1
|
Jin H, Tang M, Zhu L, Yu X, Yang Q, Fu X. Characterization of a Drought-Induced Betaine Aldehyde Dehydrogenase Gene SgBADH from Suaeda glauca. PLANTS (BASEL, SWITZERLAND) 2024; 13:2716. [PMID: 39409587 PMCID: PMC11478665 DOI: 10.3390/plants13192716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Betaine aldehyde dehydrogenases (BADHs) are key enzymes in the biosynthesis of glycine betaine, which is an important organic osmolyte that maintains cell structure and improves plant tolerance to abiotic stresses, especially in halotolerant plants. Improving the drought tolerance of crops will greatly increase their yield. In this study, a novel BADH gene named SgBADH from Suaeda glauca was induced by drought stress or abscisic acid. To explore the biological function of SgBADH, the SgBADH gene was transformed into Arabidopsis. Then, we found SgBADH-overexpressing Arabidopsis seedlings showed enhanced tolerance to drought stress. SgBADH transgenic Arabidopsis seedlings also had longer roots compared with controls under drought stress, while SgBADH-overexpressing Arabidopsis exhibited increased glycine betaine accumulation and decreased malondialdehyde (MDA) under drought stress. Our results suggest that SgBADH might be a positive regulator in plants during the response to drought.
Collapse
Affiliation(s)
- Hangxia Jin
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| | - Min Tang
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China;
| | - Longmin Zhu
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| | - Xiaomin Yu
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| | - Qinghua Yang
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| | - Xujun Fu
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| |
Collapse
|
2
|
Muñoz-Clares RA, Casanova-Figueroa K. The importance of assessing aldehyde substrate inhibition for the correct determination of kinetic parameters and mechanisms: the case of the ALDH enzymes. Chem Biol Interact 2019; 305:86-97. [PMID: 30928398 DOI: 10.1016/j.cbi.2019.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/23/2019] [Accepted: 03/25/2019] [Indexed: 01/22/2023]
Abstract
Substrate inhibition by the aldehyde has been observed for decades in NAD(P)+-dependent aldehyde dehydrogenase (ALDH) enzymes, which follow a Bi Bi ordered steady-state kinetic mechanism. In this work, by using theoretical simulations of different possible substrate inhibition mechanisms in monosubstrate and Bi Bi ordered steady-state reactions, we explored the kind and extent of errors arising when estimating the kinetic parameters and determining the kinetic mechanisms if substrate inhibition is intentionally or unintentionally ignored. We found that, in every mechanism, fitting the initial velocity data of apparently non-inhibitory substrate concentrations to a rectangular hyperbola produces important errors, not only in the estimation of Vmax values, which were underestimated as expected, but, surprisingly, even more in the estimation of Km values, which led to overestimation of the Vmax/Km values. We show that the greater errors in Km arises from fitting data that do experience substrate inhibition, although it may not be evident, to a Michaelis-Menten equation, which causes overestimation of the data at low substrate concentrations. Similarly, we show that if substrate inhibition is not fully assessed when inhibitors are evaluated, the estimated inhibition constants will have significant errors, and the type of inhibition could be grossly mistaken. We exemplify these errors with experimental results obtained with the betaine aldehyde dehydrogenase from spinach showing the errors predicted by the theoretical simulations and that these errors are increased in the presence of NADH, which in this enzyme favors aldehyde substrate inhibition. Therefore, we strongly recommend assessing substrate inhibition by the aldehyde in every ALDH kinetic study, particularly when inhibitors are evaluated. The common practices of using an apparently non-inhibitory concentration range of the aldehyde or a single high concentration of the aldehyde or the coenzyme when varying the other to determine true kinetic parameters should be abandoned.
Collapse
Affiliation(s)
- Rosario A Muñoz-Clares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | - Karla Casanova-Figueroa
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| |
Collapse
|
3
|
Wakte K, Zanan R, Hinge V, Khandagale K, Nadaf A, Henry R. Thirty-three years of 2-acetyl-1-pyrroline, a principal basmati aroma compound in scented rice (Oryza sativa L.): a status review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:384-395. [PMID: 27376959 DOI: 10.1002/jsfa.7875] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/13/2016] [Accepted: 06/24/2016] [Indexed: 05/22/2023]
Abstract
Rice is the staple food of around 3 billion people, most of them in Asia which accounts for 90% of global rice consumption. Aromatic rices have been preferred over non-aromatic rice for hundreds of years. They have a premium value in national as well as international market owing to their unique aroma and quality. Many researchers were involved in identifying the compound responsible for the pleasant aroma in aromatic rice in the 20th century. However, due to its unstable nature, 2-acetyl-1-pyrroline (2AP) was discovered very late, in 1982. Buttery and co-workers found 2AP to be the principal compound imparting the pleasant aroma to basmati and other scented rice varieties. Since then, 2AP has been identified in all fragrant rice (Oryza sativa L.) varieties and a wide range of plants, animals, fungi, bacteria and various food products. The present article reviews in detail biochemical and genetic aspects of 2AP in living systems. The site of synthesis, site of storage and stability in plant systems in vivo is of interest. This compound requires more research on stability to facilitate use as a food additive. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kantilal Wakte
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Rahul Zanan
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Vidya Hinge
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Kiran Khandagale
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Altafhusain Nadaf
- Department of Botany, Savitribai Phule Pune University, Pune, 411007, India
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
4
|
Seman-Kamarulzaman AF, Mohamed-Hussein ZA, Ng CL, Hassan M. Novel NAD+-Farnesal Dehydrogenase from Polygonum minus Leaves. Purification and Characterization of Enzyme in Juvenile Hormone III Biosynthetic Pathway in Plant. PLoS One 2016; 11:e0161707. [PMID: 27560927 PMCID: PMC4999093 DOI: 10.1371/journal.pone.0161707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 08/10/2016] [Indexed: 12/05/2022] Open
Abstract
Juvenile Hormone III is of great concern due to negative effects on major developmental and reproductive maturation in insect pests. Thus, the elucidation of enzymes involved JH III biosynthetic pathway has become increasing important in recent years. One of the enzymes in the JH III biosynthetic pathway that remains to be isolated and characterized is farnesal dehydrogenase, an enzyme responsible to catalyze the oxidation of farnesal into farnesoic acid. A novel NAD+-farnesal dehydrogenase of Polygonum minus was purified (315-fold) to apparent homogeneity in five chromatographic steps. The purification procedures included Gigacap S-Toyopearl 650M, Gigacap Q-Toyopearl 650M, and AF-Blue Toyopearl 650ML, followed by TSK Gel G3000SW chromatographies. The enzyme, with isoelectric point of 6.6 is a monomeric enzyme with a molecular mass of 70 kDa. The enzyme was relatively active at 40°C, but was rapidly inactivated above 45°C. The optimal temperature and pH of the enzyme were found to be 35°C and 9.5, respectively. The enzyme activity was inhibited by sulfhydryl agent, chelating agent, and metal ion. The enzyme was highly specific for farnesal and NAD+. Other terpene aldehydes such as trans- cinnamaldehyde, citral and α- methyl cinnamaldehyde were also oxidized but in lower activity. The Km values for farnesal, citral, trans- cinnamaldehyde, α- methyl cinnamaldehyde and NAD+ were 0.13, 0.69, 0.86, 1.28 and 0.31 mM, respectively. The putative P. minus farnesal dehydrogenase that’s highly specific towards farnesal but not to aliphatic aldehydes substrates suggested that the enzyme is significantly different from other aldehyde dehydrogenases that have been reported. The MALDI-TOF/TOF-MS/MS spectrometry further identified two peptides that share similarity to those of previously reported aldehyde dehydrogenases. In conclusion, the P. minus farnesal dehydrogenase may represent a novel plant farnesal dehydrogenase that exhibits distinctive substrate specificity towards farnesal. Thus, it was suggested that this novel enzyme may be functioning specifically to oxidize farnesal in the later steps of JH III pathway. This report provides a basic understanding for recombinant production of this particular enzyme. Other strategies such as adding His-tag to the protein makes easy the purification of the protein which is completely different to the native protein. Complete sequence, structure and functional analysis of the enzyme will be important for developing insect-resistant crop plants by deployment of transgenic plant.
Collapse
Affiliation(s)
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM, Bangi, Selangor, Malaysia
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM, Bangi, Selangor, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600 UKM, Bangi, Selangor, Malaysia
- * E-mail:
| |
Collapse
|
5
|
Functional and expression analyses of two kinds of betaine aldehyde dehydrogenases in a glycinebetaine-hyperaccumulating graminaceous halophyte, Leymus chinensis. SPRINGERPLUS 2015; 4:202. [PMID: 25992309 PMCID: PMC4431990 DOI: 10.1186/s40064-015-0997-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/23/2015] [Indexed: 01/24/2023]
Abstract
Glycinebetaine (GB) is an important compatible solute for salinity tolerance in many plants. In this study, we analyzed the enzymatic activity and the expression level of betaine aldehyde dehydrogenase (BADH), an important enzyme that catalyzes the last step in the GB synthesis in Leymus chinensis, a GB-hyperaccumulating graminaceous halophyte, and compared with those of barley, a graminaceous glycophyte. We have isolated cDNAs for two BADH genes, LcBADH1 and LcBADH2. LcBADH1 has a putative peroxisomal signal peptide (PTS1) at its C-terminus, while LcBADH2 does not have any typical signal peptide. Using immunofluorescent labeling, we showed that BADH proteins were localized to the cytosol and dot-shaped organelles in the mesophyll and bundle sheath cells of L.chinensis leaves. The affinity of recombinant LcBADH2 for betaine aldehyde was comparable to other plant BADHs, whereas recombinant LcBADH1 showed extremely low affinity for betaine aldehyde, indicating that LcBADH2 plays a major role in GB synthesis in L. chinensis. In addition, the recombinant LcBADH2 protein was tolerant to NaCl whereas LcBADH1 wasn't. The kinetics, subcellular and tissue localization of BADH proteins were comparable between L. chinensis and barley. The activity and expression level of BADH proteins were higher in L. chinensis compared with barley under both normal and salinized conditions, which may be related to the significant difference in the amount of GB accumulation between two plants.
Collapse
|
6
|
Tang W, Sun J, Liu J, Liu F, Yan J, Gou X, Lu BR, Liu Y. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). PLANT MOLECULAR BIOLOGY 2014; 86:443-454. [PMID: 25150410 DOI: 10.1007/s11103-014-0239-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
As an important osmoprotectant, glycine betaine (GB) plays an essential role in resistance to abiotic stress in a variety of organisms, including rice (Oryza sativa L.). However, GB content is too low to be detectable in rice, although rice genome possesses several orthologs coding for betaine aldehyde dehydrogenase (BADH) involved in plant GB biosynthesis. Rice BADH1 (OsBADH1) has been shown to be targeted to peroxisome and its overexpression resulted in increased GB biosynthesis and tolerance to abiotic stress. In this study, we demonstrated a pivotal role of OsBADH1 in stress tolerance without altering GB biosynthesis capacity, using the RNA interference (RNAi) technique. OsBADH1 was ubiquitously expressed in different organs, including roots, stems, leaves and flowers. Transgenic rice lines downregulating OsBADH1 exhibited remarkably reduced tolerance to NaCl, drought and cold stresses. The decrease of stress tolerance occurring in the OsBADH1-RNAi repression lines was associated with an elevated level of malondialdehyde content and hydrogen peroxidation. No GB accumulation was detected in transgene-positive and transgene-negative lines derived from heterozygous transgenic T0 plants. Moreover, transgenic OsBADH1-RNAi repression lines showed significantly reduced seed set and yield. In conclusion, the downregulation of OsBADH1, even though not causing any change of GB content, was accounted for the reduction of ability to dehydrogenate the accumulating metabolism-derived aldehydes and subsequently resulted in decreased stress tolerance and crop productivity. These results suggest that OsBADH1 possesses an enzyme activity to catalyze other aldehydes in addition to betaine aldehyde (the precursor of GB) and thus alleviate their toxic effects under abiotic stresses.
Collapse
Affiliation(s)
- Wei Tang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
4-N-Trimethylaminobutyraldehyde Dehydrogenase: Purification and Characterization of an Enzyme fromPseudomonassp. 13CM. Biosci Biotechnol Biochem 2014; 72:155-62. [DOI: 10.1271/bbb.70514] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
|
9
|
Gene cloning and biochemical characterization of 4-N-trimethylaminobutyraldehyde dehydrogenase II from Pseudomonas sp. 13CM. World J Microbiol Biotechnol 2012; 29:683-92. [PMID: 23225139 DOI: 10.1007/s11274-012-1224-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
Abstract
The gene encoding 4-N-trimethylaminobutyraldehyde dehydrogenase (TMABaldehyde-DH) from Pseudomonas sp. 13CM, responsible for the conversion of 4-N-trimethylaminobutyraldehyde (TMABaldehyde) to γ-butyrobetaine in the carnitine biosynthesis pathway, isolated by shotgun cloning and expressed in Escherichia coli DH5α. The recombinant TMABaldehyde-DH was purified 19.5 fold to apparent homogeneity by hydrophobic and affinity chromatography and biochemically characterized. The enzyme was found to be a trimer with identical 52 kDa subunits. The isoelectric point was found to be 4.5. Optimum pH and temperature were found respectively as pH 9.5 and 40 °C. The Km values for TMABaldehyde, 4-dimethylaminobutyraldehyde, and NAD+ were respectively, 0.31, 0.62, and 1.16 mM. The molecular and catalytic properties differed from those of TMABaldehyde-DH I, which was discovered initially in Pseudomonas sp. 13CM. The new enzyme, designated TMABaldehyde-DH II, structural gene was inserted into an expression vector pET24b (+) and over-expressed in E. coli BL21 (DE3) under the control of a T7 promoter. The recombinant TMABaldehyde-DH from Pseudomonas sp. 13CM can now be obtained in large quantity necessary for further biochemical characterization and applications.
Collapse
|
10
|
Riveros-Rosas H, González-Segura L, Julián-Sánchez A, Díaz-Sánchez AG, Muñoz-Clares RA. Structural determinants of substrate specificity in aldehyde dehydrogenases. Chem Biol Interact 2012; 202:51-61. [PMID: 23219887 DOI: 10.1016/j.cbi.2012.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/24/2012] [Accepted: 11/27/2012] [Indexed: 12/28/2022]
Abstract
Within the aldehyde dehydrogenase (ALDH) superfamily, proteins belonging to the ALDH9, ALDH10, ALDH25, ALDH26 and ALDH27 families display activity as ω-aminoaldehyde dehydrogenases (AMADHs). These enzymes participate in polyamine, choline and arginine catabolism, as well as in synthesis of several osmoprotectants and carnitine. Active site aromatic and acidic residues are involved in binding the ω-aminoaldehydes in plant ALDH10 enzymes. In order to ascertain the degree of conservation of these residues among AMADHs and to evaluate their possible relevance in determining the aminoaldehyde specificity, we compared the known amino acid sequences of every ALDH family that have at least one member with known crystal structure, as well as the electrostatic potential surface of the aldehyde binding sites of these structures. Our analyses showed that four or three aromatic residues form a similar "aromatic box" in the active site of the AMADH enzymes, being the equivalents to Phe170 and Trp177 (human ALDH2 numbering) strictly conserved in all of them, which supports their relevance in binding the aminoaldehyde by cation-π interactions. In addition, all AMADHs exhibit a negative electrostatic potential surface in the aldehyde-entrance tunnel, due to side-chain carboxyl and hydroxyl groups or main-chain carbonyl groups. In contrast, ALDHs that have non-polar or negatively charged substrates exhibit neutral or positive electrostatic potential surfaces, respectively. Finally, our comparative sequence analyses revealed that the residues equivalent to Asp121 and Phe170 are highly conserved in many ALDH families irrespective of their substrate specificity-suggesting that they perform a role in catalysis additional or different to binding of the substrate-and that the positions Met124, Cys301, and Cys303 are hot spots changed during evolution to confer aldehyde specificity to several ALDH families.
Collapse
Affiliation(s)
- Héctor Riveros-Rosas
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico
| | | | | | | | | |
Collapse
|
11
|
Díaz-Sánchez ÁG, González-Segura L, Mújica-Jiménez C, Rudiño-Piñera E, Montiel C, Martínez-Castilla LP, Muñoz-Clares RA. Amino acid residues critical for the specificity for betaine aldehyde of the plant ALDH10 isoenzyme involved in the synthesis of glycine betaine. PLANT PHYSIOLOGY 2012; 158:1570-82. [PMID: 22345508 PMCID: PMC3343730 DOI: 10.1104/pp.112.194514] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant K(m)(BAL) increases and V(max)/K(m)(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the V(max)/K(m)(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants.
Collapse
|
12
|
Wongpanya R, Boonyalai N, Thammachuchourat N, Horata N, Arikit S, Myint KM, Vanavichit A, Choowongkomon K. Biochemical and enzymatic study of rice BADH wild-type and mutants: an insight into fragrance in rice. Protein J 2012; 30:529-38. [PMID: 21959793 DOI: 10.1007/s10930-011-9358-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Betaine aldehyde dehydrogenase 2 (BADH2) is believed to be involved in the accumulation of 2-acetyl-1-pyrroline (2AP), one of the major aromatic compounds in fragrant rice. The enzyme can oxidize ω-aminoaldehydes to the corresponding ω-amino acids. This study was carried out to investigate the function of wild-type BADHs and four BADH2 mutants: BADH2_Y420, containing a Y420 insertion similar to BADH2.8 in Myanmar fragrance rice, BADH2_C294A, BADH2_E260A and BADH2_N162A, consisting of a single catalytic-residue mutation. Our results showed that the BADH2_Y420 mutant exhibited less catalytic efficiency towards γ-aminobutyraldehyde but greater efficiency towards betaine aldehyde than wild-type. We hypothesized that this point mutation may account for the accumulation of γ-aminobutyraldehyde/Δ(1)-pyrroline prior to conversion to 2AP, generating fragrance in Myanmar rice. In addition, the three catalytic-residue mutants confirmed that residues C294, E260 and N162 were involved in the catalytic activity of BADH2 similar to those of other BADHs.
Collapse
Affiliation(s)
- Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wakte KV, Kad TD, Zanan RL, Nadaf AB. Mechanism of 2-acetyl-1-pyrroline biosynthesis in Bassia latifolia Roxb. flowers. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2011; 17:231-7. [PMID: 23573014 PMCID: PMC3550574 DOI: 10.1007/s12298-011-0075-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The flowers of Bassia latifolia are known to contain 2-acetyl-1-pyrroline (2AP), the compound responsible for pleasant aroma in basmati and other scented rice. Four growth stages of Bassia flowers were identified and 2AP contents were analysed in each stage. It was found that 2AP (3.30 ppm) gets synthesized only in fleshy corolla of mature flowers (fourth stage). The activity of γ-aminobutyraldehyde dehydrogenase (AADH); an enzyme responsible for synthesis of γ-aminobutyricacid (GABA) from γ-aminobutyraldehyde (GABald) was assessed in these four stages. The AADH activity was absent in the fourth stage. It was concluded that ceased activity of AADH in fourth stage flowers leads to the accumulation of γ-aminobutyraldehyde which is cyclised spontaneously to Δ(1)-pyrroline, the key precursor of 2AP. Δ(1)-pyrroline further reacts unenzymatically with methylglyoxal to form 2AP.
Collapse
Affiliation(s)
| | - Trupti D. Kad
- Department of Botany, University of Pune, Pune, 411007 India
| | - Rahul L. Zanan
- Department of Botany, University of Pune, Pune, 411007 India
| | | |
Collapse
|
14
|
Portal O, Izquierdo Y, De Vleesschauwer D, Sánchez-Rodríguez A, Mendoza-Rodríguez M, Acosta-Suárez M, Ocaña B, Jiménez E, Höfte M. Analysis of expressed sequence tags derived from a compatible Mycosphaerella fijiensis-banana interaction. PLANT CELL REPORTS 2011; 30:913-28. [PMID: 21279642 DOI: 10.1007/s00299-011-1008-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/07/2011] [Accepted: 01/10/2011] [Indexed: 05/14/2023]
Abstract
Mycosphaerella fijiensis, a hemibiotrophic fungus, is the causal agent of black leaf streak disease, the most serious foliar disease of bananas and plantains. To analyze the compatible interaction of M. fijiensis with Musa spp., a suppression subtractive hybridization (SSH) cDNA library was constructed to identify transcripts induced at late stages of infection in the host and the pathogen. In addition, a full-length cDNA library was created from the same mRNA starting material as the SSH library. The SSH procedure was effective in identifying specific genes predicted to be involved in plant-fungal interactions and new information was obtained mainly about genes and pathways activated in the plant. Several plant genes predicted to be involved in the synthesis of phenylpropanoids and detoxification compounds were identified, as well as pathogenesis-related proteins that could be involved in the plant response against M. fijiensis infection. At late stages of infection, jasmonic acid and ethylene signaling transduction pathways appear to be active, which corresponds with the necrotrophic life style of M. fijiensis. Quantitative PCR experiments revealed that antifungal genes encoding PR proteins and GDSL-like lipase are only transiently induced 30 days post inoculation (dpi), indicating that the fungus is probably actively repressing plant defense. The only fungal gene found was induced 37 dpi and encodes UDP-glucose pyrophosphorylase, an enzyme involved in the biosynthesis of trehalose. Trehalose biosynthesis was probably induced in response to prior activation of plant antifungal genes and may act as an osmoprotectant against membrane damage.
Collapse
Affiliation(s)
- Orelvis Portal
- Instituto de Biotecnología de las Plantas, Universidad Central Marta Abreu de Las Villas, Carretera a Camajuaní km 5.5, 54 830, Santa Clara, Cuba
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Missihoun TD, Schmitz J, Klug R, Kirch HH, Bartels D. Betaine aldehyde dehydrogenase genes from Arabidopsis with different sub-cellular localization affect stress responses. PLANTA 2011; 233:369-82. [PMID: 21053011 DOI: 10.1007/s00425-010-1297-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 09/23/2010] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana belongs to those plants that do not naturally accumulate glycine betaine (GB), although its genome contains two genes, ALDH10A8 and ALDH10A9 that code for betaine aldehyde dehydrogenases (BADHs). BADHs were initially known to catalyze the last step of the biosynthesis of GB in plants. But they can also oxidize metabolism-derived aminoaldehydes to their corresponding amino acids in some cases. This study was carried out to investigate the functional properties of Arabidopsis BADH genes. Here, we have shown that ALDH10A8 and ALDH10A9 proteins are targeted to leucoplasts and peroxisomes, respectively. The expression patterns of ALDH10A8 and ALDH10A9 genes have been analysed under abiotic stress conditions. Both genes are expressed in the plant and weakly induced by ABA, salt, chilling (4°C), methyl viologen and dehydration. The role of the ALDH10A8 gene was analysed using T-DNA insertion mutants. There was no phenotypic difference between wild-type and mutant plants in the absence of stress. But ALDH10A8 seedlings and 4-week-old plants were more sensitive to dehydration and salt stress than wild-type plants. The recombinant ALDH10A9 enzyme was shown to oxidize betaine aldehyde, 4-aminobutyraldehyde and 3-aminopropionaldehyde to their corresponding carboxylic acids. We hypothesize that ALDH10A8 or ALDH10A9 may serve as detoxification enzymes controlling the level of aminoaldehydes, which are produced in cellular metabolism under stress conditions.
Collapse
Affiliation(s)
- Tagnon D Missihoun
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
16
|
Arikit S, Yoshihashi T, Wanchana S, Uyen TT, Huong NTT, Wongpornchai S, Vanavichit A. Deficiency in the amino aldehyde dehydrogenase encoded by GmAMADH2, the homologue of rice Os2AP, enhances 2-acetyl-1-pyrroline biosynthesis in soybeans (Glycine max L.). PLANT BIOTECHNOLOGY JOURNAL 2011; 9:75-87. [PMID: 20497370 DOI: 10.1111/j.1467-7652.2010.00533.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
2-Acetyl-1-pyrroline (2AP), the volatile compound that provides the 'popcorn-like' aroma in a large variety of cereal and food products, is widely found in nature. Deficiency in amino aldehyde dehydrogenase (AMADH) was previously shown to be the likely cause of 2AP biosynthesis in rice (Oryza sativa L.). In this study, the validity of this mechanism was investigated in soybeans (Glycine max L.). An assay of AMADH activity in soybeans revealed that the aromatic soybean, which contains 2AP, also lacked AMADH enzyme activity. Two genes, GmAMADH1 and GmAMADH2, which are homologous to the rice Os2AP gene that encodes AMADH, were characterized. The transcription level of GmAMADH2 was lower in aromatic varieties than in nonaromatic varieties, whereas the expression of GmAMADH1 did not differ. A double nucleotide (TT) deletion was found in exon 10 of GmAMADH2 in all aromatic varieties. This variation caused a frame-shift mutation and a premature stop codon. Suppression of GmAMADH2 by introduction of a GmAMADH2-RNAi construct into the calli of the two nonaromatic wild-type varieties inhibited the synthesis of AMADH and induced the biosynthesis of 2AP. These results suggest that deficiency in the GmAMADH2 product, AMADH, plays a similar role in soybean as in rice, which is to promote 2AP biosynthesis. This phenomenon might be a conserved mechanism among plant species.
Collapse
Affiliation(s)
- Siwaret Arikit
- Rice Science Center and Rice Gene Discovery, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | | | | | | | | | | | | |
Collapse
|
17
|
Rosas-Rodríguez JA, Figueroa-Soto CG, Valenzuela-Soto EM. Inhibition of porcine kidney betaine aldehyde dehydrogenase by hydrogen peroxide. Redox Rep 2010; 15:282-7. [PMID: 21208528 PMCID: PMC7067312 DOI: 10.1179/135100010x12826446921941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Renal hyperosmotic conditions may produce reactive oxygen species, which could have a deleterious effect on the enzymes involved in osmoregulation. Hydrogen peroxide was used to provoke oxidative stress in the environment of betaine aldehyde dehydrogenase in vitro. Enzyme activity was reduced as hydrogen peroxide concentration was increased. Over 50% of the enzyme activity was lost at 100 μM hydrogen peroxide at two temperatures tested. At pH 8.0, under physiological ionic strength conditions, peroxide inhibited the enzyme. Initial velocity assays of betaine aldehyde dehydrogenase in the presence of hydrogen peroxide (0-200 μM) showed noncompetitive inhibition with respect to NAD(+) or to betaine aldehyde at saturating concentrations of the other substrate at pH 7.0 or 8.0. Inhibition data showed that apparent V(max) decreased 40% and 26% under betaine aldehyde and NAD(+) saturating concentrations at pH 8.0, while at pH 7.0 V(max) decreased 40% and 29% at betaine aldehyde and NAD(+) saturating concentrations. There was little change in apparent Km(NAD) at either pH, while Km(BA) increased at pH 7.0. K(i) values at pH 8 and 7 were calculated. Our results suggest that porcine kidney betaine aldehyde dehydrogenase could be inhibited by hydrogen peroxide in vivo, thus compromising the synthesis of glycine betaine.
Collapse
Affiliation(s)
- Jesús A. Rosas-Rodríguez
- Coordinación de Ciencia de los AlimentosCentro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, Sonora, México
| | - Ciria G. Figueroa-Soto
- Coordinación de Ciencia de los AlimentosCentro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, Sonora, México
| | - Elisa M. Valenzuela-Soto
- Coordinación de Ciencia de los AlimentosCentrode Investigación en Alimentación y Desarrollo A.C., Apartado Postal 1735, Hermosillo 83000, Sonora, México;,
| |
Collapse
|
18
|
Muñoz-Clares RA, Díaz-Sánchez AG, González-Segura L, Montiel C. Kinetic and structural features of betaine aldehyde dehydrogenases: mechanistic and regulatory implications. Arch Biochem Biophys 2009; 493:71-81. [PMID: 19766587 DOI: 10.1016/j.abb.2009.09.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 09/05/2009] [Accepted: 09/14/2009] [Indexed: 11/19/2022]
Abstract
The betaine aldehyde dehydrogenases (BADH; EC 1.2.1.8) are so-called because they catalyze the irreversible NAD(P)(+)-dependent oxidation of betaine aldehyde to glycine betaine, which may function as (i) a very efficient osmoprotectant accumulated by both prokaryotic and eukaryotic organisms to cope with osmotic stress, (ii) a metabolic intermediate in the catabolism of choline in some bacteria such as the pathogen Pseudomonas aeruginosa, or (iii) a methyl donor for methionine synthesis. BADH enzymes can also use as substrates aminoaldehydes and other quaternary ammonium and tertiary sulfonium compounds, thereby participating in polyamine catabolism and in the synthesis of gamma-aminobutyrate, carnitine, and 3-dimethylsulfoniopropionate. This review deals with what is known about the kinetics and structural properties of these enzymes, stressing those properties that have only been found in them and not in other aldehyde dehydrogenases, and discussing their mechanistic and regulatory implications.
Collapse
Affiliation(s)
- Rosario A Muñoz-Clares
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México DF 04510, México.
| | | | | | | |
Collapse
|
19
|
Kaur N, Reumann S, Hu J. Peroxisome biogenesis and function. THE ARABIDOPSIS BOOK 2009; 7:e0123. [PMID: 22303249 PMCID: PMC3243405 DOI: 10.1199/tab.0123] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Peroxisomes are small and single membrane-delimited organelles that execute numerous metabolic reactions and have pivotal roles in plant growth and development. In recent years, forward and reverse genetic studies along with biochemical and cell biological analyses in Arabidopsis have enabled researchers to identify many peroxisome proteins and elucidate their functions. This review focuses on the advances in our understanding of peroxisome biogenesis and metabolism, and further explores the contribution of large-scale analysis, such as in sillco predictions and proteomics, in augmenting our knowledge of peroxisome function In Arabidopsis.
Collapse
Affiliation(s)
| | - Sigrun Reumann
- Centre for Organelle Research, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
| | - Jianping Hu
- MSU-DOE Plant Research Laboratory and
- Plant Biology Department, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
20
|
Fitzgerald TL, Waters DLE, Henry RJ. Betaine aldehyde dehydrogenase in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:119-30. [PMID: 19228319 DOI: 10.1111/j.1438-8677.2008.00161.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant betaine aldehyde dehydrogenases (BADHs) have been the target of substantial research, especially during the last 20 years. Initial characterisation of BADH as an enzyme involved in the production of glycine betaine (GB) has led to detailed studies of the role of BADH in the response of plants to abiotic stress in vivo, and the potential for transgenic expression of BADH to improve abiotic stress tolerance. These studies have, in turn, yielded significant information regarding BADH and GB function. Recent research has identified the potential for BADH as an antibiotic-free marker for selection of transgenic plants, and a major role for BADH in 2-acetyl-1-pyrroline-based fragrance associated with jasmine and basmati style aromatic rice varieties.
Collapse
Affiliation(s)
- T L Fitzgerald
- Grain Foods CRC, Centre for Plant Conservation Genetics, Southern Cross University, Lismore, NSW, Australia
| | | | | |
Collapse
|
21
|
Bradbury LMT, Gillies SA, Brushett DJ, Waters DLE, Henry RJ. Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. PLANT MOLECULAR BIOLOGY 2008; 68:439-49. [PMID: 18704694 DOI: 10.1007/s11103-008-9381-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 07/23/2008] [Indexed: 05/18/2023]
Abstract
Rice (Oryza sativa) has two betaine aldehyde dehydrogenase homologs, BAD1 and BAD2, encoded on chromosome four and chromosome eight respectively. BAD2 is responsible for the characteristic aroma of fragrant rice. Complementary DNA clones of both BAD1 and BAD2 were isolated and expressed in E. coli. BAD2 had optimum activity at pH 10, little to no affinity towards N-acetyl-gamma-aminobutyraldehyde (NAGABald) with a Km of approximately 10 mM and moderate affinity towards gamma-guanidinobutyraldehyde (GGBald) and betaine aldehyde (bet-ald) with Km values of approximately 260 microM and 63 microM respectively. A lower Km of approximately 9 microM was observed with gamma-aminobutyraldehyde (GABald), suggesting BAD2 has a higher affinity towards this substate in vivo. The enzyme encoded on chromosome four, BAD1, had optimum activity at pH 9.5, showed little to no affinity towards bet-ald with a Km of 3 mM and had moderate affinity towards GGBald, NAGABald and GABald with Km values of approximately 545, 420 and 497 microM respectively. BAD1 had a half life roughly double that of BAD2. We discuss the implications of these findings on the pathway of fragrance generation in Basmati and Jasmine rice and the potential of rice to accumulate the osmoprotectant glycine betaine.
Collapse
Affiliation(s)
- Louis M T Bradbury
- Centre for Plant Conservation Genetics, Southern Cross University, Military Road, Lismore, NSW 2480, Australia
| | | | | | | | | |
Collapse
|
22
|
Fujiwara T, Hori K, Ozaki K, Yokota Y, Mitsuya S, Ichiyanagi T, Hattori T, Takabe T. Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. PHYSIOLOGIA PLANTARUM 2008; 134:22-30. [PMID: 18429940 DOI: 10.1111/j.1399-3054.2008.01122.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Betaine aldehyde dehydrogenase (BADH; EC 1.2.1.8) is an important enzyme that catalyzes the last step in the synthesis of glycine betaine, a compatible solute accumulated by many plants under various abiotic stresses. In barley (Hordeum vulgare L.), we reported previously the existence of two BADH genes (BBD1 and BBD2) and their corresponding proteins, peroxisomal BADH (BBD1) and cytosolic BADH (BBD2). To investigate their enzymatic properties, we expressed them in Escherichia coli and purified both proteins. Enzymatic analysis indicated that the affinity of BBD2 for betaine aldehyde was reasonable as other plant BADHs, but BBD1 showed extremely low affinity for betaine aldehyde with apparent K(m) of 18.9 microM and 19.9 mM, respectively. In addition, V(max)/K(m) with betaine aldehyde of BBD2 was about 2000-fold higher than that of BBD1, suggesting that BBD2 plays a main role in glycine betaine synthesis in barley plants. However, BBD1 catalyzed the oxidation of omega-aminoaldehydes such as 4-aminobutyraldehyde and 3-aminopropionaldehyde as efficiently as BBD2. We also found that both BBDs oxidized 4-N-trimethylaminobutyraldehyde and 3-N-trimethylaminopropionaldehyde.
Collapse
Affiliation(s)
- Takashi Fujiwara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Bourgis F, Guyot R, Gherbi H, Tailliez E, Amabile I, Salse J, Lorieux M, Delseny M, Ghesquière A. Characterization of the major fragance gene from an aromatic japonica rice and analysis of its diversity in Asian cultivated rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:353-68. [PMID: 18491070 PMCID: PMC2470208 DOI: 10.1007/s00122-008-0780-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 04/12/2008] [Indexed: 05/19/2023]
Abstract
In Asian cultivated rice (Oryza sativa L.), aroma is one of the most valuable traits in grain quality and 2-ACP is the main volatile compound contributing to the characteristic popcorn-like odour of aromatic rices. Although the major locus for grain fragrance (frg gene) has been described recently in Basmati rice, this gene has not been characterised in true japonica varieties and molecular information available on the genetic diversity and evolutionary origin of this gene among the different varieties is still limited. Here we report on characterisation of the frg gene in the Azucena variety, one of the few aromatic japonica cultivars. We used a RIL population from a cross between Azucena and IR64, a non-aromatic indica, the reference genomic sequence of Nipponbare (japonica) and 93-11 (indica) as well as an Azucena BAC library, to identify the major fragance gene in Azucena. We thus identified a betaine aldehyde dehydrogenase gene, badh2, as the candidate locus responsible for aroma, which presented exactly the same mutation as that identified in Basmati and Jasmine-like rices. Comparative genomic analyses showed very high sequence conservation between Azucena and Nipponbare BADH2, and a MITE was identified in the promotor region of the BADH2 allele in 93-11. The badh2 mutation and MITE were surveyed in a representative rice collection, including traditional aromatic and non-aromatic rice varieties, and strongly suggested a monophylogenetic origin of this badh2 mutation in Asian cultivated rices. Altogether these new data are discussed here in the light of current hypotheses on the origin of rice genetic diversity.
Collapse
Affiliation(s)
- F. Bourgis
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - R. Guyot
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - H. Gherbi
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - E. Tailliez
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - I. Amabile
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - J. Salse
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Université de Perpignan Via Domitia, 52 avenue Paul Alduy, 66860 Perpignan, France
- Present Address: UMR 1095 INRA-UBP ASP Amélioration et Santé des Plantes, Domaine de Crouelle, 63039 Clermont Ferrand, France
| | - M. Lorieux
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| | - M. Delseny
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Université de Perpignan Via Domitia, 52 avenue Paul Alduy, 66860 Perpignan, France
| | - A. Ghesquière
- UMR 5096 IRD-CNRS-Université de Perpignan, Laboratoire Génome et Développement des Plantes, Perpignan, France
- Centre IRD de Montpellier, Avenue Agropolis, BP64501, 34394 Montpellier, France
| |
Collapse
|
24
|
Chen S, Yang Y, Shi W, Ji Q, He F, Zhang Z, Cheng Z, Liu X, Xu M. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. THE PLANT CELL 2008; 20:1850-61. [PMID: 18599581 PMCID: PMC2518245 DOI: 10.1105/tpc.108.058917] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/04/2008] [Accepted: 06/17/2008] [Indexed: 05/18/2023]
Abstract
In rice (Oryza sativa), the presence of a dominant Badh2 allele encoding betaine aldehyde dehydrogenase (BADH2) inhibits the synthesis of 2-acetyl-1-pyrroline (2AP), a potent flavor component in rice fragrance. By contrast, its two recessive alleles, badh2-E2 and badh2-E7, induce 2AP formation. Badh2 was found to be transcribed in all tissues tested except for roots, and the transcript was detected at higher abundance in young, healthy leaves than in other tissues. Multiple Badh2 transcript lengths were detected, and the complete, full-length Badh2 transcript was much less abundant than partial Badh2 transcripts. 2AP levels were significantly reduced in cauliflower mosaic virus 35S-driven transgenic lines expressing the complete, but not the partial, Badh2 coding sequences. In accordance, the intact, full-length BADH2 protein (503 residues) appeared exclusively in nonfragrant transgenic lines and rice varieties. These results indicate that the full-length BADH2 protein encoded by Badh2 renders rice nonfragrant by inhibiting 2AP biosynthesis. The BADH2 enzyme was predicted to contain three domains: NAD binding, substrate binding, and oligomerization domains. BADH2 was distributed throughout the cytoplasm, where it is predicted to catalyze the oxidization of betaine aldehyde, 4-aminobutyraldehyde (AB-ald), and 3-aminopropionaldehyde. The presence of null badh2 alleles resulted in AB-ald accumulation and enhanced 2AP biosynthesis. In summary, these data support the hypothesis that BADH2 inhibits 2AP biosynthesis by exhausting AB-ald, a presumed 2AP precursor.
Collapse
Affiliation(s)
- Saihua Chen
- National Maize Improvement Center of China, China Agricultural University, Beijing 100193, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schweiger P, Volland S, Deppenmeier U. Overproduction and characterization of two distinct aldehyde-oxidizing enzymes from Gluconobacter oxydans 621H. J Mol Microbiol Biotechnol 2007; 13:147-55. [PMID: 17693722 DOI: 10.1159/000103606] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Gluconobacter oxydans 621H genome contains two genes (gox1122 and gox0499) that encode putative cytosolic NAD(P)-dependent aldehyde dehydrogenases. Each gene was expressed in Escherichia coli, and the recombinant enzymes were purified and characterized. The native protein Gox1122 exhibited an apparent molecular mass of 50.1 kDa, and the subunit mass was 50.5 kDa, indicating a monomeric structure of the native enzyme. The preferred substrates were acetaldehyde and NADP. The enzyme also oxidized other short-chained aliphatic and aromatic aldehydes at lower rates. Recombinant protein Gox0499 was composed of a single subunit and had an apparent molecular mass of 49.5 kDa. The substrate spectrum of Gox0499 was broad with a preference for long-chained aliphatic and aromatic aldehydes. Highest activities were obtained using dodecanal and NAD as substrates. RT real-time PCR showed that genes gox0499 and gox1122 were expressed at an elevated level (about 3-fold) when the cells were exposed to ethanol and dodecanal in comparison to control cells.
Collapse
Affiliation(s)
- Paul Schweiger
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | | | |
Collapse
|
26
|
Oishi H, Ebina M. Isolation of cDNA and enzymatic properties of betaine aldehyde dehydrogenase from Zoysia tenuifolia. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:1077-86. [PMID: 16255165 DOI: 10.1016/j.jplph.2005.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We isolated cDNAs encoding betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) from the salt-tolerant Poaceae, Zoysia tenuifolia by polymerase chain reactions. Zoysia betaine aldehyde dehydrogenase 1 (ZBD1) is 1892bp long and codes for 507 amino acids. The deduced amino acid sequence of ZBD1 is 88% similar to the sequence of rice BADH. Ten cDNA clones were isolated from a cDNA Library of salt-treated Z. tenuifolia by using the ZBD1 fragment as a probe. The proteins coded in some clones were more homologous to BBD2, the cytosolic BADH of barley, than to ZBD1. To investigate their enzymatic properties, ZBD1 and spinach BADH were expressed in Escherichia coli and purified. The optimal pH of ZBD1 was 9.5, which was more alkaline than that of spinach BADH. ZBD1 was less tolerant to NaCl than spinach BADH. ZBD1 showed not only BADH activity but also aminoaldehyde dehydrogenase activity. The Km values of ZBD1 for betaine aldehyde, 4-aminobutyraldehyde (AB-ald), and 3-aminopropionaldehyde (AP-ald) were 291, 49, and 4.0 microM, respectively. ZBD1 showed higher specific activities for AB-ald and AP-ald than did spinach BADH.
Collapse
Affiliation(s)
- Hideki Oishi
- Japan Grassland Farming and Forage Seed Association, Forage Crop Research Institute, Nishinasuno, Tochigi, Japan.
| | | |
Collapse
|
27
|
Bradbury LMT, Fitzgerald TL, Henry RJ, Jin Q, Waters DLE. The gene for fragrance in rice. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:363-70. [PMID: 17129318 DOI: 10.1111/j.1467-7652.2005.00131.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The flavour or fragrance of basmati and jasmine rice is associated with the presence of 2-acetyl-1-pyrroline. A recessive gene (fgr) on chromosome 8 of rice has been linked to this important trait. Here, we show that a gene with homology to the gene that encodes betaine aldehyde dehydrogenase (BAD) has significant polymorphisms in the coding region of fragrant genotypes relative to non-fragrant genotypes. The accumulation of 2-acetyl-1-pyrroline in fragrant rice genotypes may be explained by the presence of mutations resulting in a loss of function of the fgr gene product. The allele in fragrant genotypes has a mutation introducing a stop codon upstream of key amino acid sequences conserved in other BADs. The fgr gene corresponds to the gene encoding BAD2 in rice, while BAD1 is encoded by a gene on chromosome 4. BAD has been linked to stress tolerance in plants. However, the apparent loss of function of BAD2 does not seem to limit the growth of fragrant rice genotypes. Fragrance in domesticated rice has apparently originated from a common ancestor and may have evolved in a genetically isolated population, or may be the outcome of a separate domestication event. This is an example of effective human selection for a recessive trait during domestication.
Collapse
Affiliation(s)
- Louis M T Bradbury
- Centre for Plant Conservation Genetics, Southern Cross University, Lismore, NSW 2480, Australia
| | | | | | | | | |
Collapse
|
28
|
Reumann S, Ma C, Lemke S, Babujee L. AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. PLANT PHYSIOLOGY 2004; 136:2587-608. [PMID: 15333753 PMCID: PMC523325 DOI: 10.1104/pp.104.043695] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2004] [Revised: 06/14/2004] [Accepted: 06/16/2004] [Indexed: 05/17/2023]
Abstract
To identify unknown proteins from plant peroxisomes, the Arabidopsis genome was screened for proteins with putative major or minor peroxisome targeting signals type 1 or 2 (PTS1 or PTS2), as defined previously (Reumann S [2004] Plant Physiol 135: 783-800). About 220 and 60 proteins were identified that carry a putative PTS1 or PTS2, respectively. To further support postulated targeting to peroxisomes, several prediction programs were applied and the putative targeting domains analyzed for properties conserved in peroxisomal proteins and for PTS conservation in homologous plant expressed sequence tags. The majority of proteins with a major PTS and medium to high overall probability of peroxisomal targeting represent novel nonhypothetical proteins and include several enzymes involved in beta-oxidation of unsaturated fatty acids and branched amino acids, and 2-hydroxy acid oxidases with a predicted function in fatty acid alpha-oxidation, as well as NADP-dependent dehydrogenases and reductases. In addition, large protein families with many putative peroxisomal isoforms were recognized, including acyl-activating enzymes, GDSL lipases, and small thioesterases. Several proteins are homologous to prokaryotic enzymes of a novel aerobic hybrid degradation pathway for aromatic compounds and proposed to be involved in peroxisomal biosynthesis of plant hormones like jasmonic acid, auxin, and salicylic acid. Putative regulatory proteins of plant peroxisomes include protein kinases, small heat shock proteins, and proteases. The information on subcellular targeting prediction, homology, and in silico expression analysis for these Arabidopsis proteins has been compiled in the public database AraPerox to accelerate discovery and experimental investigation of novel metabolic and regulatory pathways of plant peroxisomes.
Collapse
Affiliation(s)
- Sigrun Reumann
- Georg-August-University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department for Plant Biochemistry, D-37077 Goettingen, Germany.
| | | | | | | |
Collapse
|