1
|
Xu ML, Yang YT, Zeng HZ, Cao YT, Zheng LD, Jin C, Zhu SJ, Zhu R. Finite element modeling and analysis of effect of preexisting cervical degenerative disease on the spinal cord during flexion and extension. Med Biol Eng Comput 2024; 62:1089-1104. [PMID: 38148413 DOI: 10.1007/s11517-023-02993-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Recent studies have emphasized the importance of dynamic activity in the development of myelopathy. However, current knowledge of how degenerative factors affect the spinal cord during motion is still limited. This study aimed to investigate the effect of various types of preexisting herniated cervical disc and the ligamentum flavum ossification on the spinal cord during cervical flexion and extension. A detailed dynamic fluid-structure interaction finite element model of the cervical spine with the spinal cord was developed and validated. The changes of von Mises stress and maximum principal strain within the spinal cord in the period of normal, hyperflexion, and hyperextension were investigated, considering various types and grades of disc herniation and ossification of the ligamentum flavum. The flexion and extension of the cervical spine with spinal canal encroachment induced high stress and strain inside the spinal cord, and this effect was also amplified by increased canal encroachments and cervical hypermobility. The spinal cord might evade lateral encroachment, leading to a reduction in the maximum stress and principal strain within the spinal cord in local-type herniation. Although the impact was limited in the case of diffuse type, the maximum stress tended to appear in the white matter near the encroachment site while compression from both ventral and dorsal was essential to make maximum stress appear in the grey matter. The existence of canal encroachment can reduce the safe range for spinal cord activities, and hypermobility activities may induce spinal cord injury. Besides, the ligamentum flavum plays an important role in the development of central canal syndrome.Significance. This model will enable researchers to have a better understanding of the influence of cervical degenerative diseases on the spinal cord during extension and flexion.
Collapse
Affiliation(s)
- Meng-Lei Xu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Yi-Ting Yang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hui-Zi Zeng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yu-Ting Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Liang-Dong Zheng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chen Jin
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China
| | - Shi-Jie Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China
| | - Rui Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200092, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
2
|
Zheng LD, Cao YT, Yang YT, Xu ML, Zeng HZ, Zhu SJ, Jin C, Yuan Q, Zhu R. Effect of Different Types of Ossification of the Posterior Longitudinal Ligament on the Dynamic Biomechanical Response of the Spinal Cord: A Finite Element Analysis. J Biomech Eng 2023; 145:121002. [PMID: 37578172 DOI: 10.1115/1.4063194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
Ossification of the posterior longitudinal ligament (OPLL) has been identified as an important cause of cervical myelopathy. However, the biomechanical mechanism between the OPLL type and the clinical characteristics of myelopathy remains unclear. The aim of this study was to evaluate the effect of different types of OPLL on the dynamic biomechanical response of the spinal cord. A three-dimensional finite element model of the fluid-structure interaction of the cervical spine with spinal cord was established and validated. The spinal cord stress and strain, cervical range of motion (ROM) in different types of OPLL models were predicted during dynamic flexion and extension activity. Different types of OPLL models showed varying degrees of increase in stress and strain under the process of flexion and extension, and there was a surge toward the end of extension. Larger spinal cord stress was observed in segmental OPLL. For continuous and mixed types of OPLL, the adjacent segments of OPLL showed a dramatic increase in ROM, while the ROM of affected segments was limited. As a dynamic factor, flexion and extension of the cervical spine play an amplifying role in OPLL-related myelopathy, while appropriate spine motion is safe and permitted. Segmental OPLL patients are more concerned about the spinal cord injury induced by large stress, and patients with continuous OPLL should be noted to progressive injuries of adjacent level.
Collapse
Affiliation(s)
- Liang-Dong Zheng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Yu-Ting Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Yi-Ting Yang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Meng-Lei Xu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Hui-Zi Zeng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Shi-Jie Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Chen Jin
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Qing Yuan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Rui Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China;Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| |
Collapse
|
3
|
Yang YT, Zhu SJ, Xu ML, Zheng LD, Cao YT, Yuan Q, Zhang K, Zhu R. The biomechanical effect of different types of ossification of the ligamentum flavum on the spinal cord during cervical dynamic activities. Med Eng Phys 2023; 121:104062. [PMID: 37985028 DOI: 10.1016/j.medengphy.2023.104062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/15/2023] [Accepted: 10/11/2023] [Indexed: 11/22/2023]
Abstract
Ossification of the ligamentum flavum (OLF) is thought to be an influential etiology of myelopathy, as thickened ligamentum flavum causes the stenosis of the vertebral canal, which could subsequently compress the spinal cord. Unfortunately, there was little information available on the effects of cervical OLF on spinal cord compression, such as the relationship between the progression of cervical OLF and nervous system symptoms during dynamic cervical spine activities. In this research, a finite element model of C1-C7 including the spinal cord featured by dynamic fluid-structure interaction was reconstructed and utilized to analyze how different types of cervical OLF affect principal strain and stress distribution in spinal cord during spinal activities towards six directions. For patients with cervical OLF, cervical extension induces higher stress within the spinal cord among all directions. From the perspective of biomechanics, extension leads to stress concentration in the lateral corticospinal tracts or the posterior of gray matter. Low energy damage to the spinal cord would be caused by the high and fluctuating stresses during cervical movements to the affected side for patients with unilateral OLF at lower grades.
Collapse
Affiliation(s)
- Yi-Ting Yang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Shi-Jie Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Meng-Lei Xu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Liang-Dong Zheng
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Yu-Ting Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Qing Yuan
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China
| | - Kai Zhang
- Department of Orthopedics, Shanghai Liqun Hospital, Taopu road 910, Shanghai 200333, China.
| | - Rui Zhu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai 200065, China.
| |
Collapse
|
4
|
Lin D, He Z, Weng R, Zhu Y, Lin Z, Deng Y, Yang Y, Tan J, Wang M, Li Y, Huang G, Yu G, Cai D, Huang X, Huang W. Comparison of biomechanical parameters of two Chinese cervical spine rotation manipulations based on motion capture and finite element analysis. Front Bioeng Biotechnol 2023; 11:1195583. [PMID: 37576989 PMCID: PMC10415076 DOI: 10.3389/fbioe.2023.1195583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
Objective: The purpose of this study was to obtain the stress-strain of the cervical spine structure during the simulated manipulation of the oblique pulling manipulation and the cervical rotation-traction manipulation in order to compare the mechanical mechanism of the two manipulations. Methods: A motion capture system was used to record the key kinematic parameters of operating the two manipulations. At the same time, a three-dimensional finite element model of the C0-T1 full healthy cervical spine was established, and the key kinematic parameters were loaded onto the finite element model in steps to analyze and simulate the detailed process of the operation of the two manipulations. Results: A detailed finite element model of the whole cervical spine including spinal nerve roots was established, and the validity of this 3D finite element model was verified. During the stepwise simulation of the two cervical spine rotation manipulations to the right, the disc (including the annulus fibrosus and nucleus pulposus) and facet joints stresses and displacements were greater in the oblique pulling manipulation group than in the cervical rotation-traction manipulation group, while the spinal cord and nerve root stresses were greater in the cervical rotation-traction manipulation group than in the oblique pulling manipulation group. The spinal cord and nerve root stresses in the cervical rotation-traction manipulation group were mainly concentrated in the C4/5 and C5/6 segments. Conclusion: The oblique pulling manipulation may be more appropriate for the treatment of cervical spondylotic radiculopathy, while cervical rotation-traction manipulation is more appropriate for the treatment of cervical spondylosis of cervical type. Clinicians should select cervical rotation manipulations for different types of cervical spondylosis according to the patient's symptoms and needs.
Collapse
Affiliation(s)
- Dongxin Lin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zaopeng He
- Center for Orthopaedic Surgery, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Hand and Foot Surgery and Plastic Surgery, Affiliated Shunde Hospital of Guangzhou Medical University, Foshan, China
| | - Rui Weng
- The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, Guangzhou, China
| | - Yuhua Zhu
- Department of Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiwei Lin
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, China
| | - Yuping Deng
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yang Yang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jinchuan Tan
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mian Wang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanbin Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Gang Huang
- Department of Orthopedics and Traumatology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Guanghao Yu
- Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Daozhang Cai
- Center for Orthopaedic Surgery, Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Orthopedic Hospital of Guangdong Province, Academy of Orthopedics, Guangzhou, China
| | - Xuecheng Huang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Yamane K, Matsumura T, Sugita M, Fujiya S, Takanosu T, Watanabe N, Shinjo T, Izawa Y, Yonekawa C, Mato T. Spinal cord injury without radiological abnormality due to a fall while using an abdominal roller: A report of two cases. Acute Med Surg 2023; 10:e894. [PMID: 37780607 PMCID: PMC10533954 DOI: 10.1002/ams2.894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/15/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023] Open
Abstract
Background In recent years, various home-use health devices have gained popularity. The abdominal roller is one of these. Spinal cord injury without radiological abnormality is known to occur even with relatively minor injuries, but there are few reports of such injuries caused by a roller. Case Presentation Two cases of spinal cord injuries caused by a roller are reported. In both cases, injuries occurred during the standing rollout by a patient in an inebriated state, and the patients were rushed to an emergency department. Conclusion Because the use of abdominal rollers may result in extremely serious disabilities, it is necessary to emphasize the appropriate use of such equipment.
Collapse
Affiliation(s)
- Kenjiro Yamane
- Department of Emergency and Critical Care MedicineJichi Medical UniversityShimotsukeJapan
| | - Tomohiro Matsumura
- Department of Emergency and Critical Care MedicineJichi Medical UniversityShimotsukeJapan
| | - Manaho Sugita
- Department of Emergency and Critical Care MedicineJichi Medical UniversityShimotsukeJapan
| | - Shoma Fujiya
- Department of Emergency and Critical Care MedicineJichi Medical UniversityShimotsukeJapan
| | - Tomotaka Takanosu
- Department of Emergency and Critical Care MedicineJichi Medical UniversityShimotsukeJapan
| | - Nobutaka Watanabe
- Department of Emergency and Critical Care MedicineJichi Medical UniversityShimotsukeJapan
| | - Takafumi Shinjo
- Department of Emergency and Critical Care MedicineJichi Medical UniversityShimotsukeJapan
| | - Yoshimitsu Izawa
- Department of Emergency and Critical Care MedicineJichi Medical UniversityShimotsukeJapan
| | - Chikara Yonekawa
- Department of Emergency and Critical Care MedicineJichi Medical UniversityShimotsukeJapan
| | - Takashi Mato
- Department of Emergency and Critical Care MedicineJichi Medical UniversityShimotsukeJapan
| |
Collapse
|