1
|
Ogushi K, Yokobori T, Nobusawa S, Shirakura T, Hirato J, Erkhem-Ochir B, Okami H, Dorjkhorloo G, Nishi A, Suzuki M, Otake S, Saeki H, Shirabe K. High Tumoral STMN1 Expression Is Associated with Malignant Potential and Poor Prognosis in Patients with Neuroblastoma. Cancers (Basel) 2023; 15:4482. [PMID: 37760452 PMCID: PMC10526320 DOI: 10.3390/cancers15184482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Stathmin 1 (STMN1), a marker for immature neurons and tumors, controls microtubule dynamics by destabilizing tubulin. It plays an essential role in cancer progression and indicates poor prognosis in several cancers. This potential protein has not been clarified in clinical patients with neuroblastoma. Therefore, this study aimed to assess the clinical significance and STMN1 function in neuroblastoma with and without MYCN amplification. METHODS Using immunohistochemical staining, STMN1 expression was examined in 81 neuroblastoma samples. Functional analysis revealed the association among STMN1 suppression, cellular viability, and endogenous or exogenous MYCN expression in neuroblastoma cell lines. RESULT High levels of STMN1 expression were associated with malignant potential, proliferation potency, and poor prognosis in neuroblastoma. STMN1 expression was an independent prognostic factor in patients with neuroblastoma. Furthermore, STMN1 knockdown inhibited neuroblastoma cell growth regardless of endogenous and exogenous MYCN overexpression. CONCLUSION Our data suggest that assessing STMN1 expression in neuroblastoma could be a powerful indicator of prognosis and that STMN1 might be a promising therapeutic candidate against refractory neuroblastoma with and without MYCN amplification.
Collapse
Affiliation(s)
- Kenjiro Ogushi
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| | - Takehiko Yokobori
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
- Division of Integrated Oncology Research, Initiative for Advanced Research (GIAR), Gunma University, Maebashi 371-8511, Japan;
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (S.N.); (T.S.)
| | - Takahiro Shirakura
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi 371-8511, Japan; (S.N.); (T.S.)
| | - Junko Hirato
- Department of Pathology, Public Tomioka General Hospital, Tomioka 370-2393, Japan;
| | - Bilguun Erkhem-Ochir
- Division of Integrated Oncology Research, Initiative for Advanced Research (GIAR), Gunma University, Maebashi 371-8511, Japan;
| | - Haruka Okami
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| | - Gendensuren Dorjkhorloo
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| | - Akira Nishi
- Department of Surgery, Gunma Children’s Medical Center, Shibukawa 377-8577, Japan;
| | - Makoto Suzuki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
- Department of Surgery, Iwate Medical University School of Medicine, Morioka 028-3695, Japan
| | - Sayaka Otake
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| | - Hiroshi Saeki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| | - Ken Shirabe
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi 371-8511, Japan; (K.O.); (H.O.); (G.D.); (M.S.); (S.O.); (H.S.); (K.S.)
| |
Collapse
|
2
|
Liu R, Liang X, Guo H, Li S, Yao W, Dong C, Wu J, Lu Y, Tang J, Zhang H. STNM1 in human cancers: role, function and potential therapy sensitizer. Cell Signal 2023:110775. [PMID: 37331415 DOI: 10.1016/j.cellsig.2023.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
STMN1 belongs to the stathmin gene family, it encodes a cytoplasmic phosphorylated protein, stathmin1, which is commonly observed in vertebrate cells. STMN1 is a structural microtubule-associated protein (MAP) that binds to microtubule protein dimers rather than microtubules, with each STMN1 binding two microtubule protein dimers and preventing their aggregation, leading to microtubule instability. STMN1 expression is elevated in a number of malignancies, and inhibition of its expression can interfere with tumor cell division. Its expression can change the division of tumor cells, thereby arresting cell growth in the G2/M phase. Moreover, STMN1 expression affects tumor cell sensitivity to anti-microtubule drug analogs, including vincristine and paclitaxel. The research on MAPs is limited, and new insights on the mechanism of STMN1 in different cancers are emerging. The effective application of STMN1 in cancer prognosis and treatment requires further understanding of this protein. Here, we summarize the general characteristics of STMN1 and outline how STMN1 plays a role in cancer development, targeting multiple signaling networks and acting as a downstream target for multiple microRNAs, circRNAs, and lincRNAs. We also summarize recent findings on the function role of STMN1 in tumor resistance and as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Haiwei Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Chenfang Dong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajun Wu
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianming Tang
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Li L, Zhao J, Zhang Q, Tao Y, Shen C, Li R, Ma Z, Li J, Wang Z. Cancer Cell-Derived Exosomes Promote HCC Tumorigenesis Through Hedgehog Pathway. Front Oncol 2021; 11:756205. [PMID: 34692546 PMCID: PMC8529041 DOI: 10.3389/fonc.2021.756205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) accounts for more than 80% of primary liver cancers and is one of the leading causes of cancer-related death in many countries. Cancer cell-derived exosomes are shown to mediate communications between cancer cells and the microenvironment, promoting tumorigenesis. Hedgehog signaling pathway plays important roles in cancer development of HCC. Methods Exosomes were isolated from culture medium of HCC cell lines PLC/PRF/5 and MHCC-97H and were found to promote cancer cell growth measured with cell proliferation and colony formation assay. HCC cells cultured with cancer cell-derived exosome had increased cancer stem cell (CSC) population demonstrated by increased cell sphere formation CSC marker expressions. Hedgehog protein Shh was found to be highly expressed in these two HCC cell lines and preferably carried by exosomes. When Shh was knocked down with shRNA, the resulting exosomes had a reduced effect on promoting cancer cell growth or CSC population increase compared to normal cell-derived exosomes. Results The ability of PLC/PRF/5 cells to form tumor in a xenograft model was increased by the addition of the exosomes from control cancer cells but not the exosomes from Shh knocked down cancer cells. Finally, the higher plasma Exo-Shh levels were associated with later tumor stages, higher histological grades, multiple tumors, and higher recurrence rates. Conclusion This study demonstrated that HCC cells secreted Shh via exosome and promote tumorigenesis through the activated Hedgehog pathway.
Collapse
Affiliation(s)
- Li Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Jing Zhao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Quanbao Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Yifeng Tao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Conghuan Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Ruidong Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Zhengyu Ma
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Jianhua Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Organ Transplantation, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Nakajima T, Kozuma M, Hirasawa T, Matsunaga YT, Tomooka Y. Extracellular matrix components and elasticity regulate mouse vaginal epithelial differentiation induced by mesenchymal cells†. Biol Reprod 2021; 104:1239-1248. [PMID: 33693507 DOI: 10.1093/biolre/ioab041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/20/2021] [Accepted: 03/01/2021] [Indexed: 11/12/2022] Open
Abstract
Oviduct, uterus, and vagina are derived from Müllerian ducts. But only in the vagina, the epithelium differentiates into stratified layers. Organ-specific secreted factors derived from the stroma of a neonatal mouse induce epithelial differentiation in the female reproductive tracts. However, the effects of the components and mechanical property of extracellular matrix (ECM) on the regulation of gene expression in the mesenchymal cells of neonatal stroma and differentiation of epithelium in the female reproductive tracts have been overlooked. In the present study, we have developed a simple 3D neonatal vaginal model using clonal cell lines to study the effect of ECM's components and stiffness on the epithelial stratification. Transcriptome analysis was performed by DNA-microarray to identify the components of ECM involved in the differentiation of vaginal epithelial stratification. The knockdown experiment of the candidate genes relating to vaginal epithelial stratification was focused on fibromodulin (Fmod), a collagen cross-linking protein. FMOD was essential for the expression of Bmp4, which encodes secreted factors to induce the epithelial stratification of vaginal mesenchymal cells. Furthermore, stiffer ECM as a scaffold for epithelial cells is necessary for vaginal epithelial stratification. Therefore, the components and stiffness of ECM are both crucial for the epithelial stratification in the neonatal vagina.
Collapse
Affiliation(s)
- Tadaaki Nakajima
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.,Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Miyabi Kozuma
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Tomoko Hirasawa
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| | | | - Yasuhiro Tomooka
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
5
|
Sonic Hedgehog Signature in Pediatric Primary Bone Tumors: Effects of the GLI Antagonist GANT61 on Ewing's Sarcoma Tumor Growth. Cancers (Basel) 2020; 12:cancers12113438. [PMID: 33228057 PMCID: PMC7699338 DOI: 10.3390/cancers12113438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023] Open
Abstract
Simple Summary The poor clinical outcomes for Osteosarcoma (OS) and Ewing’s sarcoma (ES) patients underscore the urgency of developing novel therapeutic strategies for these pathologies. In this context, the emerging role of Sonic hedgehog (SHH) signaling in cancer has been critically evaluated, focusing on the potential for targeting SHH signaling as an anticancer strategy. The aims of this work were (1) to highlight and to compare a possible SHH/Gli signature between OS and ES, (2) to strengthen our knowledge concerning the role of EWS-FLI1 in the SHH signature in ES and (3) to evaluate the effect of the specific Gli inhibitor GANT61 in vivo on the growth of ES tumors using an orthotopic mice model. Our work identifies Gli1 as a promising therapeutic target in ES and demonstrates that GANT61, through inhibition of Gli1 transcriptional activity, may be a promising therapeutic strategy hindering ES tumor progression, and specifically primary tumor growth. Abstract Osteosarcoma (OS) and Ewing’s sarcoma (ES) are the most common malignant bone tumors in children and adolescents. In many cases, the prognosis remains very poor. The Sonic hedgehog (SHH) signaling pathway, strongly involved in the development of many cancers, regulate transcription via the transcriptional factors Gli1-3. In this context, RNAseq analysis of OS and ES cell lines reveals an increase of some major compounds of the SHH signaling cascade in ES cells, such as the transcriptional factor Gli1. This increase leads to an augmentation of the transcriptional response of Gli1 in ES cell lines, demonstrating a dysregulation of Gli1 signaling in ES cells and thus the rationale for targeting Gli1 in ES. The use of a preclinical model of ES demonstrates that GANT61, an inhibitor of the transcriptional factor Gli1, reduces ES primary tumor growth. In vitro experiments show that GANT61 decreases the viability of ES cell, mainly through its ability to induce caspase-3/7-dependent cell apoptosis. Taken together, these results demonstrates that GANT61 may be a promising therapeutic strategy for inhibiting the progression of primary ES tumors.
Collapse
|
6
|
Yang R, Chen H, Guo D, Dong Y, Miller DD, Li W, Mahato RI. Polymeric Micellar Delivery of Novel Microtubule Destabilizer and Hedgehog Signaling Inhibitor for Treating Chemoresistant Prostate Cancer. J Pharmacol Exp Ther 2019; 370:864-875. [PMID: 30996033 PMCID: PMC6806635 DOI: 10.1124/jpet.119.256628] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 04/12/2019] [Indexed: 02/06/2023] Open
Abstract
Castration-resistant prostate cancer that has become resistant to docetaxel (DTX) represents one of the greatest clinical challenges in the management of this malignancy. There is an urgent need to develop novel therapeutic agents to overcome chemoresistance and improve the overall survival of patients. We have designed a novel microtubule destabilizer (2-(4-hydroxy-1H-indol-3-yl)-1H-imidazol-4-yl)(3,4,5-trimethoxyphenyl)methanone (QW-296) and combined it with a newly synthesized hedgehog (Hh) signaling pathway inhibitor 2-chloro-N 1-[4-chloro-3-(2-pyridinyl)phenyl]-N 4,N 4- bis(2-pyridinylmethyl)-1,4-benzenedicarboxamide (MDB5) to treat taxane-resistant (TXR) prostate cancer. The combination of QW-296 and MDB5 exhibited stronger anticancer activity toward DU145-TXR and PC3-TXR cells and suppressed tumor colony formation when compared with single-drug treatment. Because these drugs are hydrophobic, we synthesized the mPEG-p(TMC-MBC) [methoxy-poly(ethylene glycol)-block-poly(trimethylene carbonate-co-2-methyl-2-benzoxycarbonyl-propylene carbonate)] copolymer, which could self-assemble into micelles with loading capacities of 8.13% ± 0.75% and 9.12% ± 0.69% for QW-296 and MDB5, respectively. Further, these micelles provided controlled the respective drug release of 58% and 42% release of QW-296 and MDB5 within 24 hours when dialyzed against PBS (pH 7.4). We established an orthotopic prostate tumor in nude mice using stably luciferase expressing PC3-TXR cells. There was maximum tumor growth inhibition in the group treated with the combination therapy of QW-296 and MDB5 in micelles compared with their monotherapies or combination therapy formulated in cosolvent. The overall findings suggest that combination therapy with QW-296 and MDB5 has great clinical potential to treat TXR prostate cancer, and copolymer mPEG-p(TMC-MBC) could serve as an effective delivery vehicle to boost therapeutic efficacy in vivo.
Collapse
Affiliation(s)
- Ruinan Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (R.Y., D.G., Y.D., R.I.M.) and Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee (H.C., D.D.M., W.L.)
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (R.Y., D.G., Y.D., R.I.M.) and Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee (H.C., D.D.M., W.L.)
| | - Dawei Guo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (R.Y., D.G., Y.D., R.I.M.) and Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee (H.C., D.D.M., W.L.)
| | - Yuxiang Dong
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (R.Y., D.G., Y.D., R.I.M.) and Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee (H.C., D.D.M., W.L.)
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (R.Y., D.G., Y.D., R.I.M.) and Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee (H.C., D.D.M., W.L.)
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (R.Y., D.G., Y.D., R.I.M.) and Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee (H.C., D.D.M., W.L.)
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska (R.Y., D.G., Y.D., R.I.M.) and Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee (H.C., D.D.M., W.L.)
| |
Collapse
|
7
|
Yurong L, Biaoxue R, Wei L, Zongjuan M, Hongyang S, Ping F, Wenlong G, Shuanying Y, Zongfang L. Stathmin overexpression is associated with growth, invasion and metastasis of lung adenocarcinoma. Oncotarget 2018; 8:26000-26012. [PMID: 27494889 PMCID: PMC5432233 DOI: 10.18632/oncotarget.11006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 07/09/2016] [Indexed: 01/17/2023] Open
Abstract
Stathmin has been investigated as a tumor biomarker because it appear to be associated with tumorigenesis; however, the effect of stathmin in lung adenocarcinoma (LAC) remains poorly understood. The purpose of this study was to examine the expression of stathmin in lung adenocarcinoma, and to disclose the relationship between them. The expression of stathmin was examined by RT-PCR, IHC and Western blot. Furthermore, small interfering RNA (shRNA)-mediated silencing of stathmin was employed in LAC cells to investigate cell proliferation, invasion and apoptosis. In this study, we showed that overexpression of stathmin was significantly associated with poorly differentiated, lymph node metastasis and advance TNM stages of lung adenocarcinoma. And silencing of stathmin expression inhibited the proliferation, migration and invasion of lung adenocarcinoma PC-9 cells, and retarded the growth of PC-9 cells xenografts in nude mice. Additionally, the anticarcinogenic efficacy of stathmin silencing might be involved in P38 and MMP2 signaling pathways. In conclusion, these results showed that stathmin expression was significantly up-regulated in LAC, which may act as a biomarker for LAC. Furthermore, silence of stathmin inhibiting LAC cell growth indicated that stathmin may be a promising molecular target for LAC therapy.
Collapse
Affiliation(s)
- Lin Yurong
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Rong Biaoxue
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Li Wei
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ming Zongjuan
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Shi Hongyang
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Fang Ping
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Gao Wenlong
- Department of Statistics and Epidemiology, Medical College, Lanzhou University, Lanzhou, China
| | - Yang Shuanying
- Department of Respiratory Medicine, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Li Zongfang
- Department of Elderly Surgery, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Tong W, Qiu L, Qi M, Liu J, Hu K, Lin W, Huang Y, Fu J. GANT-61 and GDC-0449 induce apoptosis of prostate cancer stem cells through a GLI-dependent mechanism. J Cell Biochem 2018; 119:3641-3652. [PMID: 29231999 DOI: 10.1002/jcb.26572] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 11/30/2017] [Indexed: 02/05/2023]
Abstract
Aberrant reactivation of the Sonic Hedgehog (SHH) signaling pathway promotes prostate cancer (PC) growth and progression by regulating cancer-related genes through its downstream effectors GLI1 and GLI2. Therefore, targeting the SHH-GLI pathway provides an alternative approach to avoid cancer progression. The aim of this study was to delineate the underlying molecular mechanisms by which GDC-0449 (a SMO receptor inhibitor) and GANT-61 (a GLI transcription factor inhibitor) regulate cellular proliferation and self-renewal in human PC stem cells (ProCSCs). Inhibition of the SHH signaling pathway by GANT-61 induced apoptosis with more efficacy than by GDC-0449 in ProCSCs and PC cell lines. GLI1 and GLI2 expression, promoter-binding activity and GLI-responsive luciferase reporter activity were all decreased with either GDC-0449 or GANT-61 treatment. Expression of Fas, DR4, DR5, and cleavage of caspase-3 and PARP were increased, whereas levels of PDGFR-α and Bcl-2 were reduced. Double knockout of GLI1 and GLI2 using shRNA abolished the effects observed with either GDC-0449 or GANT-61 treatment. Collectively, our results showed that GANT-61 and GDC-0449 induced ProCSC apoptosis by directly or indirectly inhibiting the activities of the GLI family transcription factors, may enhance the efficacy of PC treatment.
Collapse
Affiliation(s)
- Wangxia Tong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China.,Department of Hepatology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, P.R. China
| | - Lei Qiu
- Division of Abdominal Cancer, West China Hospital, Sichuan University and National Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Meng Qi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| | - Jianbing Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| | - Kaihui Hu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| | - Wenxiong Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China.,Institute of Modern Seed Industrial Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| | - Yan Huang
- Center for Nuclear Medicine, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Junsheng Fu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China.,Institute of Modern Seed Industrial Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, P.R. China
| |
Collapse
|
9
|
Yang R, Mondal G, Wen D, Mahato RI. Combination therapy of paclitaxel and cyclopamine polymer-drug conjugates to treat advanced prostate cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:391-401. [PMID: 27520724 DOI: 10.1016/j.nano.2016.07.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/26/2016] [Accepted: 07/31/2016] [Indexed: 01/24/2023]
Abstract
Repeated treatments with chemotherapeutic agent(s) fail due to cancer stem cells (CSCs) and chemoresistance regulated by microRNAs (miRNA) whose expression alters owing to dysfunctional signaling pathways including Hedgehog (Hh) signaling. We previously demonstrated the combination of Hh inhibitor cyclopamine (CYP) and paclitaxel (PTX) effectively inhibit PTX-resistant cells and side population, a cell fraction rich in CSCs. In this study, we synthesized mPEG-b-PCC-g-PTX-g-DC (P-PTX) and mPEG-b-PCC-g-CYP-g-DC (P-CYP) polymer-drug conjugates, which they self-assembled into micelles. The combination of P-PTX and P-CYP alleviated PTX resistance and suppressed tumor colony formation. Further, combination therapy inhibited Hh signaling and up-regulated tumor suppressor miRNAs. We established orthotopic prostate tumor in nude mice and there was significant tumor growth inhibition in the group treated with the combination therapy of P-PTX and P-CYP compared with monotherapy. In conclusion, this combination therapy of P-PTX and P-CYP has the potential to treat chemoresistant prostate cancer.
Collapse
Affiliation(s)
- Ruinan Yang
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Goutam Mondal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Di Wen
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE.
| |
Collapse
|
10
|
Aberrant GLI1 Activation in DNA Damage Response, Carcinogenesis and Chemoresistance. Cancers (Basel) 2015; 7:2330-51. [PMID: 26633513 PMCID: PMC4695894 DOI: 10.3390/cancers7040894] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/12/2015] [Accepted: 11/20/2015] [Indexed: 12/18/2022] Open
Abstract
The canonical hedgehog (HH) pathway is a multicomponent signaling cascade (HH, protein patched homolog 1 (PTCH1), smoothened (SMO)) that plays a pivotal role during embryonic development through activation of downstream effector molecules, namely glioma-associated oncogene homolog 1 (GLI1), GLI2 and GLI3. Activation of GLIs must be tightly regulated as they modulate target genes which control tissue patterning, stem cell maintenance, and differentiation during development. However, dysregulation or mutations in HH signaling leads to genomic instability (GI) and various cancers, for example, germline mutation in PTCH1 lead to Gorlin syndrome, a condition where patients develop numerous basal cell carcinomas and rarely rhabdomyosarcoma (RMS). Activating mutations in SMO have also been recognized in sporadic cases of medulloblastoma and SMO is overexpressed in many other cancers. Recently, studies in several human cancers have shown that GLI1 expression is independent from HH ligand and canonical intracellular signaling through PTCH and SMO. In fact, this aberrantly regulated GLI1 has been linked to several non-canonical oncogenic growth signals such as Kirsten rat sarcoma viral oncogene homolog (KRAS), avian myelocytomatosis virus oncogene cellular homolog (C-MYC), transforming growth factor β (TGFβ), wingless-type MMTV integration site family (WNT) and β-catenin. Recent studies from our lab and other independent studies demonstrate that aberrantly expressed GLI1 influences the integrity of several DNA damage response and repair signals, and if altered, these networks can contribute to GI and impact tumor response to chemo- and radiation therapies. Furthermore, the ineffectiveness of SMO inhibitors in clinical studies argues for the development of GLI1-specific inhibitors in order to develop effective therapeutic modalities to treat these tumors. In this review, we focus on summarizing current understanding of the molecular, biochemical and cellular basis for aberrant GLI1 expression and discuss GLI1-mediated HH signaling on DNA damage responses, carcinogenesis and chemoresistance.
Collapse
|
11
|
Li J, Hu G, Kong F, Wu K, Song K, He J, Sun W. Elevated STMN1 Expression Correlates with Poor Prognosis in Patients with Pancreatic Ductal Adenocarcinoma. Pathol Oncol Res 2015; 21:1013-20. [PMID: 25791566 DOI: 10.1007/s12253-015-9930-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 03/05/2015] [Indexed: 01/09/2023]
Abstract
STMN1 is a cytosolic phosphoprotein that not only participates in cell division, but also plays an important role in other microtubule-dependent processes, such as cell motility. Furthermore, STMN1 acts as a "relay protein" in several intracellular signaling pathways that influence cell growth and differentiation. Thus, STMN1 is likely to support cellular processes essential for tumor progression: survival and migration. Indeed, elevated STMN1 expression has been reported in various types of human malignancies and is correlated with poor prognosis in these human malignancies. However, the clinical and prognostic significance of STMN1 in pancreatic ductal adenocarcinoma (PDAC) remains unknown. Thus, we assessed STMN1 in PDAC in this retrospective study. We first examined STMN1 expression in PDAC tissues from 27 cases and matched adjacent non-cancerous tissues by quantitative polymerase chain reaction (PCR) and western blot analyses. Next, immunohistochemistry was used to evaluate STMN1 expression in 87 archived paraffin-embedded PDAC specimens. STMN1 mRNA and protein expression levels were to a large extent up-regulated in PDAC tissue compared with their adjacent non-cancerous tissues. Moreover, STMN1 expression was closely correlated with histological differentiation, lymphatic metastasis, and TNM stage (P = 0.023, 0.047, and 0.014, respectively). In addition, PDAC patients with higher STMN1 expression died sooner than those with lower STMN1 expression (P < 0.01). Multivariate analysis demonstrated that STMN1 expression was an independent prognostic factor for PDAC patients (P < 0.01). Herein, we provide the first evidence that up-regulated STMN1 may contribute to tumor progression and poor prognosis in PDAC patients and may serve as a novel prognostic marker.
Collapse
Affiliation(s)
- Jian Li
- Department of PET center, Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Zheng X, Zeng W, Gai X, Xu Q, Li C, Liang Z, Tuo H, Liu Q. Role of the Hedgehog pathway in hepatocellular carcinoma (review). Oncol Rep 2013; 30:2020-6. [PMID: 23970376 DOI: 10.3892/or.2013.2690] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 08/02/2013] [Indexed: 01/20/2023] Open
Abstract
The Hedgehog (Hh) pathway is an evolutionarily conserved signaling mechanism that controls many aspects of cell differentiation and the development of tissues and organs during embryogenesis. Early investigations have focused on the effects of Hh activity on the development of organs including skin, gut, the nervous system and bone. However, in addition to normal developmental processes, these investigations also found that Hh signaling is involved in aberrant proliferation and malignant transformation. Consequently, the role of Hh in cancer pathology, and its modulation by environmental factors is the subject of many investigations. Numerous environmental toxins, alcohol, and hepatitis viruses can cause hepatocellular carcinoma (HCC), which is the most common form of liver cancer. Significant hyperactivation of Hh signaling has been observed in liver injury and cirrhosis which often leads to the development of HCC lesions. Moreover, Hh activity plays an important role in the progression of HCC. Here, we review findings relevant to our understanding of the role of Hh signaling in HCC pathogenesis.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Gonnissen A, Isebaert S, Haustermans K. Hedgehog signaling in prostate cancer and its therapeutic implication. Int J Mol Sci 2013; 14:13979-4007. [PMID: 23880852 PMCID: PMC3742228 DOI: 10.3390/ijms140713979] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/28/2013] [Accepted: 07/01/2013] [Indexed: 01/02/2023] Open
Abstract
Activation of Hedgehog (Hh) signaling is implicated in the development and progression of several tumor types, including prostate cancer, which is still the most common non-skin malignancy and the third leading cause of cancer-related mortality in men in industrialized countries worldwide. Several studies have indicated that the Hh pathway plays a crucial role in the development as well as in the progression of this disease to more aggressive and even therapy-resistant disease states. Moreover, preclinical data have shown that inhibition of Hh signaling has the potential to reduce prostate cancer invasiveness and metastatic potential. Clinical trials investigating the benefit of Hh inhibitors in patients with prostate cancer have recently been initiated. However, acquired drug resistance has already been observed in other tumor types after long-term Hh inhibition. Therefore, combining Hh inhibitors with ionizing radiation, chemotherapy or other molecular targeted agents could represent an alternative therapeutic strategy. In this review, we will highlight the role of Hh signaling in the development and progression of prostate cancer and summarize the different therapeutic applications of Hedgehog inhibition.
Collapse
Affiliation(s)
- Annelies Gonnissen
- Laboratory of Experimental Radiotherapy, Department of Oncology, KU Leuven, & Radiation Oncology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | | | | |
Collapse
|
14
|
Saraon P, Cretu D, Musrap N, Karagiannis GS, Batruch I, Drabovich AP, van der Kwast T, Mizokami A, Morrissey C, Jarvi K, Diamandis EP. Quantitative proteomics reveals that enzymes of the ketogenic pathway are associated with prostate cancer progression. Mol Cell Proteomics 2013; 12:1589-601. [PMID: 23443136 DOI: 10.1074/mcp.m112.023887] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prostate cancer is the most common malignancy and the second leading cause of cancer-related deaths in men. One common treatment is androgen-deprivation therapy, which reduces symptoms in most patients. However, over time, patients develop tumors that are androgen-independent and ultimately fatal. The mechanisms that cause this transition remain largely unknown, and as a result, there are no effective treatments against androgen-independent prostate cancer. As a model platform, we used the LNCaP cell line and its androgen-independent derivative, LNCaP-SF. Utilizing stable isotope labeling with amino acids in cell culture coupled to mass spectrometry, we assessed the differential global protein expression of the two cell lines. Our proteomic analysis resulted in the quantification of 3355 proteins. Bioinformatic prioritization resulted in 42 up-regulated and 46 down-regulated proteins in LNCaP-SF cells relative to LNCaP cells. Our top candidate, HMGCS2, an enzyme involved in ketogenesis, was found to be 9-fold elevated in LNCaP-SF cells, based on peptide ratios. After analyzing the remaining enzymes of this pathway (ACAT1, BDH1, HMGCL, and OXCT1), we observed increased expression of these proteins in the LNCaP-SF cells, which was further verified using Western blotting. To determine whether these enzymes were up-regulated in clinical samples, we performed quantitative PCR and immunohistochemistry on human prostate cancer tissues, from which we observed significantly increased transcript and protein levels in high-grade cancer (Gleason grade ≥ 8). In addition, we observed significant elevation of these enzymes in the LuCaP 96AI castration-resistant xenograft. Further assessment of ACAT1 on human castration-resistant metastatic prostate cancer tissues revealed substantially elevated expression of ACAT1 in these specimens. Taken together, our results indicate that enzymes of the ketogenic pathway are up-regulated in high-grade prostate cancer and could serve as potential tissue biomarkers for the diagnosis or prognosis of high-grade disease.
Collapse
Affiliation(s)
- Punit Saraon
- Department of Pathology and Laboratory Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5T 3L9
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Stathmin-1 Expression as a Complement to p16 Helps Identify High-grade Cervical Intraepithelial Neoplasia With Increased Specificity. Am J Surg Pathol 2013; 37:89-97. [DOI: 10.1097/pas.0b013e3182753f5a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Singh S, Chitkara D, Mehrazin R, Behrman SW, Wake RW, Mahato RI. Chemoresistance in prostate cancer cells is regulated by miRNAs and Hedgehog pathway. PLoS One 2012; 7:e40021. [PMID: 22768203 PMCID: PMC3386918 DOI: 10.1371/journal.pone.0040021] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/30/2012] [Indexed: 01/18/2023] Open
Abstract
Many prostate cancers relapse due to the generation of chemoresistance rendering first-line treatment drugs like paclitaxel (PTX) ineffective. The present study aims to determine the role of miRNAs and Hedgehog (Hh) pathway in chemoresistant prostate cancer and to evaluate the combination therapy using Hh inhibitor cyclopamine (CYA). Studies were conducted on PTX resistant DU145-TXR and PC3-TXR cell lines and clinical prostate tissues. Drug sensitivity and apoptosis assays showed significantly improved cytotoxicity with combination of PTX and CYA. To distinguish the presence of cancer stem cell like side populations (SP), Hoechst 33342 flow cytometry method was used. PTX resistant DU145 and PC3 cells, as well as human prostate cancer tissue possess a distinct SP fraction. Nearly 75% of the SP cells are in the G0/G1 phase compared to 62% for non-SP cells and have higher expression of stem cell markers as well. SP cell fraction was increased following PTX monotherapy and treatment with CYA or CYA plus PTX effectively reduced their numbers suggesting the effectiveness of combination therapy. SP fraction cells were allowed to differentiate and reanalyzed by Hoechst staining and gene expression analysis. Post differentiation, SP cells constitute 15.8% of total viable cells which decreases to 0.6% on treatment with CYA. The expression levels of P-gp efflux protein were also significantly decreased on treatment with PTX and CYA combination. MicroRNA profiling of DU145-TXR and PC3-TXR cells and prostate cancer tissue from the patients showed decreased expression of tumor suppressor miRNAs such as miR34a and miR200c. Treatment with PTX and CYA combination restored the expression of miR200c and 34a, confirming their role in modulating chemoresistance. We have shown that supplementing mitotic stabilizer drugs such as PTX with Hh-inhibitor CYA can reverse PTX chemoresistance and eliminate SP fraction in androgen independent, metastatic prostate cancer cell lines.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Apoptosis/drug effects
- Apoptosis/genetics
- Cell Cycle/drug effects
- Cell Cycle/genetics
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Line, Tumor
- Cell Survival/drug effects
- Cell Survival/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Genes, Neoplasm/genetics
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Humans
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Models, Biological
- Paclitaxel/pharmacology
- Paclitaxel/therapeutic use
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- Real-Time Polymerase Chain Reaction
- Reproducibility of Results
- Side-Population Cells/drug effects
- Side-Population Cells/metabolism
- Side-Population Cells/pathology
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Veratrum Alkaloids/pharmacology
- Veratrum Alkaloids/therapeutic use
Collapse
Affiliation(s)
- Saurabh Singh
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Deepak Chitkara
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar (Mohali), Punjab, India
| | - Reza Mehrazin
- Department of Urology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Stephen W. Behrman
- Department of Surgery, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Robert W. Wake
- Department of Urology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Ram I. Mahato
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
17
|
McNeill B, Perez-Iratxeta C, Mazerolle C, Furimsky M, Mishina Y, Andrade-Navarro MA, Wallace VA. Comparative genomics identification of a novel set of temporally regulated hedgehog target genes in the retina. Mol Cell Neurosci 2012; 49:333-40. [PMID: 22281533 DOI: 10.1016/j.mcn.2011.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 11/07/2011] [Accepted: 12/15/2011] [Indexed: 11/26/2022] Open
Abstract
The hedgehog (Hh) signaling pathway is involved in numerous developmental and adult processes with many links to cancer. In vertebrates, the activity of the Hh pathway is mediated primarily through three Gli transcription factors (Gli1, 2 and 3) that can serve as transcriptional activators or repressors. The identification of Gli target genes is essential for the understanding of the Hh-mediated processes. We used a comparative genomics approach using the mouse and human genomes to identify 390 genes that contained conserved Gli binding sites. RT-qPCR validation of 46 target genes in E14.5 and P0.5 retinal explants revealed that Hh pathway activation resulted in the modulation of 30 of these targets, 25 of which demonstrated a temporal regulation. Further validation revealed that the expression of Bok, FoxA1, Sox8 and Wnt7a was dependent upon Sonic Hh (Shh) signaling in the retina and their regulation is under positive and negative controls by Gli2 and Gli3, respectively. We also show using chromatin immunoprecipitation that Gli2 binds to the Sox8 promoter, suggesting that Sox8 is an Hh-dependent direct target of Gli2. Finally, we demonstrate that the Hh pathway also modulates the expression of Sox9 and Sox10, which together with Sox8 make up the SoxE group. Previously, it has been shown that Hh and SoxE group genes promote Müller glial cell development in the retina. Our data are consistent with the possibility for a role of SoxE group genes downstream of Hh signaling on Müller cell development.
Collapse
Affiliation(s)
- Brian McNeill
- Vision Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
| | | | | | | | | | | | | |
Collapse
|
18
|
Giusti L, Iacconi P, Valle YD, Ciregia F, Ventroni T, Donadio E, Giannaccini G, Chiarugi M, Torregrossa L, Proietti A, Basolo F, Lucacchini A. A proteomic profile of washing fluid from the colorectal tract to search for potential biomarkers of colon cancer. MOLECULAR BIOSYSTEMS 2012; 8:1088-99. [DOI: 10.1039/c2mb05394b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
19
|
Farooqi AA, Mukhtar S, Riaz AM, Waseem S, Minhaj S, Dilawar BA, Malik BA, Nawaz A, Bhatti S. Wnt and SHH in prostate cancer: trouble mongers occupy the TRAIL towards apoptosis. Cell Prolif 2011; 44:508-15. [PMID: 21973075 DOI: 10.1111/j.1365-2184.2011.00784.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer is a serious molecular disorder that arises because of reduction in tumour suppressors and overexpression of oncogenes. The malignant cells survive within the context of a three-dimensional microenvironment in which they are exposed to mechanical and physical cues. These signals are, nonetheless, deregulated through perturbations to mechanotransduction, from the nanoscale level to the tissue level. Increasingly sophisticated interpretations have uncovered significant contributions of signal transduction cascades in governing prostate cancer progression. To dismantle the major determinants that lie beneath disruption of spatiotemporal patterns of activity, crosstalk between various signalling cascades and their opposing and promoting effects on TRAIL-mediated activities cannot be ruled out. It is important to focus on that molecular multiplicity of cancer cells, various phenotypes reflecting expression of a variety of target oncogenes, reversible to irreversible, exclusive, overlapping or linked, coexist and compete with each other. Comprehensive investigations into TRAIL-mediated mitochondrial dynamics will remain a worthwhile area for underlining causes of tumourigenesis and for unravelling interference options.
Collapse
Affiliation(s)
- A A Farooqi
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Pakistan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu H, Zhang R, Ko SY, Oyajobi BO, Papasian CJ, Deng HW, Zhang S, Zhao M. Microtubule assembly affects bone mass by regulating both osteoblast and osteoclast functions: stathmin deficiency produces an osteopenic phenotype in mice. J Bone Miner Res 2011; 26:2052-67. [PMID: 21557310 DOI: 10.1002/jbmr.419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cytoskeleton microtubules regulate various cell signaling pathways that are involved in bone cell function. We recently reported that inhibition of microtubule assembly by microtubule-targeting drugs stimulates osteoblast differentiation and bone formation. To further elucidate the role of microtubules in bone homeostasis, we characterized the skeletal phenotype of mice null for stathmin, an endogenous protein that inhibits microtubule assembly. In vivo micro-computed tomography (µCT) and histology revealed that stathmin deficiency results in a significant reduction of bone mass in adult mice concurrent with decreased osteoblast and increased osteoclast numbers in bone tissues. Phenotypic analyses of primary calvarial cells and bone marrow cells showed that stathmin deficiency inhibited osteoblast differentiation and induced osteoclast formation. In vitro overexpression studies showed that increased stathmin levels enhanced osteogenic differentiation of preosteoblast MC3T3-E1 cells and mouse bone marrow-derived cells and attenuated osteoclast formation from osteoclast precursor Raw264.7 cells and bone marrow cells. Results of immunofluorescent studies indicated that overexpression of stathmin disrupted radial microtubule filaments, whereas deficiency of stathmin stabilized the microtubule network structure in these bone cells. In addition, microtubule-targeting drugs that inhibit microtubule assembly and induce osteoblast differentiation lost these effects in the absence of stathmin. Collectively, these results suggest that stathmin, which alters microtubule dynamics, plays an essential role in maintenance of postnatal bone mass by regulating both osteoblast and osteoclast functions in bone. \
Collapse
Affiliation(s)
- Hongbin Liu
- Key Laboratory of Agricultural Animal Genetics, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Daire V, Poüs C. Kinesins and protein kinases: key players in the regulation of microtubule dynamics and organization. Arch Biochem Biophys 2011; 510:83-92. [PMID: 21345331 DOI: 10.1016/j.abb.2011.02.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/05/2011] [Accepted: 02/11/2011] [Indexed: 02/04/2023]
Abstract
Microtubule dynamics is controlled and amplified in vivo by complex sets of regulators. Among these regulatory proteins, molecular motors from the kinesin superfamily are taking an increasing importance. Here we review how microtubule disassembly or assembly into interphase microtubules, mitotic spindle or cilia may involve kinesins and how protein kinases may participate in these kinesin-dependent regulations.
Collapse
Affiliation(s)
- Vanessa Daire
- UPRES EA, Univ. Paris-Sud, Faculté de Pharmacie, Châtenay-Malabry, France
| | | |
Collapse
|
22
|
Hirotsu M, Setoguchi T, Sasaki H, Matsunoshita Y, Gao H, Nagao H, Kunigou O, Komiya S. Smoothened as a new therapeutic target for human osteosarcoma. Mol Cancer 2010; 9:5. [PMID: 20067614 PMCID: PMC2818696 DOI: 10.1186/1476-4598-9-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 01/12/2010] [Indexed: 12/26/2022] Open
Abstract
Background The Hedgehog signaling pathway functions as an organizer in embryonic development. Recent studies have demonstrated constitutive activation of Hedgehog pathway in various types of malignancies. However, it remains unclear how Hedgehog pathway is involved in the pathogenesis of osteosarcoma. To explore the involvement of aberrant Hedgehog pathway in the pathogenesis of osteosarcoma, we investigated the expression and activation of Hedgehog pathway in osteosarcoma and examined the effect of SMOOTHENED (SMO) inhibition. Results To evaluate the expression of genes of Hedgehog pathway, we performed real-time PCR and immunohistochemistry using osteosarcoma cell lines and osteosarcoma biopsy specimens. To evaluate the effect of SMO inhibition, we did cell viability, colony formation, cell cycle in vitro and xenograft model in vivo. Real-time PCR revealed that osteosarcoma cell lines over-expressed Sonic hedgehog, Indian hedgehog, PTCH1, SMO, and GLI. Real-time PCR revealed over-expression of SMO, PTCH1, and GLI2 in osteosarcoma biopsy specimens. These findings showed that Hedgehog pathway is activated in osteosarcomas. Inhibition of SMO by cyclopamine, a specific inhibitor of SMO, slowed the growth of osteosarcoma in vitro. Cell cycle analysis revealed that cyclopamine promoted G1 arrest. Cyclopamine reduced the expression of accelerators of the cell cycle including cyclin D1, cyclin E1, SKP2, and pRb. On the other hand, p21cip1 wprotein was up-regulated by cyclopamine treatment. In addition, knockdown of SMO by SMO shRNA prevents osteosarcoma growth in vitro and in vivo. Conclusions These findings suggest that inactivation of SMO may be a useful approach to the treatment of patients with osteosarcoma.
Collapse
Affiliation(s)
- Masataka Hirotsu
- Department of Orthopaedic Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|