1
|
Castillo-Galán S, Parra V, Cuenca J. Unraveling the pathogenesis of viral-induced pulmonary arterial hypertension: Possible new therapeutic avenues with mesenchymal stromal cells and their derivatives. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167519. [PMID: 39332781 DOI: 10.1016/j.bbadis.2024.167519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/16/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Pulmonary hypertension (PH) is a severe condition characterized by elevated pressure in the pulmonary artery, where metabolic and mitochondrial dysfunction may contribute to its progression. Within the PH spectrum, pulmonary arterial hypertension (PAH) stands out with its primary pulmonary vasculopathy. PAH's prevalence varies from 0.4 to 1.4 per 100,000 individuals and is associated with diverse conditions, including viral infections such as HIV. Notably, recent observations highlight an increased occurrence of PAH among COVID-19 patients, even in the absence of pre-existing cardiopulmonary disorders. While current treatments offer partial relief, there's a pressing need for innovative therapeutic strategies, among which mesenchymal stromal cells (MSCs) and their derivatives hold promise. This review critically evaluates recent investigations into viral-induced PAH, encompassing pathogens like human immunodeficiency virus, herpesvirus, Cytomegalovirus, Hepatitis B and C viruses, SARS-CoV-2, and Human endogenous retrovirus K (HERKV), with a specific emphasis on mitochondrial dysfunction. Furthermore, we explore the underlying rationale driving novel therapeutic modalities, including MSCs, extracellular vesicles, and mitochondrial interventions, within the framework of PAH management.
Collapse
Affiliation(s)
- Sebastián Castillo-Galán
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Valentina Parra
- Laboratory of Differentiation and Cell Metabolism (D&M), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; SYSTEMIX Center for Systems Biology, O'Higgins University, Rancagua, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile; Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile.
| |
Collapse
|
2
|
Zheng R, Xu T, Wang X, Yang L, Wang J, Huang X. Stem cell therapy in pulmonary hypertension: current practice and future opportunities. Eur Respir Rev 2023; 32:230112. [PMID: 37758272 PMCID: PMC10523152 DOI: 10.1183/16000617.0112-2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 09/30/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease characterised by elevated pulmonary arterial pressure and right-sided heart failure. While conventional drug therapies, including prostacyclin analogues, endothelin receptor antagonists and phosphodiesterase type 5 inhibitors, have been shown to improve the haemodynamic abnormalities of patients with PH, the 5-year mortality rate remains high. Thus, novel therapies are urgently required to prolong the survival of patients with PH. Stem cell therapies, including mesenchymal stem cells, endothelial progenitor cells and induced pluripotent stem cells, have shown therapeutic potential for the treatment of PH and clinical trials on stem cell therapies for PH are ongoing. This review aims to present the latest preclinical achievements of stem cell therapies, focusing on the therapeutic effects of clinical trials and discussing the challenges and future perspectives of large-scale applications.
Collapse
Affiliation(s)
- Ruixuan Zheng
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- These authors contributed equally to this work
| | - Tingting Xu
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- These authors contributed equally to this work
| | - Xinghong Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lehe Yang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Section of Physiology, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiaoying Huang
- Division of Pulmonary Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, Wenzhou Key Laboratory of Heart and Lung, Wenzhou, China
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Key Laboratory of Interdiscipline and Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Huang S, Li Y, Zeng J, Chang N, Cheng Y, Zhen X, Zhong D, Chen R, Ma G, Wang Y. Mesenchymal Stem/Stromal Cells in Asthma Therapy: Mechanisms and Strategies for Enhancement. Cell Transplant 2023; 32:9636897231180128. [PMID: 37318186 DOI: 10.1177/09636897231180128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023] Open
Abstract
Asthma is a complex and heterogeneous disease characterized by chronic airway inflammation, airway hyperresponsiveness, and airway remodeling. Most asthmatic patients are well-established using standard treatment strategies and advanced biologicals. However, a small group of patients who do not respond to biological treatments or are not effectively controlled by available treatment strategies remain a clinical challenge. Therefore, new therapies are urgently needed for poorly controlled asthma. Mesenchymal stem/stromal cells (MSCs) have shown therapeutic potential in relieving airway inflammation and repairing impaired immune balance in preclinical trials owing to their immunomodulatory abilities. Noteworthy, MSCs exerted a therapeutic effect on steroid-resistant asthma with rare side effects in asthmatic models. Nevertheless, adverse factors such as limited obtained number, nutrient and oxygen deprivation in vitro, and cell senescence or apoptosis affected the survival rate and homing efficiency of MSCs, thus limiting the efficacy of MSCs in asthma. In this review, we elaborate on the roles and underlying mechanisms of MSCs in the treatment of asthma from the perspective of their source, immunogenicity, homing, differentiation, and immunomodulatory capacity and summarize strategies to improve their therapeutic effect.
Collapse
Affiliation(s)
- Si Huang
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Yiyang Li
- Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jieqing Zeng
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Ning Chang
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Yisen Cheng
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Xiangfan Zhen
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Dan Zhong
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Riling Chen
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Guoda Ma
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| | - Yajun Wang
- Department of Pediatrics, Shunde Women and Children's Hospital of Guangdong Medical University, Foshan, China
- Institute of Respiratory Diseases, Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, China
| |
Collapse
|
4
|
Oh S, Jung JH, Ahn KJ, Jang AY, Byun K, Yang PC, Chung WJ. Stem Cell and Exosome Therapy in Pulmonary Hypertension. Korean Circ J 2022; 52:110-122. [PMID: 35128849 PMCID: PMC8819574 DOI: 10.4070/kcj.2021.0191] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022] Open
Abstract
Pulmonary hypertension (PH) is a disease that eventually causes right heart failure by remodeling pulmonary blood vessels. Based on the histopathological characteristics, PH is categorized into five subgroups. Rarely, a severe clinical entity is pulmonary arterial hypertension (PAH), subgroup 1. This disease process results in pulmonary vascular alterations through dysfunction of the pulmonary endothelium and disturbance of immune responses. Although medical treatments based on these pathophysiologic concepts have been applied for more than 30 years, PAH still cannot be cured. This review addresses the feasibility of and perspectives on stem cell therapy, including the role of exosomes in PAH. Pulmonary hypertension is a rare and progressive illness with a devastating prognosis. Promising research efforts have advanced the understanding and recognition of the pathobiology of pulmonary hypertension. Despite remarkable achievements in terms of improving the survival rate, reducing disease progression, and enhancing quality of life, pulmonary arterial hypertension (PAH) is not completely curable. Therefore, an effective treatment strategy is still needed. Recently, many studies of the underlying molecular mechanisms and technological developments have led to new approaches and paradigms for PAH treatment. Management based on stem cells and related paracrine effects, epigenetic drugs and gene therapies has yielded prospective results for PAH treatment in preclinical research. Further trials are ongoing to optimize these important insights into clinical circumstances.
Collapse
Affiliation(s)
- Seyeon Oh
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
| | - Ji-Hye Jung
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Kyung-Jin Ahn
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Korea
- Division of Pediatric Cardiology, Department of Pediatrics, Gachon University Gil Medical Center, Incheon, Korea
| | - Albert Youngwoo Jang
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Korea
- Department of Cardiovascular Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Kyunghee Byun
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Korea
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, Incheon, Korea
| | - Phillip C. Yang
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wook-Jin Chung
- Gachon Cardiovascular Research Institute, Gachon University, Incheon, Korea
| |
Collapse
|
5
|
Guo H, Su Y, Deng F. Effects of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Future Perspectives. Stem Cell Rev Rep 2021; 17:440-458. [PMID: 33211245 PMCID: PMC7675022 DOI: 10.1007/s12015-020-10085-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) as a kind of pluripotent adult stem cell have shown great therapeutic potential in relation to many diseases in anti-inflammation and regeneration. The results of preclinical experiments and clinical trials have demonstrated that MSC-derived secretome possesses immunoregulatory and reparative abilities and that this secretome is capable of modulating innate and adaptive immunity and reprograming the metabolism of recipient cells via paracrine mechanisms. It has been recognized that MSC-derived secretome, including soluble proteins (cytokines, chemokines, growth factors, proteases), extracellular vesicles (EVs) and organelles, plays a key role in tissue repair and regeneration in bronchopulmonary dysplasia, acute respiratory distress syndrome (ARDS), bronchial asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), pulmonary arterial hypertension, and silicosis. This review summarizes the known functions of MSC-EV modulation in lung diseases, coupled with the future challenges of MSC-EVs as a new pharmaceutical agent. The identification of underlying mechanisms for MSC-EV might provide a new direction for MSC-centered treatment in lung diseases.Graphical abstract.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022 Hefei, Anhui Province People’s Republic of China
| | - Yue Su
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast, Belfast, BT9 7BL UK
| | - Fang Deng
- Department of Nephrology, Anhui Provincial Children’s Hospital, Hefei City, Anhui Province 230022 People’s Republic of China
| |
Collapse
|
6
|
Pu X, Du L, Hu Y, Fan Y, Xu Q. Stem/Progenitor Cells and Pulmonary Arterial Hypertension. Arterioscler Thromb Vasc Biol 2020; 41:167-178. [PMID: 33028095 DOI: 10.1161/atvbaha.120.315052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by endothelial dysfunction and vascular remodeling. Despite significant advancement in our understanding of the pathogenesis of PAH in recent years, treatment options for PAH are limited and their prognosis remains poor. PAH is now seen as a severe pulmonary arterial vasculopathy with structural changes driven by excessive vascular proliferation and inflammation. Perturbations of a number of cellular and molecular mechanisms have been described, including pathways involving growth factors, cytokines, metabolic signaling, elastases, and proteases, underscoring the complexity of the disease pathogenesis. Interestingly, emerging evidence suggests that stem/progenitor cells may have an impact on disease development and therapy. In preclinical studies, stem/progenitor cells displayed an ability to promote endothelial repair of dysfunctional arteries and induce neovascularization. The stem cell-based therapy for PAH are now under active investigation. This review article will briefly summarize the updates in the research field, with a special focus on the contribution of stem/progenitor cells to lesion formation via influencing vascular cell functions and highlight the potential clinical application of stem/progenitor cell therapy to PAH.
Collapse
Affiliation(s)
- Xiangyuan Pu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (X.P., L.D., Y.H., Q.X.)
| | - Luping Du
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (X.P., L.D., Y.H., Q.X.)
| | - Yanhua Hu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (X.P., L.D., Y.H., Q.X.)
| | - Ye Fan
- Department of Respiratory Disease, Xinqiao Hospital, Third Military Medical University, Chongqing, China (Y.F.)
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China (X.P., L.D., Y.H., Q.X.)
| |
Collapse
|
7
|
Therapeutic Benefit of the Association of Lodenafil with Mesenchymal Stem Cells on Hypoxia-induced Pulmonary Hypertension in Rats. Cells 2020; 9:cells9092120. [PMID: 32961896 PMCID: PMC7565793 DOI: 10.3390/cells9092120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by the remodeling of pulmonary arteries, with an increased pulmonary arterial pressure and right ventricle (RV) overload. This work investigated the benefit of the association of human umbilical cord mesenchymal stem cells (hMSCs) with lodenafil, a phosphodiesterase-5 inhibitor, in an animal model of PAH. Male Wistar rats were exposed to hypoxia (10% O2) for three weeks plus a weekly i.p. injection of a vascular endothelial growth factor receptor inhibitor (SU5416, 20 mg/kg, SuHx). After confirmation of PAH, animals received intravenous injection of 5.105 hMSCs or vehicle, followed by oral treatment with lodenafil carbonate (10 mg/kg/day) for 14 days. The ratio between pulmonary artery acceleration time and RV ejection time reduced from 0.42 ± 0.01 (control) to 0.24 ± 0.01 in the SuHx group, which was not altered by lodenafil alone but was recovered to 0.31 ± 0.01 when administered in association with hMSCs. RV afterload was confirmed in the SuHx group with an increased RV systolic pressure (mmHg) of 52.1 ± 8.8 normalized to 29.6 ± 2.2 after treatment with the association. Treatment with hMSCs + lodenafil reversed RV hypertrophy, fibrosis and interstitial cell infiltration in the SuHx group. Combined therapy of lodenafil and hMSCs may be a strategy for PAH treatment.
Collapse
|
8
|
Huang J, Lu W, Ouyang H, Chen Y, Zhang C, Luo X, Li M, Shu J, Zheng Q, Chen H, Chen J, Tang H, Sun D, Yuan JXJ, Yang K, Wang J. Transplantation of Mesenchymal Stem Cells Attenuates Pulmonary Hypertension by Normalizing the Endothelial-to-Mesenchymal Transition. Am J Respir Cell Mol Biol 2020; 62:49-60. [PMID: 31211918 PMCID: PMC6938136 DOI: 10.1165/rcmb.2018-0165oc] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/14/2019] [Indexed: 12/18/2022] Open
Abstract
For decades, stem cell therapies for pulmonary hypertension (PH) have progressed from laboratory hypothesis to clinical practice. Promising preclinical investigations have laid both a theoretical and practical foundation for clinical application of mesenchymal stem cells (MSCs) for PH therapy. However, the underlying mechanisms are still poorly understood. We sought to study the effects and mechanisms of MSCs on the treatment of PH. For in vivo experiments, the transplanted GFP+ MSCs were traced at different time points in the lung tissue of a chronic hypoxia-induced PH (CHPH) rat model. The effects of MSCs on PH pathogenesis were evaluated in both CHPH and sugen hypoxia-induced PH models. For in vitro experiments, primary pulmonary microvascular endothelial cells were cultured and treated with the MSC conditioned medium. The specific markers of endothelial-to-mesenchymal transition (EndMT) and cell migration properties were measured. MSCs decreased pulmonary arterial pressure and ameliorated the collagen deposition, and reduced the thickening and muscularization in both CHPH and sugen hypoxia-induced PH rat models. Then, MSCs significantly attenuated the hypoxia-induced EndMT in both the lungs of PH models and primary cultured rat pulmonary microvascular endothelial cells, as reflected by increased mesenchymal cell markers (fibronectin 1 and vimentin) and decreased endothelial cell markers (vascular endothelial cadherin and platelet endothelial cell adhesion molecule-1). Moreover, MSCs also markedly inhibited the protein expression and degradation of hypoxia-inducible factor-2α, which is known to trigger EndMT progression. Our data suggest that MSCs successfully prevent PH by ameliorating pulmonary vascular remodeling, inflammation, and EndMT. Transplantation of MSCs could potentially be a powerful therapeutic approach against PH.
Collapse
Affiliation(s)
- Junyi Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiping Ouyang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuqin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chenting Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoyun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Meichan Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiaze Shu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qiuyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haixia Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiyuan Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Translational and Regenerative Medicine, the University of Arizona College of Medicine, Tucson, Arizona; and
| | - Dejun Sun
- Division of Pulmonary and Critical Care Medicine, the People’s Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China
| | - Jason X.-J. Yuan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Translational and Regenerative Medicine, the University of Arizona College of Medicine, Tucson, Arizona; and
| | - Kai Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Division of Translational and Regenerative Medicine, the University of Arizona College of Medicine, Tucson, Arizona; and
- Division of Pulmonary and Critical Care Medicine, the People’s Hospital of Inner Mongolia, Huhhot, Inner Mongolia, China
| |
Collapse
|
9
|
Fukumitsu M, Suzuki K. Mesenchymal stem/stromal cell therapy for pulmonary arterial hypertension: Comprehensive review of preclinical studies. J Cardiol 2019; 74:304-312. [PMID: 31109735 DOI: 10.1016/j.jjcc.2019.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/12/2019] [Accepted: 04/06/2019] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a disease characterized by progressive pulmonary vascular remodeling, resulting in right-sided heart failure and premature death. Current available therapies for PAH have limited efficacy, and new therapeutic strategies need to be developed. Mesenchymal stem/stromal cells (MSCs) may offer a novel therapeutic approach to PAH. Since the first report in 2006, a number of preclinical studies have demonstrated a potential therapeutic effect of this approach, with attenuated hemodynamic and histological progression of PAH, in animal models of PAH. However, there remain several issues that should be addressed for this approach to be clinically successful. With the aim to highlight such issues, this review clarifies existing knowledge on MSC therapy for PAH in preclinical studies, including types of PAH animal models used for MSC therapy, MSC sources, and administration protocol (route, cell dose, and timing of administration). This review thereafter summarizes thoroughly and discusses the mechanism underpinning MSC therapy for PAH. For clinical success of MSC therapy, insufficient evidence of safety (e.g. critical risk of pulmonary embolism) and therapeutic efficacy of MSCs on established PAH with severe vascular remodeling, as well as further optimization of the MSC administration protocol, are considered as remaining issues to be addressed. In terms of the efficacy, it is controversial whether angiogenic cytokines, which are considered as one of the therapeutic mechanisms of MSC, have beneficial effect for human PAH. To address these issues, further preclinical data using more clinically-relevant animal models of PAH, such as SU5416 model, should be accumulated, whereas most preclinical studies have been conducted using monocrotaline-induced PAH model. While MSC therapy has a great potential to become a novel therapy in PAH, continuing careful preclinical research is warranted for clinical success in PAH.
Collapse
Affiliation(s)
- Masafumi Fukumitsu
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ken Suzuki
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| |
Collapse
|
10
|
Suen CM, Stewart DJ, Montroy J, Welsh C, Levac B, Wesch N, Zhai A, Fergusson D, McIntyre L, Lalu MM. Regenerative cell therapy for pulmonary arterial hypertension in animal models: a systematic review. Stem Cell Res Ther 2019; 10:75. [PMID: 30841915 PMCID: PMC6404277 DOI: 10.1186/s13287-019-1172-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 12/21/2022] Open
Abstract
Background Pulmonary arterial hypertension (PAH) is a rare disease characterized by widespread loss of the pulmonary microcirculation and elevated pulmonary arterial pressures leading to pathological right ventricular remodeling and ultimately right heart failure. Regenerative cell therapies could potentially restore the effective lung microcirculation and provide a curative therapy for PAH. The objective of this systematic review was to compare the efficacy of regenerative cell therapies in preclinical models of PAH. Methods A systematic search strategy was developed and executed. We included preclinical animal studies using regenerative cell therapy in experimental models of PAH. Primary outcomes were right ventricular systolic pressure (RVSP) and mean pulmonary arterial pressure (mPAP). The secondary outcome was right ventricle/left ventricle + septum weight ratio (RV/LV+S). Pooled effect sizes were undertaken using random effects inverse variance models. Risk of bias and publication bias were assessed. Results The systematic search yielded 1285 studies, of which 44 met eligibility criteria. Treatment with regenerative cell therapy was associated with decreased RVSP (SMD − 2.10; 95% CI − 2.59 to − 1.60), mPAP (SMD − 2.16; 95% CI − 2.97 to − 1.35), and RV/LV+S (SMD − 1.31, 95% CI − 1.64 to − 0.97). Subgroup analysis demonstrated that cell modification resulted in greater reduction in RVSP. The effects on RVSP and mPAP remained statistically significant even after adjustment for publication bias. The majority of studies had an unclear risk of bias. Conclusions Preclinical studies of regenerative cell therapy demonstrated efficacy in animal models of PAH; however, future studies should consider incorporating design elements to reduce the risk of bias. Systematic review registration Suen CM, Zhai A, Lalu MM, Welsh C, Levac BM, Fergusson D, McIntyre L and Stewart DJ. Efficacy and safety of regenerative cell therapy for pulmonary arterial hypertension in animal models: a preclinical systematic review protocol. Syst Rev. 2016;5:89. Trial registration CAMARADES-NC3Rs Preclinical Systematic Review & Meta-analysis Facility (SyRF). http://syrf.org.uk/protocols/. Syst Rev 5:89, 2016 Electronic supplementary material The online version of this article (10.1186/s13287-019-1172-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Colin M Suen
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, 501 Smyth Road, PO Box 201B, Ottawa, ON, K1H 8L6, Canada.,Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Duncan J Stewart
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, 501 Smyth Road, PO Box 201B, Ottawa, ON, K1H 8L6, Canada.,Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, Canada.,Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Joshua Montroy
- Clinical Epidemiology Program, Ottawa, Canada.,Blueprint Translational Research Group, The Ottawa Hospital Research Institute, Ottawa, Canada
| | | | - Brendan Levac
- Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Neil Wesch
- Clinical Epidemiology Program, Ottawa, Canada.,Blueprint Translational Research Group, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Alexander Zhai
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, 501 Smyth Road, PO Box 201B, Ottawa, ON, K1H 8L6, Canada
| | - Dean Fergusson
- Clinical Epidemiology Program, Ottawa, Canada.,Blueprint Translational Research Group, The Ottawa Hospital Research Institute, Ottawa, Canada.,Department of Medicine, University of Ottawa, Ottawa, Canada.,Depatrment of Surgery, University of Ottawa, Ottawa, Canada.,Department of Epidemiology and Community Medicine, University of Ottawa, Ottawa, Canada
| | - Lauralyn McIntyre
- Clinical Epidemiology Program, Ottawa, Canada.,Blueprint Translational Research Group, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Manoj M Lalu
- Regenerative Medicine Program, The Ottawa Hospital Research Institute, 501 Smyth Road, PO Box 201B, Ottawa, ON, K1H 8L6, Canada. .,Department of Cell and Molecular Medicine, University of Ottawa, Ottawa, Canada. .,Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, The Ottawa Hospital Research Institute, Ottawa, Canada. .,Clinical Epidemiology Program, Ottawa, Canada. .,Blueprint Translational Research Group, The Ottawa Hospital Research Institute, Ottawa, Canada.
| |
Collapse
|
11
|
Ding XF, Liang HY, Yuan B, Li LF, Wang T, Kan QC, Wang LX, Sun TW. Efficacy of stem cell therapy for pulmonary arterial hypertension: a systematic review and meta-analysis of preclinical studies. Stem Cell Res Ther 2019; 10:55. [PMID: 30760312 PMCID: PMC6374914 DOI: 10.1186/s13287-019-1162-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/06/2019] [Accepted: 02/04/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Despite significant progress in drug treatment, the prognosis of patients with advanced pulmonary arterial hypertension (PAH) remains extremely poor. Many preclinical studies have reported the efficacy of stem cell (SC) therapy for PAH; however, this approach remains controversial. The aim of this systematic review and meta-analysis is to assess the potential efficacy of SC therapy for PAH. METHODS The Medline, EMBASE, Cochrane Library, and Web of Science databases were searched from inception to August 12, 2018. Preclinical studies that evaluated the use of SC therapy for PAH were included. The primary outcome was pulmonary haemodynamics, as assessed by measurement of the right ventricular systolic pressure (RVSP), mean pulmonary arterial pressure (mPAP), and/or mean right ventricle pressure (mRVP). The secondary outcomes included the weight ratio of the right ventricle to the left ventricle plus septum (RV/LV+S), the right ventricle to body weight ratio (RV/BW), the percentage of pulmonary arteriole area index (WA), and/or the percentage of medial wall thickness of the pulmonary arteriole (WT). The quality of outcomes was evaluated using the SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) bias risk tool. The inverse-variance method with random-effects modelling was used to calculate pooled weighted mean differences (WMDs) and 95% CIs. Statistical analysis was performed with STATA 14.0. RESULTS Twenty-eight eligible articles (722 animals) were included. SC therapy reduced the pooled WMDs (95% CIs) of RVSP, mPAP, mRVP, RV/LV+S, RV/BW, WA, and WT for animals with PAH, with values of - 14.12 (- 14.63, - 13.61), - 11.86 (- 12.35, - 11.36), - 17.33 (- 18.10, - 16.56), - 0.10 (- 0.10, - 0.09), 0.23 (0.21, 0.24), - 13.66 (- 15.71, - 11.62), and - 7.96 (- 7.99, - 7.93), respectively. CONCLUSIONS SC therapy is effective for PAH in preclinical studies. These results may help to standardise preclinical animal studies and provide a theoretical basis for clinical trial design in the future. SYSTEMATIC REVIEW REGISTRATION PROSPERO ( http://www.crd.york.ac.uk/PROSPERO ).
Collapse
Affiliation(s)
- Xian-Fei Ding
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Huo-Yan Liang
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Bo Yuan
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Li-Feng Li
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Tian Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Quan-Cheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Le-Xin Wang
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650 Australia
| | - Tong-Wen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|