane plays a vital role in governing cellular adhesion, proliferation, and differentiation processes. Additionally, it displayed a dynamic response to mechanical microenvironmental changes. This research systematically examines the mechanoresponsive behaviors of mouse bone marrow mesenchymal stem cells (mBMSCs) that are cultured on poly(dimethylsiloxane) (PDMS) substrates which are functionalized with methyl (-CH3), amino (-NH2), and carboxyl (-COOH) groups. Under both static and stretching conditions, it is found that compared with the -CH3 surface, static culture on the -NH2 and -COOH functionalized surfaces significantly promotes the proliferation of mBMSCs and upregulates the expression of extracellular matrix adhesion-related genes, especially focal adhesion kinase (FAK) and integrin β1. Morphometric analysis reveals that there are concomitant increases in the cell spreading area and the number of pseudopods on these modified surfaces. Mechanical stretching stimulation not only amplifies these cellular responses but also leads to more uniform FAK distribution. The assessment by atomic force microscopy (AFM) shows that both chemical functionalization (-NH2/-COOH) and stretch stimulation reduce the deformability of the cell membrane, and the -NH2 modification exhibits a greater membrane-stiffening effect than -COOH.
Collapse
Affiliation(s)
- Yunqing Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Haoyang Huang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Hong Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, PR China
| | - Gang Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
2
|
Kooi R, Schoutens EJD, Stassen OMJA, de Boer J, den Toonder JMJ. Dynamic mechanical cell actuation techniques: a comprehensive comparison. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2025; 7:022007. [PMID: 40043363 DOI: 10.1088/2516-1091/adbcec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/05/2025] [Indexed: 03/21/2025]
Abstract
Mechanical forces of various kinds and magnitudes are crucial to cell and tissue development. At the cell level, mechanotransduction refers to the processes that turn mechanical triggers into a biochemical response. Just like most biological processes, many of these mechanical forces are not static but change dynamically over time. Therefore, to further our fundamental understanding of dynamic mechanotransduction, it is paramount that we have a good toolbox available to specifically trigger and analyze every step of the way from force to phenotype. While many individual studies have described such tools, to our knowledge, a comprehensive overview providing guidance on which tool to use to address specific questions is still lacking. Thus, with this review, we aim to provide an overview and comparison of available dynamic cell stimulation techniques. To this end, we describe the existing experimental techniques, highlighting and comparing their strengths and weaknesses. Furthermore, we provide a one-glance overview of the niches of mechanical stimulation occupied by the different approaches. We finish our review with an outlook on some techniques that could potentially be added to the toolbox in the future. This review can be relevant and interesting for a broad audience, from engineers developing the tools, to biologists and medical researchers utilizing the tools to answer their questions, or to raise new ones.
Collapse
Affiliation(s)
- Roel Kooi
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Emmie J D Schoutens
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Oscar M J A Stassen
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Jan de Boer
- Deparment of Biomedical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Jaap M J den Toonder
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
Ma N, Huang L, Zhou Q, Zhang X, Luo Q, Song G. Mechanical stretch promotes the migration of mesenchymal stem cells via Piezo1/F-actin/YAP axis. Exp Cell Res 2025; 446:114461. [PMID: 39988125 DOI: 10.1016/j.yexcr.2025.114461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/15/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Mesenchymal stem cells (MSCs) have self-renewal ability and the potential for multi-directional differentiation, and their clinical application has promising prospects, but improving the migration ability of MSCs in vivo is one of the challenges. We previously determined mechanical stretch at 1 Hz with 10 % strain for 8 h can significantly promote MSC migration, however, the molecular mechanism remains poorly understood. Here, we reported that the expression and activity of yes-associated protein (YAP) are upregulated after mechanical stretch. As a classical inhibitor of the YAP-TEAD activity and YAP protein, the treatment of verteporfin (VP) suppressed mechanical stretch-promoted MSC migration. We also observed F-actin polymerization after mechanical stretch. Next, we used Latrunculin A (Lat A), the most widely used reagent to depolymerize actin filaments, to treat MSCs and we found that Lat A treatment inhibits MSC migration by suppressing YAP expression and activity. In addition, the protein expression of Piezo1 was also upregulated after mechanical stretch. Knockdown of Piezo1 suppressed mechanical stretch-promoted MSC migration by restraining F-actin polymerization. Together, these findings demonstrate the role of Piezo1/F-actin/YAP signaling pathway in MSC migration under mechanical stretch, providing new experimental evidence for an in-depth understanding the mechanobiological mechanism of MSC migration.
Collapse
Affiliation(s)
- Ning Ma
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Lei Huang
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Qianxu Zhou
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Xiaomei Zhang
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Qing Luo
- College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Guanbin Song
- College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
4
|
Jaddivada S, Gundiah N. Physical biology of cell-substrate interactions under cyclic stretch. Biomech Model Mechanobiol 2024; 23:433-451. [PMID: 38010479 DOI: 10.1007/s10237-023-01783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/14/2023] [Indexed: 11/29/2023]
Abstract
Mechanosensitive focal adhesion (FA) complexes mediate dynamic interactions between cells and substrates and regulate cellular function. Integrins in FA complexes link substrate ligands to stress fibers (SFs) and aid load transfer and traction generation. We developed a one-dimensional, multi-scale, stochastic finite element model of a fibroblast on a substrate that includes calcium signaling, SF remodeling, and FA dynamics. We linked stochastic dynamics, describing the formation and clustering of integrins to substrate ligands via motor-clutches, to a continuum level SF contractility model at various locations along the cell length. We quantified changes in cellular responses with substrate stiffness, ligand density, and cyclic stretch. Results show that tractions and integrin recruitments varied along the cell length; tractions were maximum at lamellar regions and reduced to zero at the cell center. Optimal substrate stiffness, based on maximum tractions exerted by the cell, shifted toward stiffer substrates at high ligand densities. Mean tractions varied biphasically with substrate stiffness and peaked at the optimal substrate stiffness. Cytosolic calcium increased monotonically with substrate stiffness and accumulated near lamellipodial regions. Cyclic stretch increased the cytosolic calcium, integrin concentrations, and tractions at lamellipodial and intermediate regions on compliant substrates. The optimal substrate stiffness under stretch shifted toward compliant substrates for a given ligand density. Stretch also caused cell deadhesions beyond a critical substrate stiffness. FA's destabilized on stiff substrates under cyclic stretch. An increase in substrate stiffness and cyclic stretch resulted in higher fibroblast contractility. These results show that chemomechanical coupling is essential in mechanosensing responses underlying cell-substrate interactions.
Collapse
Affiliation(s)
- Siddhartha Jaddivada
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Namrata Gundiah
- Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
5
|
Wang J, Chatterjee A, Zigan C, Alborn M, Chan DD, Chortos A. Pneumatic Non-Equibiaxial Cell Stretching Device With Live-Cell Imaging. IEEE Trans Biomed Eng 2024; 71:820-830. [PMID: 37747858 DOI: 10.1109/tbme.2023.3319013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
OBJECTIVE Adherent cell behavior is influenced by a complex interplay of factors, including chemical and mechanical signals. In vitro experiments that mimic the mechanical environment experienced by cells in vivo are crucial for understanding cellular behavior and the progression of disease. In this study, we developed and validated a low-cost pneumatically-controlled cell stretcher with independent control of strain in two directions of a membrane, enabling unequal biaxial stretching and real-time microscopy during actuation. METHODS The stretching was achieved by two independent pneumatic channels controlled by electrical signals. We used finite element simulations to compute the membrane's strain field and particle tracking algorithms based on image processing techniques to validate the strain fields and measure the cell orientation and morphology. RESULTS The device can supply uniaxial, equibiaxial, and unequal biaxial stretching up to [Formula: see text] strain in each direction at a frequency of [Formula: see text], with a strain measurement error of less than 1%. Through live cell imaging, we determined that distinct stretching patterns elicited differing responses and alterations in cell orientation and morphology, particularly in terms of cell length and area. CONCLUSION The device successfully provides a large, uniform, and variable strain field for cell experiments, while also enabling real-time, live cell imaging. SIGNIFICANCE This scalable, low-cost platform provides mechanical stimulation to cell cultures by independently controlling strains in two directions. This could contribute to a deeper understanding of cellular response to bio-realistic strains and could be useful for future in vitro drug testing platforms.
Collapse
|
6
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
7
|
Giverso C, Loy N, Lucci G, Preziosi L. Cell orientation under stretch: A review of experimental findings and mathematical modelling. J Theor Biol 2023; 572:111564. [PMID: 37391125 DOI: 10.1016/j.jtbi.2023.111564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
The key role of electro-chemical signals in cellular processes had been known for many years, but more recently the interplay with mechanics has been put in evidence and attracted substantial research interests. Indeed, the sensitivity of cells to mechanical stimuli coming from the microenvironment turns out to be relevant in many biological and physiological circumstances. In particular, experimental evidence demonstrated that cells on elastic planar substrates undergoing periodic stretches, mimicking native cyclic strains in the tissue where they reside, actively reorient their cytoskeletal stress fibres. At the end of the realignment process, the cell axis forms a certain angle with the main stretching direction. Due to the importance of a deeper understanding of mechanotransduction, such a phenomenon was studied both from the experimental and the mathematical modelling point of view. The aim of this review is to collect and discuss both the experimental results on cell reorientation and the fundamental features of the mathematical models that have been proposed in the literature.
Collapse
Affiliation(s)
- Chiara Giverso
- Department of Mathematical Sciences "G.L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10126, Italy.
| | - Nadia Loy
- Department of Mathematical Sciences "G.L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10126, Italy.
| | - Giulio Lucci
- Department of Mathematical Sciences "G.L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10126, Italy.
| | - Luigi Preziosi
- Department of Mathematical Sciences "G.L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin, 10126, Italy.
| |
Collapse
|
8
|
Takemoto F, Uchida-Fukuhara Y, Kamioka H, Okamura H, Ikegame M. Mechanical stretching determines the orientation of osteoblast migration and cell division. Anat Sci Int 2023:10.1007/s12565-023-00716-8. [PMID: 37022568 PMCID: PMC10366257 DOI: 10.1007/s12565-023-00716-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/11/2023] [Indexed: 04/07/2023]
Abstract
Osteoblasts alignment and migration are involved in the directional formation of bone matrix and bone remodeling. Many studies have demonstrated that mechanical stretching controls osteoblast morphology and alignment. However, little is known about its effects on osteoblast migration. Here, we investigated changes in the morphology and migration of preosteoblastic MC3T3-E1 cells after the removal of continuous or cyclic stretching. Actin staining and time-lapse recording were performed after stretching removal. The continuous and cyclic groups showed parallel and perpendicular alignment to the stretch direction, respectively. A more elongated cell morphology was observed in the cyclic group than in the continuous group. In both stretch groups, the cells migrated in a direction roughly consistent with the cell alignment. Compared to the other groups, the cells in the cyclic group showed an increased migration velocity and were almost divided in the same direction as the alignment. To summarize, our study showed that mechanical stretching changed cell alignment and morphology in osteoblasts, which affected the direction of migration and cell division, and velocity of migration. These results suggest that mechanical stimulation may modulate the direction of bone tissue formation by inducing the directional migration and cell division of osteoblasts.
Collapse
Affiliation(s)
- Fumiko Takemoto
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Yoko Uchida-Fukuhara
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
9
|
Das S, Ippolito A, McGarry P, Deshpande VS. Cell reorientation on a cyclically strained substrate. PNAS NEXUS 2022; 1:pgac199. [PMID: 36712366 PMCID: PMC9802216 DOI: 10.1093/pnasnexus/pgac199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/17/2022] [Indexed: 06/18/2023]
Abstract
Cyclic strain avoidance, the phenomenon of cell and cytoskeleton alignment perpendicular to the direction of cyclic strain of the underlying 2D substrate, is an important characteristic of the adherent cell organization. This alignment has typically been attributed to the stress-fiber reorganization although observations clearly show that stress-fiber reorganization under cyclic loading is closely coupled to cell morphology and reorientation of the cells. Here, we develop a statistical mechanics framework that couples the cytoskeletal stress-fiber organization with cell morphology under imposed cyclic straining and make quantitative comparisons with observations. The framework accurately predicts that cyclic strain avoidance stems primarily from cell reorientation away from the cyclic straining rather than cytoskeletal reorganization within the cell. The reorientation of the cell is a consequence of the cell lowering its free energy by largely avoiding the imposed cyclic straining. Furthermore, we investigate the kinetics of the cyclic strain avoidance mechanism and demonstrate that it emerges primarily due to the rigid body rotation of the cell rather than via a trajectory involving cell straining. Our results provide clear physical insights into the coupled dynamics of cell morphology and stress-fibers, which ultimately leads to cellular organization in cyclically strained tissues.
Collapse
Affiliation(s)
- Shuvrangsu Das
- Department of Engineering, Cambridge University, Trumpington St, Cambridge CB2 1PZ, UK
| | - Alberto Ippolito
- Department of Engineering, Cambridge University, Trumpington St, Cambridge CB2 1PZ, UK
| | - Patrick McGarry
- Department of Mechanical and Biomedical Engineering, National University of Ireland, University Road, Galway H91 CF50, Ireland
| | | |
Collapse
|
10
|
Moriel A, Livne A, Bouchbinder E. Cellular orientational fluctuations, rotational diffusion and nematic order under periodic driving. SOFT MATTER 2022; 18:7091-7102. [PMID: 36043855 DOI: 10.1039/d2sm00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability of living cells to sense the physical properties of their microenvironment and to respond to dynamic forces acting on them plays a central role in regulating their structure, function and fate. Of particular importance is the cellular sensitivity and response to periodic driving forces in noisy environments, encountered in vital physiological conditions such as heart beating, blood vessel pulsation and breathing. Here, we first test and validate two predictions of a mean-field theory of cellular reorientation under periodic driving, which combines the minimization of cellular anisotropic elastic energy with active remodeling forces. We then extend the mean-field theory to include uncorrelated, additive nonequilibrium fluctuations, and show that the theory quantitatively agrees with the experimentally observed stationary probability distributions of the cell body orientation, under a range of biaxial periodic driving forces. The fluctuations theory allows the extraction of the dimensionless active noise amplitude of various cell types, and consequently their rotational diffusion coefficient. We then focus on intra-cellular nematic order, i.e. on orientational fluctuations of actin stress fibers around the cell body orientation, and show experimentally that intra-cellular nematic order increases with both the magnitude of the driving forces and the biaxiality strain ratio. These results are semi-quantitatively explained by applying the same cell body fluctuations theory to orientationally correlated actin stress fiber domains. Finally, an estimate of the energy scale of cellular orientational fluctuations for one cell type is shown to be about six order of magnitude larger than the thermal energy at room temperature. The implications of our findings, which make the quantitative analysis of cell mechanosensitivity more accessible, are discussed.
Collapse
Affiliation(s)
- Avraham Moriel
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Ariel Livne
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Diptera.ai, PO Box 39047, Jerusalem 9139002, Israel
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|