1
|
Doniol-Valcroze P, Develay Nguyen L, Buatois B, Dötterl S, Fuchs R, Després L, Joron M, Bagnères AG. Non-random sorting of parental chemical compounds during hybrid speciation. J Evol Biol 2025; 38:559-571. [PMID: 40135482 DOI: 10.1093/jeb/voaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/20/2025] [Accepted: 03/24/2025] [Indexed: 03/27/2025]
Abstract
The role of hybridization during speciation remains partially understood, yet introgression among lineages may trigger reproductive isolation (RI). Hybrid speciation may reveal how specific traits drive RI and how characters are sorted following admixture. Here, we study hybrid speciation in a complex of butterfly species (Coenonympha spp.) in which 2 hybrid lineages (C. darwiniana and C. cephalidarwiniana) received about 75% of their genomes from C. arcania, and 25% from C. gardetta. By contrast with their genomic ancestry compositions, hybrid lineages mate readily with their minor parent in contact zones, while the major parent shows nearly complete isolation from all lineages. To test whether hybrid speciation operated via the non-random sorting of traits acting as pre-zygotic barriers, we assessed chemical profile similarity between species using gas chromatography-mass spectrometry and contrasted it to genomic composition and natural patterns of hybridization. Both hybrid species exhibited profiles strikingly similar to their minor parent despite the genomic contribution of the major parent, matching predictions for isolating traits. This suggests that chemical traits were sorted non-randomly during hybrid speciation and that they contributed to RI from the major parent. Our results reveal how hybridization may trigger rapid speciation and underscore the significance of chemical signalling in shaping barriers among emerging species.
Collapse
Affiliation(s)
| | | | - Bruno Buatois
- CEFE, Univ Montpellier, EPHE, IRD, CNRS, Montpellier, France
| | - Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Roman Fuchs
- Department of Environment & Biodiversity, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Laurence Després
- Laboratoire d'Ecologie Alpine, Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, 38000 Grenoble, France
| | - Mathieu Joron
- CEFE, Univ Montpellier, EPHE, IRD, CNRS, Montpellier, France
| | | |
Collapse
|
2
|
Poitras T, Piragasam RS, Joy T, Jackson J, Chandrasekhar A, Fahlman R, Zochodne DW. Major urinary protein excreted in rodent hindpaw sweat. J Anat 2021; 239:529-535. [PMID: 33686663 PMCID: PMC8273588 DOI: 10.1111/joa.13423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 11/29/2022] Open
Abstract
Alternative roles for sweat production beyond thermoregulation, considered less frequently, include chemical signaling. We identified the presence of a well-established rodent urinary pheromone, major urinary protein (MUP) in sweat ductules of the footpad dermal skin of mice. A hindpaw sweat proteomic analysis in hindpaw sweat samples collected in rats and generated by unmyelinated axon activation, identified seven lipocalin family members including MUP and 19 additional unique proteins. Behavioural responses to sniffing male mouse foot protein lysates suggested avoidance in a subset of male mice, but were not definitive. Rodent hindpaw sweat glands secrete a repertoire of proteins that include MUPs known to have roles in olfactory communication.
Collapse
Affiliation(s)
- Trevor Poitras
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | | | - Twinkle Joy
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Jesse Jackson
- Department of Physiology and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Ambika Chandrasekhar
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| | - Richard Fahlman
- Department of BiochemistryUniversity of AlbertaEdmontonABCanada
| | - Douglas W. Zochodne
- Division of NeurologyDepartment of Medicine and the Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonABCanada
| |
Collapse
|
3
|
Reverse chemical ecology approach for the identification of an oviposition attractant for Culex quinquefasciatus. Proc Natl Acad Sci U S A 2018; 115:714-719. [PMID: 29311316 PMCID: PMC5789951 DOI: 10.1073/pnas.1718284115] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Surveillance of mosquito populations is essential for determining the best timing for intervention as well as for monitoring circulation of new and previously detected pathogens. Trapping gravid females is more effective because they are more likely to be infected than nongravid females. However, better gravid trap attractants are sorely needed to replace fermentation recipes, which are cumbersome, have poor quality control, generate an offensive smell, and do not provide a long-term and consistent source of attractants. By using a reverse chemical ecology approach based on odorant receptors from the southern house mosquito, we have identified that acetaldehyde in a wide range of doses both attracts gravid female mosquitoes and stimulates them to lay eggs in oviposition trays. Pheromones and other semiochemicals play a crucial role in today’s integrated pest and vector management strategies. These semiochemicals are typically discovered by bioassay-guided approaches. Here, we applied a reverse chemical ecology approach; that is, we used olfactory proteins to lead us to putative semiochemicals. Specifically, we used 7 of the top 10 odorant receptors (ORs) most expressed in the antennae of the southern house mosquito, Culex quinquefasciatus, and which are yet to be deorphanized. We expressed these receptors in the Xenopus oocyte recording system and challenged them with a panel of 230 odorants, including physiologically and behaviorally active compounds. Six of the ORs were silent either because they are not functional or a key odorant was missing. CquiOR36, which showed the highest transcript levels of all OR genes in female antennae, was also silent to all odorants in the tested panel, but yielded robust responses when it was accidentally challenged with an old sample of nonanal in ethanol. After confirming that fresh samples were inactive and through a careful investigation of all possible “contaminants” in the old nonanal samples, we identified the active ligand as acetaldehyde. That acetaldehyde is activating CquiOR36 was further confirmed by electroantennogram recordings from antennae of fruit flies engineered to carry CquiOR36. Antennae of female mosquitoes also responded to acetaldehyde. Cage oviposition and dual-choice assays demonstrated that acetaldehyde is an oviposition attractant in a wide range of concentrations and thus of potential practical applications.
Collapse
|
4
|
Zhao Y, Wang F, Zhang X, Zhang S, Guo S, Zhu G, Liu Q, Li M. Transcriptome and Expression Patterns of Chemosensory Genes in Antennae of the Parasitoid Wasp Chouioia cunea. PLoS One 2016; 11:e0148159. [PMID: 26841106 PMCID: PMC4739689 DOI: 10.1371/journal.pone.0148159] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/13/2016] [Indexed: 12/03/2022] Open
Abstract
Chouioia cunea Yang is an endoparasitic wasp that attacks pupae of Hyphantria cunea (Drury), an invasive moth species that severely damages forests in China. Chemosensory systems of insects are used to detect volatile chemical odors such as female sex pheromones and host plant volatiles. The antennae of parasite wasps are important for host detection and other sensory-mediated behaviors. We identified and documented differential expression profiles of chemoreception genes in C. cunea antennae. A total of 25 OBPs, 80 ORs, 10 IRs, 11 CSP, 1 SNMPs, and 17 GRs were annotated from adult male and female C. cunea antennal transcriptomes. The expression profiles of 25 OBPs, 16 ORs, and 17 GRs, 5 CSP, 5 IRs and 1 SNMP were determined by RT-PCR and RT-qPCR for the antenna, head, thorax, and abdomen of male and female C. cunea. A total of 8 OBPs, 14 ORs, and 8 GRs, 1 CSP, 4 IRs and 1 SNMPs were exclusively or primarily expressed in female antennae. These female antennal-specific or dominant expression profiles may assist in locating suitable host and oviposition sites. These genes will provide useful targets for advanced study of their biological functions.
Collapse
Affiliation(s)
- Yanni Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Fengzhu Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Xinyue Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Suhua Zhang
- Natural Enemy Breeding Center of Luohe Central South Forestry, 462000, Henan, China
| | - Shilong Guo
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Gengping Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Qiang Liu
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
| | - Min Li
- Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, 300387, Tianjin, China
- * E-mail:
| |
Collapse
|
5
|
Miller NA, Fike KE. Exposure of prepubertal beef bulls to cycling females does not enhance sexual development. Theriogenology 2014; 82:447-54. [PMID: 24888685 DOI: 10.1016/j.theriogenology.2014.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 10/25/2022]
Abstract
The objective of this study was to determine whether continuous, long-term, fenceline exposure of prepubertal beef bulls to cycling beef females reduced age at puberty and influenced the percentage of bulls that passed an initial breeding soundness examination (BSE). Bulls (Angus, n = 37; Simmental, n = 22; Hereford, n = 10; Simmental × Angus, n = 8) at an average age of 202 ± 21.5 days were given either continuous fenceline and visual exposure to cycling females (exposed, n = 41) or no exposure (control, n = 36). Estrus was induced in cycling beef females so at least three females were in standing estrus each week during the 182 days of exposure to bulls. Scrotal circumference (SC), body weight, and blood samples were collected every 28 days. When bulls had SC of 26 cm or more, semen samples were obtained monthly via electroejaculation until puberty was achieved (≥50 × 10(6) sperm/mL with at least 10% progressive motility). Behavioral observations were conducted twice monthly: once when females were in estrus and once during diestrus. Homosexual mounting, flehmen responses, and number of times near penned females were recorded for each observation period. Breeding soundness examinations were conducted when the average age of bulls was 364 ± 21.5 days. Normal sperm morphology of at least 70% and sperm motility of at least 30% were required to pass the BSE. Age, body weight, and SC at puberty did not differ between exposed and control bulls (320 ± 28 and 311 ± 29 days; 466.2 ± 12.2 and 437.7 ± 13.5 kg; and 34.4 ± 2.5 and 34.9 ± 2.5 cm, respectively). Percentage of bulls passing their initial BSE did not differ between treatments (exposed, 87.8%; control, 75.0%). Treatment, month, and female estrous stage interacted (P = 0.05) to affect the number of mount attempts and flehmen responses. Exposed bulls entered the cow area more times (P < 0.001) during estrus than diestrus in Months 1, 2, and 3. We concluded that bulls given continuous, long-term, fenceline exposure to cycling beef females do not have enhanced sexual development.
Collapse
Affiliation(s)
- N A Miller
- Department of Animal Science and Industry, Kansas State University, Manhattan, Kansas, USA
| | - K E Fike
- Department of Animal Science and Industry, Kansas State University, Manhattan, Kansas, USA.
| |
Collapse
|
6
|
Gong ZJ, Miao J, Duan Y, Jiang YL, Li T, Wu YQ. Identification and expression profile analysis of putative odorant-binding proteins in Sitodiplosis mosellana (Gehin) (Diptera: Cecidomyiidae). Biochem Biophys Res Commun 2014; 444:164-70. [DOI: 10.1016/j.bbrc.2014.01.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/10/2014] [Indexed: 01/19/2023]
|
7
|
Differential expression of olfactory genes in the southern house mosquito and insights into unique odorant receptor gene isoforms. Proc Natl Acad Sci U S A 2013; 110:18704-9. [PMID: 24167245 DOI: 10.1073/pnas.1316059110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The southern house mosquito, Culex quinquefasciatus, has one of the most acute and eclectic olfactory systems of all mosquito species hitherto studied. Here, we used Illumina sequencing to identify olfactory genes expressed predominantly in antenna, mosquito's main olfactory organ. Less than 50% of the trimmed reads generated by high-quality libraries aligned to a transcript, but approximately 70% of them aligned to the genome. Differential expression analysis, which was validated by quantitative real-time PCR on a subset of genes, showed that approximately half of the 48 odorant-binding protein genes were enriched in antennae, with the other half being predominantly expressed in legs. Similar patterns were observed with chemosensory proteins, "plus-C" odorant-binding proteins, and sensory neuron membrane proteins. Transcripts for as many as 43 ionotropic receptors were enriched in female antennae, thus making the ionotropic receptor family the largest of antennae-rich olfactory genes, second only to odorant receptor (OR) genes. As many as 177 OR genes have been identified, including 36 unique transcripts. The unique OR genes differed from previously annotated ORs in internal sequences, splice variants, and extended N or C terminus. One of the previously unknown transcripts was validated by cloning and functional expression. When challenged with a large panel of physiologically relevant compounds, CquiOR95b responded in a dose-dependent manner to ethyl 2-phenylacteate, which was demonstrated to repel Culex mosquitoes, and secondarily to citronellal, a known insect repellent. This transcriptome study led to identification of key molecular components and a repellent for the southern house mosquito.
Collapse
|
8
|
Mucignat-Caretta C, Redaelli M, Caretta A. One nose, one brain: contribution of the main and accessory olfactory system to chemosensation. Front Neuroanat 2012; 6:46. [PMID: 23162438 PMCID: PMC3494019 DOI: 10.3389/fnana.2012.00046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 10/22/2012] [Indexed: 01/18/2023] Open
Abstract
The accessory olfactory system is present in most tetrapods. It is involved in the perception of chemical stimuli, being implicated also in the detection of pheromones. However, it is sensitive also to some common odorant molecules, which have no clear implication in intraspecific chemical communication. The accessory olfactory system may complement the main olfactory system and may contribute different perceptual features to the construction of a unitary representation, which merges the different chemosensory qualities. Crosstalk between the main and accessory olfactory systems occurs at different levels of central processing, in brain areas where the inputs from the two systems converge. Interestingly, centrifugal projections from more caudal brain areas are deeply involved in modulating both main and accessory sensory processing. A high degree of interaction between the two systems may be conceived and partial overlapping appears to occur in many functions. Therefore, the central chemosensory projections merge inputs from different organs to obtain a complex chemosensory picture.
Collapse
|
9
|
Jacobson-Pick S, Audet MC, Nathoo N, Anisman H. Stressor experiences during the juvenile period increase stressor responsivity in adulthood: transmission of stressor experiences. Behav Brain Res 2010; 216:365-74. [PMID: 20732357 DOI: 10.1016/j.bbr.2010.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/13/2010] [Accepted: 08/16/2010] [Indexed: 01/31/2023]
Abstract
Stressors experienced by rodents during the juvenile period may have repercussions on anxiety and impulsivity that extend into adulthood. In the present investigation we demonstrate that during social interactions stressed adults might transmit their responses to juveniles thereby affecting later behavioral responses in adulthood. In the present investigation adult mice exposed to a stressor, exhibited altered social exploration of a juvenile (26-28 day old) mouse that comprised reduced body contact but elevated anogenital and facial contact. The juvenile mice that encountered the stressed adult, in turn, exhibited greater impulsivity in an elevated plus maze test, as well as elevated corticosterone levels. In a second experiment, adult animals that had experienced a stressor during the juvenile period also exhibited reduced social exploration (of a juvenile), but upon exposure to a further social stressor (social defeat), social exploration was altered further. Furthermore, when tested in an elevated plus maze the juvenile mice that had encountered an adult that had itself been stressed as a juvenile, exhibited increased impulsivity. However, if they encountered an adult that had been stressed both as a juvenile and as an adult, the behavioral profile of the juveniles was altered yet again in that they exhibited greater impulsivity coupled with anxiety. It is suggested that the juvenile period represents one during which stressor sensitivity is high, so that transmission of stressor effects from adults occurs readily. Moreover, stressors experienced during the juvenile period may have persistent effects on social behaviors, thereby affecting conspecifics with which they interact.
Collapse
Affiliation(s)
- Shlomit Jacobson-Pick
- Carleton University, Institute of Neuroscience, Ottawa, 1125 Colonel By Drive Ottawa, K1S5B6 Ontario, Canada.
| | | | | | | |
Collapse
|
10
|
Mucignat-Caretta C. The rodent accessory olfactory system. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:767-77. [PMID: 20607541 DOI: 10.1007/s00359-010-0555-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 06/10/2010] [Accepted: 06/19/2010] [Indexed: 11/24/2022]
Abstract
The accessory olfactory system contributes to the perception of chemical stimuli in the environment. This review summarizes the structure of the accessory olfactory system, the stimuli that activate it, and the responses elicited in the receptor cells and in the brain. The accessory olfactory system consists of a sensory organ, the vomeronasal organ, and its central projection areas: the accessory olfactory bulb, which is connected to the amygdala and hypothalamus, and also to the cortex. In the vomeronasal organ, several receptors-in contrast to the main olfactory receptors-are sensitive to volatile or nonvolatile molecules. In a similar manner to the main olfactory epithelium, the vomeronasal organ is sensitive to common odorants and pheromones. Each accessory olfactory bulb receives input from the ipsilateral vomeronasal organ, but its activity is modulated by centrifugal projections arising from other brain areas. The processing of vomeronasal stimuli in the amygdala involves contributions from the main olfactory system, and results in long-lasting responses that may be related to the activation of the hypothalamic-hypophyseal axis over a prolonged timeframe. Different brain areas receive inputs from both the main and the accessory olfactory systems, possibly merging the stimulation of the two sensory organs to originate a more complex and integrated chemosensory perception.
Collapse
|
11
|
Zhang P, Yang C, Delay RJ. Odors activate dual pathways, a TRPC2 and a AA-dependent pathway, in mouse vomeronasal neurons. Am J Physiol Cell Physiol 2010; 298:C1253-64. [PMID: 20147653 DOI: 10.1152/ajpcell.00271.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Located at the anterior portion of the nose, the paired vomeronasal organs (VNO) detect odors and pheromones. In vomeronasal sensory neurons (VSNs) odor responses are mainly mediated by phospholipase C (PLC), stimulation of which elevates diacylglycerol (DAG). DAG activates a transient receptor potential channel (TRPC2) leading to cell depolarization. In this study, we used a natural stimulus, urine, to elicit odor responses in VSNs and found urine responses persisted in TRPC2(-/-) mice, suggesting the existence of a TRPC2-independent signal transduction pathway. Using perforated patch-clamp recordings on isolated VSNs from wild-type (WT) and TRPC2(-/-) mice, we found a PLC inhibitor blocked urine responses from all VSNs. Furthermore, urine responses were reduced by blocking DAG lipase, an enzyme that produces arachidonic acid (AA), in WT mice and abolished in TRPC2(-/-) mice. Consistently, direct stimulation with AA activated an inward current that was independent of TRPC2 channels but required bath Ca(2+) and was blocked by Cd(2+). With the use of inside-out patches from TRPC2(-/-) VSNs, we show that AA activated a channel that also required Ca(2+). Together, these data from WT and TRPC2(-/-) mice suggest that both DAG and its metabolite, AA, mediate excitatory odor responses in VSNs, by activating two types of channels, a TRPC2 and a separate Ca(2+)-permeable channel.
Collapse
Affiliation(s)
- Peng Zhang
- Dept. of Biology, Univ. of Vermont, Burlington, 05405, USA
| | | | | |
Collapse
|
12
|
Vedin V, Eriksson B, Berghard A. Organization of the chemosensory neuroepithelium of the vomeronasal organ of the Scandinavian moose Alces alces. Brain Res 2009; 1306:53-61. [PMID: 19833105 DOI: 10.1016/j.brainres.2009.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Revised: 10/02/2009] [Accepted: 10/02/2009] [Indexed: 10/20/2022]
Abstract
A functional vomeronasal organ is present in most land-living vertebrates, but not in all. Studies in a limited number of mammals have shown that stimulation of the vomeronasal neurons by odorous cues from conspecifics can lead to changes in innate behaviors in association to e.g. mating and aggression. Given the role of the organ in detecting odorous molecules important for species-specific communication, investigations of the structure of the vomeronasal organ within the mammalian group are warranted. Wild Scandinavian moose (Alces alces) is an even-toed ungulate (order: Artiodactyla) and the largest representative of the deer family Cervidae. This is the first study of the vomeronasal organ of a deer species that includes immunohistochemistry. The gross anatomy of the tubular vomeronasal organ of moose was investigated including a nasopalatine duct that may allow for entrance of odorous substances from the oral and nasal cavities. The histology of the neuroepithelial part, in moose of both sexes, appeared overall similar to that of representatives of other Artiodactyla families. Basement membrane, structural epithelial cells, glia and sensory neurons were analyzed by expression of specific markers. The results suggest that the vomeronasal neuroepithelium of even-toed ungulates is more similar in organization to that of carnivores than e.g. rodents with regard to the relative number of sensory neurons and presence of functionally distinct populations of neurons.
Collapse
Affiliation(s)
- Viktoria Vedin
- Department of Molecular Biology, Byggn. 6L, Umeå University, SE-90187 Umeå, Sweden.
| | | | | |
Collapse
|
13
|
Abstract
The mammalian olfactory system senses an almost unlimited number of chemical stimuli and initiates a process of neural recognition that influences nearly every aspect of life. This review examines the organizational principles underlying the recognition of olfactory stimuli. The olfactory system is composed of a number of distinct subsystems that can be distinguished by the location of their sensory neurons in the nasal cavity, the receptors they use to detect chemosensory stimuli, the signaling mechanisms they employ to transduce those stimuli, and their axonal projections to specific regions of the olfactory forebrain. An integrative approach that includes gene targeting methods, optical and electrophysiological recording, and behavioral analysis has helped to elucidate the functional significance of this subsystem organization for the sense of smell.
Collapse
Affiliation(s)
- Steven D Munger
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | |
Collapse
|
14
|
High contraceptive failure rate of rhythm method: possible involvement of pheromones. Med Hypotheses 2009; 73:1079. [PMID: 19497679 DOI: 10.1016/j.mehy.2009.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Revised: 05/09/2009] [Accepted: 05/12/2009] [Indexed: 11/21/2022]
|
15
|
Appari M, Werner R, Wünsch L, Cario G, Demeter J, Hiort O, Riepe F, Brooks JD, Holterhus PM. Apolipoprotein D (APOD) is a putative biomarker of androgen receptor function in androgen insensitivity syndrome. J Mol Med (Berl) 2009; 87:623-32. [PMID: 19330472 DOI: 10.1007/s00109-009-0462-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 02/24/2009] [Accepted: 03/04/2009] [Indexed: 01/24/2023]
Abstract
Androgen insensitivity syndrome (AIS) is the most common cause of disorders of sex development usually caused by mutations in the androgen receptor (AR) gene. AIS is characterized by a poor genotype-phenotype correlation, and many patients with clinically presumed AIS do not seem to have mutations in the AR gene. We therefore aimed at identifying a biomarker enabling the assessment of the cellular function of the AR as a transcriptional activator. In the first step, we used complementary DNA (cDNA) microarrays for a genome-wide screen for androgen-regulated genes in two normal male primary scrotal skin fibroblast strains compared to two labia majora fibroblast strains from 46,XY females with complete AIS (CAIS). Apolipoprotein D (APOD) and two further transcripts were significantly upregulated by dihydrotestosterone (DHT) in scrotum fibroblasts, while CAIS labia majora cells were unresponsive. Microarray data were well correlated with quantitative real-time polymerase chain reaction (qRT-PCR; R = 0.93). Subsequently, we used qRT-PCR in independent new cell cultures and confirmed the significant DHT-dependent upregulation of APOD in five normal scrotum strains [13.5 +/- 8.2 (SD)-fold] compared with three CAIS strains (1.2 +/- 0.7-fold, p = 0.028; t test) and six partial androgen insensitivity syndrome strains (2 +/- 1.3-fold, p = 0.034; t test). Moreover, two different 17ss-hydroxysteroid dehydrogenase III deficiency labia majora strains showed APOD induction in the range of normal scrotum (9.96 +/- 1.4-fold), supporting AR specificity. Therefore, qRT-PCR of APOD messenger RNA transcription in primary cultures of labioscrotal skin fibroblasts is a promising tool for assessing AR function, potentially allowing a function-based diagnostic evaluation of AIS in the future.
Collapse
Affiliation(s)
- Mahesh Appari
- Department of Pediatrics, University-Hospital Schleswig-Holstein, Christian Albrechts University of Kiel, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Decreased anxiety-like behavior and locomotor/exploratory activity, and modulation in hypothalamus, hippocampus, and frontal cortex redox profile in sexually receptive female rats after short-term exposure to male chemical cues. Behav Brain Res 2008; 199:263-70. [PMID: 19110005 DOI: 10.1016/j.bbr.2008.11.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 11/27/2008] [Accepted: 11/29/2008] [Indexed: 12/11/2022]
Abstract
Chemical cues are widely used for intraspecific social communication in a vast majority of living organisms ranging from bacteria to mammals. As an example, mammals release olfactory cues with urine that promote neuroendocrine modulations with changes in behavior and physiology in the receiver. In this work, four-month-old Wistar (regular 4-day cyclic) virgin female rats were utilized in the proestrus-to-estrus phase of the reproductive cycle for experimental exposure. In an isolated room, female rats were exposed for 90 min to male-soiled bedding (MSB). Elevated plus-maze assay, open field test, and light/dark box task were performed to analyze behavioral alterations on females after exposure. For biochemical assays, female rats were killed and the hypothalamus, hippocampus, and frontal cortex were isolated for further analysis. Antioxidant enzyme activities (superoxide dismutase, catalase and glutathione peroxidase), non-enzymatic antioxidant defense measurements (TRAP and TAR), and the oxidative damage parameters (TBARS, Carbonyl and SH content) were analyzed. In behavioral analyses we observe that female rats show decreased anxiety and locomotory/exploratory activities after MSB exposure. In biochemical assays we observed an increase in both enzymatic and non-enzymatic antioxidant defenses in different central nervous system (CNS) structures analyzed 30 and 90 min after MSB exposure. Furthermore, hippocampus and frontal cortex showed diminished free radical oxidative damage at 180 and 240 min after exposure. These results provide the first evidence that oxidative profile of female CNS structures are altered by chemical cues present in the MSB, thus suggesting that pheromonal communication is able to modulate radical oxygen species production and/or clearance in the female brain.
Collapse
|
17
|
Machnes Z, Avtalion R, Shirak A, Trombka D, Wides R, Fellous M, Don J. Male-specific protein (MSP): a new gene linked to sexual behavior and aggressiveness of tilapia males. Horm Behav 2008; 54:442-9. [PMID: 18534590 DOI: 10.1016/j.yhbeh.2008.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 03/28/2008] [Accepted: 03/28/2008] [Indexed: 10/22/2022]
Abstract
MSP is a male-specific protein initially identified in the serum of sexually active Sarotherodon galilaeus males, and is shown herein to be present in the serum of sexually mature males, but not females, of three other tilapia species. Cloning of the MSP cDNA and analysis of its predicted amino-acid sequence revealed that it is an outlier lipocalin that contains a signal peptide in its N-terminal region. The abundance of highly homologous sequences found in fish and the monophyletic relationship to tetrapod Alpha-1-acid glycoprotein (AGP) places it as a clade XII lipocalin. MSP was shown to undergo major N-glycosylation, characteristic of many lipocalins. The expression pattern of MSP, as determined at both the RNA and protein levels, points to the liver, head kidney and testis as production tissues, and resembles a pattern typical of some hormones. We found that MSP is secreted in urine and seminal fluids, and is present in the skin mucus of socially dominant males. Moreover, we discovered a positive correlation between MSP levels in the serum and the dominance and aggressive behavior displayed by socially dominant males. Based on these data, we suggest that MSP is a novel male-specific lipocalin that may function in intra and inter-sex communication.
Collapse
Affiliation(s)
- Ziv Machnes
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 52900 Israel
| | | | | | | | | | | | | |
Collapse
|
18
|
Nieberding CM, de Vos H, Schneider MV, Lassance JM, Estramil N, Andersson J, Bång J, Hedenström E, Löfstedt C, Brakefield PM. The male sex pheromone of the butterfly Bicyclus anynana: towards an evolutionary analysis. PLoS One 2008; 3:e2751. [PMID: 18648495 PMCID: PMC2447158 DOI: 10.1371/journal.pone.0002751] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Accepted: 06/20/2008] [Indexed: 11/19/2022] Open
Abstract
Background Female sex pheromones attracting mating partners over long distances are a major determinant of reproductive isolation and speciation in Lepidoptera. Males can also produce sex pheromones but their study, particularly in butterflies, has received little attention. A detailed comparison of sex pheromones in male butterflies with those of female moths would reveal patterns of conservation versus novelty in the associated behaviours, biosynthetic pathways, compounds, scent-releasing structures and receiving systems. Here we assess whether the African butterfly Bicyclus anynana, for which genetic, genomic, phylogenetic, ecological and ethological tools are available, represents a relevant model to contribute to such comparative studies. Methodology/Principal Findings Using a multidisciplinary approach, we determined the chemical composition of the male sex pheromone (MSP) in the African butterfly B. anynana, and demonstrated its behavioural activity. First, we identified three compounds forming the presumptive MSP, namely (Z)-9-tetradecenol (Z9-14:OH), hexadecanal (16:Ald ) and 6,10,14-trimethylpentadecan-2-ol (6,10,14-trime-15-2-ol), and produced by the male secondary sexual structures, the androconia. Second, we described the male courtship sequence and found that males with artificially reduced amounts of MSP have a reduced mating success in semi-field conditions. Finally, we could restore the mating success of these males by perfuming them with the synthetic MSP. Conclusions/Significance This study provides one of the first integrative analyses of a MSP in butterflies. The toolkit it has developed will enable the investigation of the type of information about male quality that is conveyed by the MSP in intraspecific communication. Interestingly, the chemical structure of B. anynana MSP is similar to some sex pheromones of female moths making a direct comparison of pheromone biosynthesis between male butterflies and female moths relevant to future research. Such a comparison will in turn contribute to understanding the evolution of sex pheromone production and reception in butterflies.
Collapse
Affiliation(s)
- Caroline M Nieberding
- Evolutionary Biology Group, Institute of Biology, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Basal neurons of the vomeronasal organ of the mouse express a superfamily of about 120 pheromone receptors, named V2Rs, that are grouped in four families, A, B, C, and D, according to sequence homology. Family-A, -B, and -D V2Rs are expressed as one receptor gene per cell, but we previously reported their co-expression with family-C V2Rs. Here, we show that basal neurons can be further grouped according to the combinatorial expression of different V2Rs. Altogether, these findings suggest that in each basal neuron a transcriptional program is active for expressing a combination of two compatible receptors and for excluding, at the same time, the expression of all other V2Rs. Further analyses revealed non-random combinations of co-expression between family-C V2Rs and genes of the class Ib major histocompatibility complex. Thus, each basal neuron of the vomeronasal organ represents a highly qualified sensory unit for detecting very specific combinations of pheromonal cues.
Collapse
Affiliation(s)
- Lucia Silvotti
- Department of Neuroscience, Section of Physiology, University of Parma, Parma, Italy
| | | | | | | |
Collapse
|
20
|
Zufall F, Leinders-Zufall T. Mammalian pheromone sensing. Curr Opin Neurobiol 2007; 17:483-9. [PMID: 17709238 DOI: 10.1016/j.conb.2007.07.012] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 07/19/2007] [Indexed: 11/28/2022]
Abstract
The traditional distinction that the mammalian main olfactory system recognizes general odor molecules and the accessory (vomeronasal) system detects pheromones is no longer valid. The emerging picture is that both systems have considerable overlap in terms of the chemosignals they detect and the effects that they mediate. Recent investigations have discovered large families of pheromonal signals together with a rich variety of specific receptor systems and nasal detection pathways. Selective genetic targeting of these subsystems should help to unravel their biological role in pheromone-mediated behavioral responses.
Collapse
Affiliation(s)
- Frank Zufall
- Department of Physiology, University of Saarland School of Medicine, Kirrberger Strasse, 66421 Homburg/Saar, Germany.
| | | |
Collapse
|
21
|
Abstract
Insect pheromones elicit stereotypic behaviors that are critical for survival and reproduction. Defining the relevant molecular mechanisms mediating pheromone signaling is an important step to manipulate pheromone-induced behaviors in pathogenic or agriculturally important pests. The only volatile pheromone identified in Drosophila is 11-cis-vaccenyl acetate (VA), a male-specific lipid that mediates aggregation behavior. VA activates a few dozen olfactory neurons located in T1 sensilla on the antenna of both male and female flies. Here, we identify a neuronal receptor required for VA sensitivity. We identified two mutants lacking functional T1 sensilla and show that the expression of the VA receptor is dramatically reduced or eliminated. Importantly, we show misexpression of this receptor in non-T1 neurons, normally insensitive to VA, confers pheromone sensitivity at physiologic concentrations. Sensitivity of T1 neurons to VA requires LUSH, an extracellular odorant-binding protein (OBP76a) present in the sensillum lymph bathing trichoid olfactory neuron dendrites. Here, we show LUSH are also required in non-T1 neurons misexpressing the receptor to respond to VA. These data provide new insight into the molecular components and neuronal basis of volatile pheromone perception.
Collapse
Affiliation(s)
- Tal Soo Ha
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Dean P. Smith
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
22
|
Witt M, Hummel T. Vomeronasal versus olfactory epithelium: is there a cellular basis for human vomeronasal perception? INTERNATIONAL REVIEW OF CYTOLOGY 2006; 248:209-59. [PMID: 16487792 DOI: 10.1016/s0074-7696(06)48004-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vomeronasal organ (VNO) constitutes an accessory olfactory organ that receives chemical stimuli, pheromones, which elicit behavioral, reproductive, or neuroendocrine responses among individuals of the same species. In many macrosmatic animals, the morphological substrate constitutes a separate organ system consisting of a vomeronasal duct (ductus vomeronasalis, VND), equipped with chemosensory cells, and a vomeronasal nerve (nervus vomeronasalis, VNN) conducting information into the accessory olfactory bulb (AOB) in the central nervous system (CNS). Recent data require that the long-accepted dual functionality of a main olfactory system and the VNO be reexamined, since all species without a VNO are nevertheless sexually active, and species possessing a VNO also can sense other than "vomeronasal" stimuli via the vomeronasal epithelium (VNE). The human case constitutes a borderline situation, as its embryonic VNO anlage exerts a developmental track common to most macrosmatics, but later typical structures such as the VNN, AOB, and probably most of the chemoreceptor cells within the still existent VND are lost. This review also presents recent information on the VND including immunohistochemical expression of neuronal markers, intermediate filaments, lectins, integrins, caveolin, CD44, and aquaporins. Further, we will address the issue of human pheromone candidates.
Collapse
Affiliation(s)
- Martin Witt
- Department of Anatomy, University of Technology Dresden, Dresden, Germany
| | | |
Collapse
|
23
|
Abstract
From studies in animals, we have learned that differences in sexual behaviour between males and females reflect anatomical and biochemical differences between the male and female brain. A masculine behaviour (and therefore a masculine brain) results from the biological effect on the developing brain exerted by testosterone, which is secreted by the gonads and aromatized into oestrogens in the brain. However, congenital disorders of the androgen as well as oestrogen signalling in human males have failed to show any appreciable derangement in sexual behaviour. Based on other evidence in animals, sexual differences in brain (and behaviour) are not hormonally triggered but genetically determined. This other theory states that sexual behaviour is determined by the chromosomal sex existing in cells, including brain cells. A number of excitatory and inhibitory signals modulate the activity of certain brain structures. Scientists have begun to test some of these chemicals or their synthetic analogues/antagonists in humans.
Collapse
Affiliation(s)
- S Benvenga
- Sezione di Endocrinologia del Dipartimento Clinico-Sperimentale di Medicina e Farmacologia, Università di Messina, and Programma Dip. di Endocrinologia Molecolare Clinica, A. O. U. Policlinico Gaetano Martino, Messina, Italy.
| |
Collapse
|
24
|
Fleischer J, Hass N, Schwarzenbacher K, Besser S, Breer H. A novel population of neuronal cells expressing the olfactory marker protein (OMP) in the anterior/dorsal region of the nasal cavity. Histochem Cell Biol 2005; 125:337-49. [PMID: 16273384 DOI: 10.1007/s00418-005-0077-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2005] [Indexed: 10/25/2022]
Abstract
The olfactory marker protein (OMP) is expressed in mature chemosensory neurons in the nasal neuroepithelium. Here, we report the identification of a novel population of OMP-expressing neurons located bilaterally in the anterior/dorsal region of each nasal cavity at the septum. These cells are clearly separated from the regio olfactoria, harboring the olfactory sensory neurons. During mouse development, the arrangement of the anterior OMP-cells undergoes considerable change. They appear at about stage E13 and are localized in the nasal epithelium during early stages; by epithelial budding, ganglion-shaped clusters are formed in the mesenchyme during the perinatal phase, and a filiform layer directly underneath the nasal epithelium is established in adults. The anterior OMP-cells extend long axonal processes which form bundles and project towards the brain. The data suggest that the newly discovered group of OMP-cells in the anterior region of the nasal cavity may serve a distinct sensory function.
Collapse
Affiliation(s)
- Jörg Fleischer
- Institute of Physiology, University of Hohenheim, Garbenstrasse 30, 70599, Stuttgart, Germany
| | | | | | | | | |
Collapse
|
25
|
The chemical senses, olfaction and taste: a tribute to Al Farbman. JOURNAL OF NEUROCYTOLOGY 2005; 33:575-702. [PMID: 16217614 DOI: 10.1007/s11068-005-3326-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 06/15/2005] [Indexed: 11/26/2022]
|