1
|
Leitch HA. Iron Overload, Oxidative Stress, and Somatic Mutations in MDS: What Is the Association? Eur J Haematol 2025; 114:710-732. [PMID: 39876029 DOI: 10.1111/ejh.14385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/30/2025]
Abstract
INTRODUCTION Iron overload (IOL) accumulates in myelodysplastic syndromes (MDS) from expanded erythropoiesis and transfusions. Somatic mutations (SM) are frequent in MDS and stratify patient risk. MDS treatments reversing or limiting transfusion dependence are limited. METHODS The literature was reviewed on how IOL and oxidative stress interact with specific SM in MDS to influence cellular physiology. PubMed searches included keywords of each specific mutation combined with iron, oxidative stress, and reactive oxygens species (ROS). Papers relevant to hematopoietic stem/progenitor cells, the bone marrow microenvironment, MDS, AML or other myeloid disorders were preferred. Included were the most frequent SM in MDS, SM of the International Prognostic Scoring System-Molecular (IPSS-M), of familial predisposing conditions and the CMML PSS-molecular. RESULTS About 31 SM plus four familial conditions were searched. Discussed are the frequency of each SM, whether function is gained or lost, early or late SM status, a function of the unmutated gene, and function considering iron and oxidative stress. DISCUSSION Given limited effective MDS therapies, considering how IOL and ROS interact with SM to influence cellular physiology in the hematopoietic system, increasing bone marrow failure progression or malignant transformation may be of benefit and support optimization of measures to reduce IOL or neutralize ROS.
Collapse
Affiliation(s)
- Heather A Leitch
- Hematology, St. Paul's Hospital and The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Stempel JM, Podoltsev NA, Dosani T. Supportive Care for Patients With Myelodysplastic Syndromes. Cancer J 2023; 29:168-178. [PMID: 37195773 DOI: 10.1097/ppo.0000000000000661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABSTRACT Myelodysplastic syndromes are a heterogeneous group of bone marrow disorders characterized by ineffective hematopoiesis, progressive cytopenias, and an innate capability of progressing to acute myeloid leukemia. The most common causes of morbidity and mortality are complications related to myelodysplastic syndromes rather than progression to acute myeloid leukemia. Although supportive care measures are applicable to all patients with myelodysplastic syndromes, they are especially essential in patients with lower-risk disease who have a better prognosis compared with their higher-risk counterparts and require longer-term monitoring of disease and treatment-related complications. In this review, we will address the most frequent complications and supportive care interventions used in patients with myelodysplastic syndromes, including transfusion support, management of iron overload, antimicrobial prophylaxis, important considerations in the era of COVID-19 (coronavirus infectious disease 2019), role of routine immunizations, and palliative care in the myelodysplastic syndrome population.
Collapse
|
3
|
Huang L, Tian M, Liu Z, Liu C, Fu R. Deferasirox combination with eltrombopag shows anti-myelodysplastic syndrome effects by enhancing iron deprivation-related apoptosis. J Investig Med 2021; 70:953-962. [PMID: 34921125 DOI: 10.1136/jim-2021-002147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2021] [Indexed: 11/04/2022]
Abstract
Iron overload (IO) affected the survival of patients with myelodysplastic syndrome (MDS). Deferasirox (DFX) is widely used in patients with MDS for iron chelation therapy, but is not suitable for MDS patients with severe thrombocytopenia. Eltrombopag (ELT) is a type of thrombopoietin receptor (TPOR) analog used in the treatment of thrombocytopenia. Therefore, we sought to explore the synergistic effects and possible mechanisms of DFX combination with ELT in MDS cells. In our study, the combination of DFX with ELT synergistically inhibited proliferation, induced apoptosis and arrested cell cycle of MDS cells. Through the RNA-sequence and gene set enrichment analysis (GSEA), iron metabolism-related pathway played important roles in apoptosis of SKM-1 cells treated with DFX plus ELT. Transferrin receptor (TFRC) was significantly highly expressed in combination group than that in single agent groups, without affecting TPOR. Furthermore, the apoptosis of the combination group MDS cells could be partially reversed by ferric ammonium citrate (FAC), accompanied with decreased expression of TFRC. These results suggested that the combination of DFX and ELT synergistically induced apoptosis of MDS cells by enhancing iron deprivation-related pathway.
Collapse
Affiliation(s)
- Lei Huang
- Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mengyue Tian
- Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoyun Liu
- Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunyan Liu
- Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Rong Fu
- Hematology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
4
|
Palumbo GA, Galimberti S, Barcellini W, Cilloni D, Di Renzo N, Elli EM, Finelli C, Maurillo L, Ricco A, Musto P, Russo R, Latagliata R. From Biology to Clinical Practice: Iron Chelation Therapy With Deferasirox. Front Oncol 2021; 11:752192. [PMID: 34692534 PMCID: PMC8527180 DOI: 10.3389/fonc.2021.752192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/08/2021] [Indexed: 01/19/2023] Open
Abstract
Iron chelation therapy (ICT) has become a mainstay in heavily transfused hematological patients, with the aim to reduce iron overload (IOL) and prevent organ damage. This therapeutic approach is already widely used in thalassemic patients and in low-risk Myelodysplastic Syndrome (MDS) patients. More recently, ICT has been proposed for high-risk MDS, especially when an allogeneic bone marrow transplantation has been planned. Furthermore, other hematological and hereditary disorders, characterized by considerable transfusion support to manage anemia, could benefit from this therapy. Meanwhile, data accumulated on how iron toxicity could exacerbate anemia and other clinical comorbidities due to oxidative stress radical oxygen species (ROS) mediated by free iron species. Taking all into consideration, together with the availability of approved oral iron chelators, we envision a larger use of ICT in the near future. The aim of this review is to better identify those non-thalassemic patients who can benefit from ICT and give practical tips for management of this therapeutic strategy.
Collapse
Affiliation(s)
- Giuseppe A. Palumbo
- Department of Scienze Mediche Chirurgiche e Tecnologie Avanzate “G.F. Ingrassia, ” University of Catania, Catania, Italy
| | - Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Wilma Barcellini
- Hematology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico di Milano and University of Milan, Milan, Italy
| | - Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Nicola Di Renzo
- Hematology and Transplant Unit, Ospedale Vito Fazzi, Lecce, Italy
| | - Elena Maria Elli
- Division of Hematology and Bone Marrow Unit, Ospedale San Gerardo, Aziende Socio Sanitarie Territoriali (ASST), Monza, Italy
| | - Carlo Finelli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| | - Luca Maurillo
- Department of Onco-hematology, Fondazione Policlinico Tor Vergata, Rome, Italy
| | - Alessandra Ricco
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliera Universitaria (AOU) Consorziale Policlinico, Bari, Italy
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, Azienda Ospedaliera Universitaria (AOU) Consorziale Policlinico, Bari, Italy
- Department of Emergency and Organ Transplantation, “Aldo Moro” University School of Medicine, Bari, Italy
| | - Rodolfo Russo
- Clinica Nefrologica, Dialisi e Trapianto, Department of Integrated Medicine with the Territory, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roberto Latagliata
- Unità Operativa Complessa (UOC) Ematologia, Ospedale Belcolle, Viterbo and Division of Cellular Biotechnology and Hematology, Sapienza University, Rome, Italy
| |
Collapse
|
5
|
Nakamura H, Takada K. Reactive oxygen species in cancer: Current findings and future directions. Cancer Sci 2021; 112:3945-3952. [PMID: 34286881 PMCID: PMC8486193 DOI: 10.1111/cas.15068] [Citation(s) in RCA: 442] [Impact Index Per Article: 110.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS), a class of highly bioactive molecules, have been widely studied in various types of cancers. ROS are considered to be normal byproducts of numerous cellular processes. Typically, cancer cells exhibit higher basal levels of ROS compared with normal cells as a result of an imbalance between oxidants and antioxidants. ROS have a dual role in cell metabolism: At low to moderate levels, ROS act as signal transducers to activate cell proliferation, migration, invasion, and angiogenesis. In contrast, high levels of ROS cause damage to proteins, nucleic acids, lipids, membranes, and organelles, leading to cell death. Extensive studies have revealed that anticancer therapies that manipulate ROS levels, including immunotherapies, show promising in vitro as well as in vivo results. In this review, we summarize molecular mechanisms and oncogenic functions that modulate ROS levels and are useful for the development of cancer therapeutic strategies. This review also provides insights into the future development of effective agents that regulate the redox system for cancer treatment.
Collapse
Affiliation(s)
- Hajime Nakamura
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kohichi Takada
- Department of Medical Oncology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
6
|
Iron overload-induced oxidative stress in myelodysplastic syndromes and its cellular sequelae. Crit Rev Oncol Hematol 2021; 163:103367. [PMID: 34058341 DOI: 10.1016/j.critrevonc.2021.103367] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/30/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022] Open
Abstract
The myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders. MDS patients often require red blood cell transfusions, resulting in iron overload (IOL). IOL increases production of reactive oxygen species (ROS), oxygen free radicals. We review and illustrate how IOL-induced ROS influence cellular activities relevant to MDS pathophysiology. ROS damage lipids, nucleic acids in mitochondrial and nuclear DNA, structural proteins, transcription factors and enzymes. Cellular consequences include decreased metabolism and tissue and organ dysfunction. In hematopoietic stem cells (HSC), consequences of ROS include decreased glycolysis, shifting the cell from anaerobic to aerobic metabolism and causing HSC to exit the quiescent state, leading to HSC exhaustion or senescence. ROS oxidizes DNA bases, resulting in accumulation of mutations. Membrane oxidation alters fluidity and permeability. In summary, evidence indicates that IOL-induced ROS alters cellular signaling pathways resulting in toxicity to organs and hematopoietic cells, in keeping with adverse clinical outcomes in MDS.
Collapse
|
7
|
Tomo S, Kumar KP, Roy D, Sankanagoudar S, Purohit P, Yadav D, Banerjee M, Sharma P, Misra S. Complement activation and coagulopathy - an ominous duo in COVID19. Expert Rev Hematol 2021; 14:155-173. [PMID: 33480807 DOI: 10.1080/17474086.2021.1875813] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION COVID-19 has similarities to the Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) outbreaks, as severe patients and non-survivors have frequently shown abnormal coagulation profiles. Immune-mediated pathology is a key player in this disease; hence, the role of the complement system needs assessment. The complement system and the coagulation cascade share an intricate network, where multiple mediators maintain a balance between both pathways. Coagulopathy in COVID-19, showing mixed features of complement-mediated and consumption coagulopathy, creates a dilemma in diagnosis and management. AREAS COVERED Pathophysiology of coagulopathy in COVID-19 patients, with a particular focus on D-dimer and its role in predicting the severity of COVID-19 has been discussed. A comprehensive search of the medical literature on PubMed was done till May 30th, 2020 with the keywords 'COVID-19', 'SARS-CoV-2', 'Coronavirus', 'Coagulopathy', and 'D-dimer'. Twenty-two studies were taken for weighted pooled analysis of D-dimer. EXPERT OPINION A tailored anticoagulant regimen, including intensification of standard prophylactic regimens with low-molecular-weight heparin is advisable for COVID-19 patients. Atypical manifestations and varying D-dimer levels seen in different populations bring forth the futility of uniform recommendations for anticoagulant therapy. Further, direct thrombin inhibitors and platelet inhibitors in a patient-specific manner should also be considered.
Collapse
Affiliation(s)
- Sojit Tomo
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Kiran Pvsn Kumar
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Dipayan Roy
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | | | - Purvi Purohit
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Dharamveer Yadav
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Mithu Banerjee
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Praveen Sharma
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Sanjeev Misra
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| |
Collapse
|
8
|
Votavova H, Urbanova Z, Kundrat D, Dostalova Merkerova M, Vostry M, Hruba M, Cermak J, Belickova M. Modulation of the Immune Response by Deferasirox in Myelodysplastic Syndrome Patients. Pharmaceuticals (Basel) 2021; 14:ph14010041. [PMID: 33430232 PMCID: PMC7825690 DOI: 10.3390/ph14010041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 01/02/2023] Open
Abstract
Deferasirox (DFX) is an oral iron chelator used to reduce iron overload (IO) caused by frequent blood cell transfusions in anemic myelodysplastic syndrome (MDS) patients. To study the molecular mechanisms by which DFX improves outcome in MDS, we analyzed the global gene expression in untreated MDS patients and those who were given DFX treatment. The gene expression profiles of bone marrow CD34+ cells were assessed by whole-genome microarrays. Initially, differentially expressed genes (DEGs) were determined between patients with normal ferritin levels and those with IO to address the effect of excessive iron on cellular pathways. These DEGs were annotated to Gene Ontology terms associated with cell cycle, apoptosis, adaptive immune response and protein folding and were enriched in cancer-related pathways. The deregulation of multiple cancer pathways in iron-overloaded patients suggests that IO is a cofactor favoring the progression of MDS. The DEGs between patients with IO and those treated with DFX were involved predominantly in biological processes related to the immune response and inflammation. These data indicate DFX modulates the immune response mainly via neutrophil-related genes. Suppression of negative regulators of blood cell differentiation essential for cell maturation and upregulation of heme metabolism observed in DFX-treated patients may contribute to the hematopoietic improvement.
Collapse
Affiliation(s)
- Hana Votavova
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (H.V.); (D.K.); (M.D.M.); (M.V.); (M.H.)
| | - Zuzana Urbanova
- First Faculty of Medicine, Charles University, Katerinská 32, 121 08 Prague, Czech Republic;
- Department of Clinical Hematology, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic;
| | - David Kundrat
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (H.V.); (D.K.); (M.D.M.); (M.V.); (M.H.)
| | - Michaela Dostalova Merkerova
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (H.V.); (D.K.); (M.D.M.); (M.V.); (M.H.)
| | - Martin Vostry
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (H.V.); (D.K.); (M.D.M.); (M.V.); (M.H.)
| | - Monika Hruba
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (H.V.); (D.K.); (M.D.M.); (M.V.); (M.H.)
- First Faculty of Medicine, Charles University, Katerinská 32, 121 08 Prague, Czech Republic;
| | - Jaroslav Cermak
- Department of Clinical Hematology, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic;
| | - Monika Belickova
- Department of Genomics, Institute of Hematology and Blood Transfusion, U Nemocnice 1, 128 20 Prague, Czech Republic; (H.V.); (D.K.); (M.D.M.); (M.V.); (M.H.)
- Correspondence: ; Tel.: +420-221-977-305
| |
Collapse
|
9
|
Marchi G, Busti F, Girelli D. The Role of Iron Staining in Myelodysplastic Syndromes: A Treasure Trove of Information. Acta Haematol 2020; 144:250-251. [PMID: 33254167 DOI: 10.1159/000511559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/12/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Giacomo Marchi
- Internal Medicine, University Hospital of Verona, Verona, Italy,
| | - Fabiana Busti
- Internal Medicine, University Hospital of Verona, Verona, Italy
| | | |
Collapse
|
10
|
Iron overload and its impact on outcome of patients with hematological diseases. Mol Aspects Med 2020; 75:100868. [PMID: 32620237 DOI: 10.1016/j.mam.2020.100868] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 01/19/2023]
Abstract
Systemic iron overload (SIO) is a common challenge in patients with hematological diseases and develops as a result of ineffective erythropoiesis, multiple red blood cell (RBC) transfusions and disease-specific therapies. Iron homeostasis is tightly regulated as there is no physiological pathway to excrete iron from the body. Excess iron is, therefore, stored in tissues like liver, heart and bone marrow and can lead to progressive organ damage. The presence of free iron in the form of non-transferrin bound iron (NTBI) is especially detrimental. Reactive oxygen species can also cause stromal damage in the bone marrow and promote leukemic cell growth in vitro. In acute leukemias and myelodysplastic syndromes outcome is worse in patients with SIO compared to patients without. Especially in patients undergoing allogeneic HSCT presence of NTBI before or during transplant has been shown to negatively affect non-relapse mortality and overall survival. Although the mechanisms, of how these effects are mediated by SIO are not very well understood monitoring of iron status by serum markers and imaging techniques is, therefore, mandatory especially in these patients. Whether peri-interventional iron chelation may improve outcome of these patients is part of current clinical research.
Collapse
|