1
|
Lai J, Shang C, Chen W, Izevbaye I, Chu MP, Sandhu I, Brandwein J, Lai R, Wang P. An In Vitro Model for Acute Myeloid Leukemia Relapse Using the SORE6 Reporter. Int J Mol Sci 2023; 25:496. [PMID: 38203669 PMCID: PMC10779023 DOI: 10.3390/ijms25010496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Many patients diagnosed with acute myeloid leukemia (AML) relapse within two years of the initial remission. The biology of AML relapse is incompletely understood, although cancer stem-like (CSL) cells have been hypothesized to be important. To test this hypothesis, we employed SORE6, a reporter designed to detect the transcriptional activity of the embryonic stem cell proteins Oct4 and Sox2, to identify/purify CSL cells in two FLT3-mutated AML cell lines. Both cell lines contained ~10% of SORE6+ cells in the steady state. Compared to SORE6- cells, SORE6+ cells exhibited more characteristics of CSL cells, with significantly higher chemoresistance and rates of spheroid formation. SORE6+ cells had substantially higher expression of Myc and FLT3 proteins, which are drivers of SORE6 activity. Using a mixture of SORE6-/SORE6+ cells that were molecularly barcoded, we generated an in vitro study model for AML relapse. Specifically, after 'in vitro remission' induced by Ara-C, both cell lines regenerated after 13 ± 3 days. Barcode analysis revealed that most of the regenerated cells were derived from the original SORE6+ cells. Regenerated cells exhibited more CSL features than did the original SORE6+ cells, even though a proportion of them lost SORE6 activity. In bone marrow samples from a patient cohort, we found that relapsed blasts expressed significantly higher levels of Myc, a surrogate marker of SORE6 activity, compared to pre-treatment blasts. To conclude, using our in vitro model, we have provided evidence that CSL cells contribute to AML relapse.
Collapse
Affiliation(s)
- Justine Lai
- Department of Medicine, Division of Hematology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.P.C.); (I.S.); (J.B.)
| | - Chuquan Shang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.S.); (W.C.); (I.I.); (R.L.)
| | - Will Chen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.S.); (W.C.); (I.I.); (R.L.)
| | - Iyare Izevbaye
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.S.); (W.C.); (I.I.); (R.L.)
| | - Michael P. Chu
- Department of Medicine, Division of Hematology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.P.C.); (I.S.); (J.B.)
- Department of Medical Oncology, Cross Cancer Institute, Edmonton, AB T6G 2R3, Canada
| | - Irwindeep Sandhu
- Department of Medicine, Division of Hematology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.P.C.); (I.S.); (J.B.)
- Department of Medical Oncology, Cross Cancer Institute, Edmonton, AB T6G 2R3, Canada
| | - Joseph Brandwein
- Department of Medicine, Division of Hematology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.P.C.); (I.S.); (J.B.)
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.S.); (W.C.); (I.I.); (R.L.)
- Department of Medical Oncology, Cross Cancer Institute, Edmonton, AB T6G 2R3, Canada
| | - Peng Wang
- Department of Medicine, Division of Hematology, University of Alberta, Edmonton, AB T6G 2R3, Canada; (M.P.C.); (I.S.); (J.B.)
- Department of Medical Oncology, Cross Cancer Institute, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
2
|
Huang C, Zhao J, Zhu Z. Prognostic Nomogram of Prognosis-Related Genes and Clinicopathological Characteristics to Predict the 5-Year Survival Rate of Colon Cancer Patients. Front Surg 2021; 8:681721. [PMID: 34222322 PMCID: PMC8242155 DOI: 10.3389/fsurg.2021.681721] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/13/2021] [Indexed: 12/18/2022] Open
Abstract
Background: The Cancer Genome Atlas (TCGA) has established a genome-wide gene expression profile, increasing our understanding of the impact of tumor heredity on clinical outcomes. The aim of this study was to construct a nomogram using data from the TCGA regarding prognosis-related genes and clinicopathological characteristics to predict the 5-years survival rate of colon cancer (CC) patients. Methods: Kaplan-Meier and Cox regression analyses were used to identify genes associated with the 5-years survival rate of CC patients. Cox regression was used to analyze the relationship between the clinicopathological features and prognostic genes and overall survival rates in patients with CC and to identify independent risk factors for the prognosis of CC patients. A nomogram for predicting the 5-years survival rate of CC patients was constructed by R software. Results: A total of eight genes (KCNJ14, CILP2, ATP6V1G2, GABRD, RIMKLB, SIX2, PLEKHA8P1, and MPP2) related to the 5-years survival of rate CC patients were identified. Age, stage, and PLEKHA8P1 were independent risk factors for the 5-years survival rate in patients with CC. The accuracy, sensitivity and specificity of the nomogram model constructed by age, TNM staging, and PLEKHA8P1 for predicting the 5-years survival of rate CC patients were 83.3, 83.97, and 85.79%, respectively. Conclusion: The nomogram can correctly predict the 5-year survival rate of patients with CC, thus aiding the individualized decision-making process for patients with CC.
Collapse
Affiliation(s)
| | | | - Zhengming Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Li D, Zhang J, Li J. Role of miRNA sponges in hepatocellular carcinoma. Clin Chim Acta 2019; 500:10-19. [PMID: 31604064 DOI: 10.1016/j.cca.2019.09.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. HCC patients are commonly diagnosed at an advanced stage, for which highly effective therapies are limited. Hence, there is a growing need to discover promising biomarkers for HCC diagnosis, and in this context, microRNAs (miRNAs) hold great promise. MiRNAs function as gene expression regulators by directly binding messenger RNAs (mRNAs) and subsequently causing suppression of mRNA translation or degradation of target mRNAs. Two major types of noncoding RNAs act as competing endogenous sponges: circular RNAs and long non-coding RNAs.They can competitively bind to miRNA through miRNA response elements (MREs), thereby reducing the number of miRNAs binding mRNAs and regulating the expression of downstream target genes of miRNAs at the posttranscriptional level. The relationship between single miRNA sponge and HCC has been explored. However, comprehensive reviews on the sponge's function in HCC are lacking. In this review, we describe the methods to find endogenous sponges and construct exogenous sponges, and briefly compare endogenous and exogenous sponges. We also summarize the current progress on the functional role of miRNA sponges in HCC pathogenesis and present their potential value as diagnostic biomarkers and therapeutic targets. In-depth investigations on the function and mechanism of miRNA sponges in HCC will enrich our knowledge of HCC pathogenesis and contribute to the development of effective diagnostic biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Dandan Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Jiawei Zhang
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Beijing Hospital, National Center of Gerontology, Beijing, People's Republic of China; Graduate School, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China; Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, People's Republic of China.
| |
Collapse
|
4
|
Chen B, Wang C, Zhang J, Zhou Y, Hu W, Guo T. New insights into long noncoding RNAs and pseudogenes in prognosis of renal cell carcinoma. Cancer Cell Int 2018; 18:157. [PMID: 30337839 PMCID: PMC6180637 DOI: 10.1186/s12935-018-0652-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Background Increasing evidence suggests a critical role for long noncoding RNAs (LncRNAs) and pseudogenes in cancer. Renal cell carcinoma (RCC), the most common primary renal neoplasm, is highly aggressive and difficult to treat because of its resistance to chemotherapy and radiotherapy. Despite many identified LncRNAs and pseudogenes, few have been clearly elucidated. Methods This study provides new insights into LncRNAs and pseudogenes in the prognosis of RCC. We searched an online database to interrogate alterations and clinical data on cBioPortal. We analysed LncRNA and pseudogene signatures to predict the prognosis of RCC based on a Cox model. We also found potential serum biomarkers of RCC and validated them in 32 RCC patients, as well as healthy controls. Results Alterations were found in 2553 LncRNAs and 8901 pseudogenes and occurred in up to 23% of all cases. Among these, 27 LncRNAs and 45 pseudogenes were closely related to prognosis. We also identified signatures of LncRNAs and pseudogenes that can predict overall survival and recurrence of RCC. We then validated the relative levels of these LncRNAs and pseudogenes in the serum of 32 patients. Six of these, including LINC00520, PIK3CD-AS1, LINC01559, CEACAM22P, MSL3P1 and TREML3P, could be non-invasive biomarkers of RCC. Finally, we selected PIK3CD-AS1 to determine its role in RCC and found that upregulation of PIK3CD-AS1 was closely associated with higher tumour stage and metastasis. Conclusions These signatures of LncRNAs and pseudogenes can predict overall survival and recurrence of RCC. LINC00520, PIK3CD-AS1, LINC01559, CEACAM22P, MSL3P1 and TREML3P could be non-invasive biomarkers of RCC. These data suggest the important roles of LncRNAs and pseudogenes in RCC, and therefore provides us new insights into the prognosis of RCC. Electronic supplementary material The online version of this article (10.1186/s12935-018-0652-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212000 Jiangsu People's Republic of China
| | - Chengyue Wang
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212000 Jiangsu People's Republic of China
| | - Jin Zhang
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu People's Republic of China
| | - Yang Zhou
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212000 Jiangsu People's Republic of China
| | - Wei Hu
- 3Department of Andrology, The First Affiliated Hospital of University of South China, No. 69 Chuan Shan Road, Hengyang, 421001 Hunan People's Republic of China
| | - Tao Guo
- Department of Urology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212000 Jiangsu People's Republic of China
| |
Collapse
|
5
|
Emadi-Baygi M, Sedighi R, Nourbakhsh N, Nikpour P. Pseudogenes in gastric cancer pathogenesis: a review article. Brief Funct Genomics 2018; 16:348-360. [PMID: 28459995 DOI: 10.1093/bfgp/elx004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cancer burden rises globally at an alarming pace. According to GLOBOCAN 2012, gastric cancer (GC) is regarded as the fifth most common malignancy in the world. Being twice as high in men as in women, GC is the third leading cause of cancer mortality in both sexes globally. Being labeled as 'junk DNA', pseudogenes were considered as nonfunctional 'trash', which contribute nothing to survival of the organism; therefore, a number of strategies have been developed to circumvent their accidental detection. Recent progresses have confirmed that pseudogenes can have broad and multifaceted spectrum of activities in human cancers in general and GC in particular. Furthermore, the mentioned functions are parental gene-dependent and/or -independent. Therefore, pseudogenes can be regarded as the emerging class of elaborate modulators of gene expression involved in pathogenesis of human cancers including gastric adenocarcinoma.
Collapse
|
6
|
Pseudogene BMI1P1 expression as a novel predictor for acute myeloid leukemia development and prognosis. Oncotarget 2018; 7:47376-47386. [PMID: 27329719 PMCID: PMC5216948 DOI: 10.18632/oncotarget.10156] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022] Open
Abstract
The BMI1P1 levels of 144 de novo AML patients and 36 healthy donors were detected by real-time quantitative PCR (RQ-PCR). BMI1P1 was significantly down-regulated in AML compared with control (P < 0.001). A receiver operating characteristic (ROC) curve revealed that BMI1P1 expression could differentiate patients with AML from control subjects (AUC = 0.895, 95% CI: 0.835–0.954, P < 0.001). The percentage of blasts in bone marrow (BM) was significantly lower in BMI1P1 high-expressed group versus low-expressed group (P = 0.008). BMI1P1 high-expressed cases had significantly higher complete remission (CR) than BMI1P1 low-expressed cases (P = 0.023). Furthermore, Kaplan–Meier demonstrated that both whole AML cohort and non-M3-AML patients with low BMI1P1 expression showed shorter leukemia free survival (LFS, P = 0.002 and P = 0.01, respectively) and overall survival (OS, P < 0.001 and P = 0.011, respectively) than those with high BMI1P1 expression. Multivariate analysis also showed that BMI1P1 over-expression was an independent favorable prognostic factor for OS in both whole and non-M3 cohort of AML patients (HR = 0.462, 95% CI = 0.243–0.879, P = 0.019 and HR = 0.483, 95% CI = 0.254–0.919, P = 0.027). To further investigate the significance of BMI1P1 expression in the follow-up of AML patients, we monitored the BMI1P1 level in 26 de novo AML patients and found that the BMI1P1 level increased significantly from the initial diagnosis to post-CR (P < 0.001). These results indicated that BMI1P1 might contribute to the diagnosis of AML and the assessment of therapeutic effect.
Collapse
|
7
|
Zhai LL, Zhou J, Zhang J, Tang X, Zhou LY, Yin JY, Vanessa MED, Peng W, Lin J, Deng ZQ. Down-regulation of pseudogene Vimentin 2p is associated with poor outcome in de novo acute myeloid leukemia. Cancer Biomark 2017; 18:305-312. [PMID: 28106537 DOI: 10.3233/cbm-160247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES This study was intended to investigate the expression status of Vimentin 2p (VIM 2p), a pseudogene of Vimentin, and further analyze its clinical significance in AML patients. METHODS Real-time quantitative PCR (RQ-PCR) was employed to explore the expression status of VIM 2p in 128 patients with de novo AML and 36 healthy controls. RESULTS The expression level of VIM 2p was significantly decreased compared with healthy controls (P< 0.001). The patients with low VIM 2p expression were identified in 93 of 128 (73%) of AML patients. No significant differences could be observed in sex, age, blood parameters, FAB/WHO subtypes, karyotype risks and ten gene mutations (FLT3-ITD, NPM1, C-KIT, IDH1/IDH2, DNMT3 A, C/EBPA, N/K-RAS and U2AF1) between VIM 2p low-expressed and high-expressed patients (P> 0.05). Patients with low VIM 2p expression had significantly shorter overall survival (OS) than those with high VIM 2p expression in whole AML cases (median 7 vs. 13 months, respectively, P= 0.032), besides cytogenetically normal AML (CN-AML) and non-M3 AML cohort (P= 0.042 and 0.045, respectively). CONCLUSIONS These findings indicate that VIM 2p down-regulation is a common event in AML and may be associated with poor clinical outcome.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers
- Biomarkers, Tumor
- Case-Control Studies
- Female
- Gene Expression Regulation, Leukemic
- Humans
- Karyotype
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Male
- Middle Aged
- Mutation
- Nucleophosmin
- Prognosis
- Pseudogenes
- ROC Curve
- Survival Analysis
- Vimentin/genetics
- Young Adult
Collapse
|
8
|
Roles of OCT4 in tumorigenesis, cancer therapy resistance and prognosis. Cancer Treat Rev 2016; 51:1-9. [DOI: 10.1016/j.ctrv.2016.10.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/15/2022]
|
9
|
Xu G, Yang L, Zhang W, Wei X. All the Tested Human Somatic Cells Express Both Oct4A and Its Pseudogenes but Express Oct4A at Much Lower Levels Compared with Its Pseudogenes and Human Embryonic Stem Cells. Stem Cells Dev 2015; 24:1546-57. [PMID: 25687509 DOI: 10.1089/scd.2014.0552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Oct4 pseudogenes and isoforms seriously confuse the detection of the pluripotency-associated Oct4A expression in somatic cells, which in many cases was not accurately determined. This confusion has recently been discussed, but the wrong conclusions have continuously been made. Most studies failed to detect the expression of Oct4 pseudogenes and isoforms in somatic cells but detected only Oct4A, for which the detection signals incorrectly came from its pseudogenes and isoforms. Some studies detected the expression of only Oct4 pseudogenes in somatic cells but failed to detect Oct4A. The other studies failed to detect the expression of any Oct4 genes. Oct4A is more homologous to its pseudogenes than its isoforms, and it is much more difficult to distinguish Oct4A from its pseudogenes, so this study focused on them. In this study, the strict experimental procedures were followed. Three pairs of Oct4A-specific polymerase chain reaction (PCR) primers were carefully designed and tested by sequencing reverse transcription-polymerase chain reaction (RT-PCR) clones, which showed that only one of them was truly specific to Oct4A. RT-PCR was also performed with the primers amplifying both Oct4A and its pseudogenes, and several hundreds of PCR clones from each cell type were sequenced to reliably distinguish the low-abundant Oct4A from its high-abundant pseudogenes. Western blot, immunocytochemistry, and flow cytometric analyses were performed with three Oct4 antibodies to confirm the results of Oct4 mRNA expression. This study undoubtedly made the correct conclusions about Oct4 expression in human somatic cells and showed that all the tested human somatic cells expressed both Oct4A and its pseudogenes but expressed Oct4A at much lower levels compared with its pseudogenes.
Collapse
Affiliation(s)
- Guangzu Xu
- Institute of Biomedicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou, China
| | - Ling Yang
- Institute of Biomedicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou, China
| | - Weixiong Zhang
- Institute of Biomedicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou, China
| | - Xing Wei
- Institute of Biomedicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University , Guangzhou, China
| |
Collapse
|
10
|
Zheng L, Li X, Gu Y, Lv X, Xi T. The 3'UTR of the pseudogene CYP4Z2P promotes tumor angiogenesis in breast cancer by acting as a ceRNA for CYP4Z1. Breast Cancer Res Treat 2015; 150:105-118. [PMID: 25701119 DOI: 10.1007/s10549-015-3298-2] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/03/2015] [Indexed: 12/31/2022]
Abstract
Pseudogenes are now known to regulate their protein-coding counterparts. Additionally, disturbances of 3'UTRs could increase the risk of cancer susceptibility by acting as modulators of gene expression. The aim of this study was to investigate the roles of the pseudogene CYP4Z2P-3'UTR and functional gene CYP4Z1-3'UTR in breast cancer angiogenesis process. The levels of CYP4Z2P- and CYP4Z1-3'UTR and miRNA of interests were measured in 22 cancerous tissues paired with non-cancerous samples by qRT-PCR. The effects of CYP4Z2P- and CYP4Z1-3'UTR were studied by overexpression and RNA interference approaches in vitro and ex vivo. Insights of the mechanism of competitive endogenous RNAs were gained from bioinformatic analysis, luciferase assays, and western blot. The positive CYP4Z2P/CYP4Z1 interaction and negative interaction between predicted miRNAs and CYP4Z2P or CYP4Z1 were identified via qRT-PCR assay and bivariate correlation analysis. CYP4Z2P- and CYP4Z1-3'UTR share several miRNA-binding sites, including miR-211, miR-125a-3p, miR-197, miR-1226, and miR-204. The CYP4Z2P- and CYP4Z1-3'UTRs arrest the interference caused by of these miRNAs, resulting in increased translation of CYP4Z1. Moreover, ectopic expression of the CYP4Z2P- and CYP4Z1-3'UTRs exhibit tumor angiogenesis-promoting properties in breast cancer collectively by inducing the phosphorylation of ERK1/2 and PI3K/Akt. Co-transfection with Dicer siRNA reversed the CYP4Z2P 3'UTR-mediated changes. Additionally, PI3K or ERK inhibitors reversed CYP4Z2P- and CYP4Z1-3'UTR-mediated changes in VEGF-A expression. Increased CYP4Z2P- and CYP4Z1-3'UTR expression promotes tumor angiogenesis in breast cancer partly via miRNA-dependent activation of PI3K/Akt and ERK1/2. The CYP4Z2P- and CYP4Z1-3'UTRs could thus be used as combinatorial miRNA inhibitors.
Collapse
Affiliation(s)
- Lufeng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | | | | | | | | |
Collapse
|
11
|
Jerabek S, Merino F, Schöler HR, Cojocaru V. OCT4: dynamic DNA binding pioneers stem cell pluripotency. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:138-54. [PMID: 24145198 DOI: 10.1016/j.bbagrm.2013.10.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/02/2013] [Accepted: 10/06/2013] [Indexed: 12/12/2022]
Abstract
OCT4 was discovered more than two decades ago as a transcription factor specific to early embryonic development. Early studies with OCT4 were descriptive and looked at determining the functional roles of OCT4 in the embryo as well as in pluripotent cell lines derived from embryos. Later studies showed that OCT4 was one of the transcription factors in the four-factor cocktail required for reprogramming somatic cells into induced pluripotent stem cells (iPSCs) and that it is the only factor that cannot be substituted in this process by other members of the same protein family. In recent years, OCT4 has emerged as a master regulator of the induction and maintenance of cellular pluripotency, with crucial roles in the early stages of differentiation. Currently, mechanistic studies look at elucidating the molecular details of how OCT4 contributes to establishing selective gene expression programs that define different developmental stages of pluripotent cells. OCT4 belongs to the POU family of proteins, which have two conserved DNA-binding domains connected by a variable linker region. The functions of OCT4 depend on its ability to recognize and bind to DNA regulatory regions alone or in cooperation with other transcription factors and on its capacity to recruit other factors required to regulate the expression of specific sets of genes. Undoubtedly, future iPSC-based applications in regenerative medicine will benefit from understanding how OCT4 functions. Here we provide an integrated view of OCT4 research conducted to date by reviewing the different functional roles for OCT4 and discussing the current progress in understanding their underlying molecular mechanisms. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Stepan Jerabek
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Felipe Merino
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hans Robert Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany.
| | - Vlad Cojocaru
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany.
| |
Collapse
|
12
|
Li CH, Chen Y. Targeting long non-coding RNAs in cancers: Progress and prospects. Int J Biochem Cell Biol 2013; 45:1895-910. [DOI: 10.1016/j.biocel.2013.05.030] [Citation(s) in RCA: 344] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/21/2013] [Accepted: 05/23/2013] [Indexed: 02/07/2023]
|
13
|
Abstract
Because they are generally noncoding and thus considered nonfunctional and unimportant, pseudogenes have long been neglected. Recent advances have established that the DNA of a pseudogene, the RNA transcribed from a pseudogene, or the protein translated from a pseudogene can have multiple, diverse functions and that these functions can affect not only their parental genes but also unrelated genes. Therefore, pseudogenes have emerged as a previously unappreciated class of sophisticated modulators of gene expression, with a multifaceted involvement in the pathogenesis of human cancer.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, Istituto Toscano Tumori (CRL-ITT), c/o IFC-CNR Via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
14
|
Sun Y, Li Y, Luo D, Liao DJ. Pseudogenes as weaknesses of ACTB (Actb) and GAPDH (Gapdh) used as reference genes in reverse transcription and polymerase chain reactions. PLoS One 2012; 7:e41659. [PMID: 22927912 PMCID: PMC3425558 DOI: 10.1371/journal.pone.0041659] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/25/2012] [Indexed: 01/19/2023] Open
Abstract
The genes encoding β-actin (ACTB in human or Actb in mouse) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH in human or Gapdh in mouse) are the two most commonly used references for sample normalization in determination of the mRNA level of interested genes by reverse transcription (RT) and ensuing polymerase chain reactions (PCR). In this study, bioinformatic analyses revealed that the ACTB, Actb, GAPDH and Gapdh had 64, 69, 67 and 197 pseudogenes (PGs), respectively, in the corresponding genome. Most of these PGs are intronless and similar in size to the authentic mRNA. Alignment of several PGs of these genes with the corresponding mRNA reveals that they are highly homologous. In contrast, the hypoxanthine phosphoribosyltransferase-1 gene (HPRT1 in human or Hprt in mouse) only had 3 or 1 PG, respectively, and the mRNA has unique regions for primer design. PCR with cDNA or genomic DNA (gDNA) as templates revealed that our HPRT1, Hprt and GAPDH primers were specific, whereas our ACTB and Actb primers were not specific enough both vertically (within the cDNA) and horizontally (compared cDNA with gDNA). No primers could be designed for the Gapdh that would not mis-prime PGs. Since most of the genome is transcribed, we suggest to peers to forgo ACTB (Actb) and GAPDH (Dapdh) as references in RT-PCR and, if there is no surrogate, to use our primers with extra caution. We also propose a standard operation procedure in which design of primers for RT-PCR starts from avoiding mis-priming PGs and all primers need be tested for specificity with both cDNA and gDNA.
Collapse
Affiliation(s)
- Yuan Sun
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
- Department of Pathology, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
| | - Yan Li
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Dianzhong Luo
- Department of Pathology, Guangxi Medical University, Nanning, Guangxi, People's Republic of China
- * E-mail: (DZL); (DJL)
| | - D. Joshua Liao
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
- * E-mail: (DZL); (DJL)
| |
Collapse
|