1
|
Spicer R. Enhanced belowground sink activity in Populus: 'Spray and pray' meets high-throughput transcriptomics and metabolomics. TREE PHYSIOLOGY 2024; 44:102-105. [PMID: 37471649 DOI: 10.1093/treephys/tpad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Rachel Spicer
- Department of Botany, Connecticut College, New London, CT 06320, USA
| |
Collapse
|
2
|
Singh A, Singhal C, Sharma AK, Khurana P. An auxin regulated Universal stress protein (TaUSP_3B-1) interacts with TaGolS and provides tolerance under drought stress and ER stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14390. [PMID: 38899466 DOI: 10.1111/ppl.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
A previously identified wheat drought stress responsive Universal stress protein, TaUSP_3B-1 has been found to work in an auxin dependent manner in the plant root tissues in the differentiation zone. We also found a novel interacting partner, TaGolS, which physically interacts with TaUSP_3B-1 and colocalizes in the endoplasmic reticulum. TaGolS is a key enzyme in the RFO (Raffinose oligosaccharides) biosynthesis which is well reported to provide tolerance under water deficit conditions. TaUSP_3B-1 overexpression lines showed an early flowering phenotype under drought stress which might be attributed to the increased levels of AtTPPB and AtTPS transcripts under drought stress. Moreover, at the cellular levels ER stress induced TaUSP_3B-1 transcription and provides tolerance in both adaptive and acute ER stress via less ROS accumulation in the overexpression lines. TaUSP_3B-1 overexpression plants had increased silique numbers and a denser root architecture as compared to the WT plants under drought stress.
Collapse
Affiliation(s)
- Arunima Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Chanchal Singhal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
3
|
Wang D, Liu Z, Qin Y, Zhang S, Yang L, Shang Q, Ji X, Xin Y, Li X. Mulberry MnGolS2 Mediates Resistance to Botrytis cinerea on Transgenic Plants. Genes (Basel) 2023; 14:1912. [PMID: 37895261 PMCID: PMC10606925 DOI: 10.3390/genes14101912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Galactitol synthetase (GolS) as a key enzyme in the raffinose family oligosaccharides (RFOs) biosynthesis pathway, which is closely related to stress. At present, there are few studies on GolS in biological stress. The expression of MnGolS2 gene in mulberry was increased under Botrytis cinerea infection. The MnGolS2 gene was cloned and ectopically expressed in Arabidopsis. The content of MDA in leaves of transgenic plants was decreased and the content of CAT was increased after inoculation with B. cinerea. In this study, the role of MnGolS2 in biotic stress was demonstrated for the first time. In addition, it was found that MnGolS2 may increase the resistance of B. cinerea by interacting with other resistance genes. This study offers a crucial foundation for further research into the role of the GolS2 gene.
Collapse
Affiliation(s)
- Donghao Wang
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (Y.Q.); (S.Z.)
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (Z.L.); (L.Y.); (Q.S.); (X.J.)
| | - Zixuan Liu
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (Z.L.); (L.Y.); (Q.S.); (X.J.)
| | - Yue Qin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Shihao Zhang
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Lulu Yang
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (Z.L.); (L.Y.); (Q.S.); (X.J.)
| | - Qiqi Shang
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (Z.L.); (L.Y.); (Q.S.); (X.J.)
| | - Xianling Ji
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (Z.L.); (L.Y.); (Q.S.); (X.J.)
| | - Youchao Xin
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (Y.Q.); (S.Z.)
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China; (D.W.); (Z.L.); (L.Y.); (Q.S.); (X.J.)
| | - Xiaodong Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, Hechi University, Hechi 546300, China; (Y.Q.); (S.Z.)
- Guangxi Collaborative Innovation Center of Modern Sericulture Silk, School of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| |
Collapse
|
4
|
Guo J, Yang Y, Wang T, Wang Y, Zhang X, Min D, Zhang X. Analysis of Raffinose Synthase Gene Family in Bread Wheat and Identification of Drought Resistance and Salt Tolerance Function of TaRS15-3B. Int J Mol Sci 2023; 24:11185. [PMID: 37446364 DOI: 10.3390/ijms241311185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Raffinose synthase (RS) plays a crucial role in plant growth and development, as well as in responses to biotic stresses and abiotic stresses, yet few studies have been conducted on its role in bread wheat. Therefore, in this study we screened and identified a family of bread wheat raffinose synthase genes based on bread wheat genome information and analyzed their physicochemical properties, phylogenetic evolutionary relationships, conserved structural domains, promoter cis-acting elements, and expression patterns. The BSMV-induced silencing of TaRS15-3B resulted in the bread wheat seedlings being susceptible to drought and salt stress and reduced the expression levels of stress-related and ROS-scavenging genes in bread wheat plants. This further affected the ability of bread wheat to cope with drought and salt stress. In conclusion, this study revealed that the RS gene family in bread wheat plays an important role in plant response to abiotic stresses and that the TaRS15-3B gene can improve the tolerance of transgenic bread wheat to drought and salt stresses, provide directions for the study of other RS gene families in bread wheat, and supply candidate genes for use in molecular breeding of bread wheat for stress resistance.
Collapse
Affiliation(s)
- Jiagui Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Yan Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Tingting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Yizhen Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Donghong Min
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Xiaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
5
|
Jing Q, Chen A, Lv Z, Dong Z, Wang L, Meng X, Feng Y, Wan Y, Su C, Cui Y, Xu W, Hou H, Zhu X. Systematic Analysis of Galactinol Synthase and Raffinose Synthase Gene Families in Potato and Their Expression Patterns in Development and Abiotic Stress Responses. Genes (Basel) 2023; 14:1344. [PMID: 37510251 PMCID: PMC10379439 DOI: 10.3390/genes14071344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Raffinose family oligosaccharides (RFOs) are very important for plant growth, development, and abiotic stress tolerance. Galactinol synthase (GolS) and raffinose synthase (RFS) are critical enzymes involved in RFO biosynthesis. However, the whole-genome identification and stress responses of their coding genes in potato remain unexplored. In this study, four StGolS and nine StRFS genes were identified and classified into three and five subgroups, respectively. Remarkably, a total of two StGolS and four StRFS genes in potato were identified to form collinear pairs with those in both Arabidopsis and tomato, respectively. Subsequent analysis revealed that StGolS4 exhibited significantly high expression levels in transport-related tissues, PEG-6000, and ABA treatments, with remarkable upregulation under salt stress. Additionally, StRFS5 showed similar responses to StGolS4, but StRFS4 and StRFS8 gene expression increased significantly under salt treatment and decreased in PEG-6000 and ABA treatments. Overall, these results lay a foundation for further research on the functional characteristics and molecular mechanisms of these two gene families in response to ABA, salt, and drought stresses, and provide a theoretical foundation and new gene resources for the abiotic-stress-tolerant breeding of potato.
Collapse
Affiliation(s)
- Quankai Jing
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Airu Chen
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Zhaoyan Lv
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Zhihao Dong
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Lixia Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Xiaoke Meng
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Yue Feng
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Yu Wan
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Chengyun Su
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Yanjie Cui
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Wenjuan Xu
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Hualan Hou
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Xiaobiao Zhu
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| |
Collapse
|
6
|
Chang B, Zhao L, Feng Z, Wei F, Zhang Y, Zhang Y, Huo P, Cheng Y, Zhou J, Feng H. Galactosyltransferase GhRFS6 interacting with GhOPR9 involved in defense against Verticillium wilt in cotton. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111582. [PMID: 36632889 DOI: 10.1016/j.plantsci.2022.111582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/23/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The soil-borne fungus Verticillium dahliae causes Verticillium wilt (VW), one of the most devastating diseases of cotton. In a previous study showed that GhOPR9 played a positive role in resistance of cotton to VW through the regulation of the Jasmonic acid (JA) pathway. Furtherly, we also found that GhOPR9 interacted with a sucrose galactosyltransferase GhRFS6. Raffinose synthase (RFS) plays a key role in plant innate immunity, including the abiotic stress of drought, darkness. However, there were few reports on the effects of RFS on biotic stress. In this study, we verified the function of GhRFS6 to VW. The expression analysis showed that the GhRFS6 may be regulated by various stresses, and it was upregulated under Vd076 and Vd991 pressures. Inhibition of GhRFS6 expression, hydrogen peroxide (H2O2) content, lignin content, cell wall thickness and a series of defense responses were decreased, and the resistance of cotton to V. dahliae was decreased. In addition, this study showed that GhRFS6 has glycosyltransferase activity and can participate in the regulation of α-galactosidase activity and raffinose and inositol synthesis. And that galactose was accumulated in cotton roots after GhRFS6 silencing, which is beneficial for the colonization and growth of V. dahliae. Furthermore, overexpression of GhRFS6 in Arabidopsis thaliana enhanced plant resistance to V. dahliae. In GUS staining, the promoter expression position of GhRFS6 was also altered after V. dahliae infection. Meanwhile, GhRFS6 has also been shown to resist VW through the regulation of the JA pathway. These results suggest that GhRFS6 is a potential molecular target for improving cotton resistance to VW.
Collapse
Affiliation(s)
- Baiyang Chang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Feng Wei
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Peng Huo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Yong Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China.
| | - Hongjie Feng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China; Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China.
| |
Collapse
|
7
|
Wang T, Wang Y, Zhao J, Kong J, Zhang L, Qi S, Chen J, Chen Z, Zeng W, Sun W. Identification, Characterization and Expression Profiling of the RS Gene Family during the Withering Process of White Tea in the Tea Plant ( Camellia sinensis) Reveal the Transcriptional Regulation of CsRS8. Int J Mol Sci 2022; 24:ijms24010202. [PMID: 36613645 PMCID: PMC9820808 DOI: 10.3390/ijms24010202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/25/2022] Open
Abstract
Raffinose synthetase (RS) is a key enzyme in the process of raffinose (Raf) synthesis and is involved in plant development and stress responses through regulating Raf content. As a sweetener, Raf makes an important contribution to the sweet taste of white tea. However, studies on the identification, analysis and transcriptional regulation of CsRSs (Camellia sinensis RS genes) are still lacking. In this study, nine CsRSs were identified from the tea plant (Camellia sinensis) genome database. The CsRSs were classified into five groups in the phylogenetic tree. Expression level analysis showed that the CsRSs varied in different parts of the tea plant. Transcriptome data showed that CsRSs could respond to persistent drought and cold acclimation. Except for CsRS5 and CsRS9, the expression pattern of all CsRSs increased at 12 h and decreased at 30 h during the withering process of white tea, consistent with the change trend of the Raf content. Furthermore, combining yeast one-hybrid assays with expression analysis, we found that CsDBB could potentially regulate the expression of CsRS8. Our results provide a new perspective for further research into the characterization of CsRS genes and the formation of the white tea flavour.
Collapse
Affiliation(s)
- Tao Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiqing Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiamin Zhao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiumei Kong
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lingzhi Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyu Qi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiajia Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhidan Chen
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, Quanzhou 362000, China
| | - Wen Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (W.Z.); (W.S.)
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (W.Z.); (W.S.)
| |
Collapse
|
8
|
Ben-Amar A, Daldoul S, Allel D, Wetzel T, Mliki A. Ectopic expression of a grapevine alkaline α-galactosidase seed imbibition protein VvSIP enhanced salinity tolerance in transgenic tobacco plants. Funct Integr Genomics 2022; 23:12. [PMID: 36547729 DOI: 10.1007/s10142-022-00945-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Alpha-galactosidase seed imbibition protein (VvSIP) isolated from Vitis vinifera is up-regulated upon salt stress and mediates osmotic stress responses in a tolerant grapevine cultivar. So far, little is known about the putative role of this stress-responsive gene. In the present study, VvSIP function was investigated in model tobacco plants via Agrobacterium-mediated genetic transformation. Our results showed that overexpression of VvSIP exhibited increased tolerance to salinity at germination and late vegetative stage in transgenic Nicotiana benthamiana compared to the nontransgenic plants based on the measurement of the germination rate and biomass production. High salt concentrations of 200 and 400 mM NaCl in greenhouse-grown pot assay resulted in better relative water content, higher leaf osmotic potential, and leaf water potential in transgenic lines when compared to the wild-type (WT) plants. These physiological changes attributed to efficient osmotic adjustment improved plant performance and tolerance to salinity compared to the WT. Moreover, the VvSIP-expressing lines SIP1 and SIP2 showed elevated amounts of chlorophyll with lower malondialdehyde content indicating a reduced lipid peroxidation required to maintain membrane stability. When subjected to high salinity conditions, the transgenic tobacco VvSIP exhibited higher soluble sugar content, which may suggest an enhancement of the carbohydrate metabolism. Our findings indicate that the VvSIP is involved in plant salt tolerance by functioning as a positive regulator of osmotic adjustment and sugar metabolism, both of which are responsible for stress mitigation. Such a candidate gene is highly suitable to alleviate environmental stresses and thus could be a promising candidate for crop improvement.
Collapse
Affiliation(s)
- Anis Ben-Amar
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia.
| | - Samia Daldoul
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia
| | - Dorsaf Allel
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia
| | - Thierry Wetzel
- Institute of Plant Protection, DLR Rheinpfalz, Breitenweg 71, 67435, Neustadt an Der Weinstrasse, Germany
| | - Ahmed Mliki
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
9
|
Martins CPS, Fernandes D, Guimarães VM, Du D, Silva DC, Almeida AAF, Gmitter FG, Otoni WC, Costa MGC. Comprehensive analysis of the GALACTINOL SYNTHASE (GolS) gene family in citrus and the function of CsGolS6 in stress tolerance. PLoS One 2022; 17:e0274791. [PMID: 36112700 PMCID: PMC9481003 DOI: 10.1371/journal.pone.0274791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Galactinol synthase (GolS) catalyzes the first and rate-limiting step in the synthesis of raffinose family of oligosaccharides (RFOs), which serve as storage and transport sugars, signal transducers, compatible solutes and antioxidants in higher plants. The present work aimed to assess the potential functions of citrus GolS in mechanisms of stress response and tolerance. By homology searches, eight GolS genes were found in the genomes of Citrus sinensis and C. clementina. Phylogenetic analysis showed that there is a GolS ortholog in C. clementina for each C. sinensis GolS, which have evolved differently from those of Arabidopsis thaliana. Transcriptional analysis indicated that most C. sinensis GolS (CsGolS) genes show a low-level tissue-specific and stress-inducible expression in response to drought and salt stress treatments, as well as to ‘Candidatus Liberibacter asiaticus’ infection. CsGolS6 overexpression resulted in improved tobacco tolerance to drought and salt stresses, contributing to an increased mesophyll cell expansion, photosynthesis and plant growth. Primary metabolite profiling revealed no significant changes in endogenous galactinol, but different extents of reduction of raffinose in the transgenic plants. On the other hand, a significant increase in the levels of metabolites with antioxidant properties, such as ascorbate, dehydroascorbate, alfa-tocopherol and spermidine, was observed in the transgenic plants. These results bring evidence that CsGolS6 is a potential candidate for improving stress tolerance in citrus and other plants.
Collapse
Affiliation(s)
- Cristina P. S. Martins
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Denise Fernandes
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Valéria M. Guimarães
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Dongliang Du
- Horticultural Sciences Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Delmira C. Silva
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Alex-Alan F. Almeida
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Frederick G. Gmitter
- Horticultural Sciences Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Wagner C. Otoni
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marcio G. C. Costa
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
- * E-mail: ,
| |
Collapse
|
10
|
Transgenic poplar trees overexpressing AtGolS2, a stress-responsive galactinol synthase gene derived from Arabidopsis thaliana, improved drought tolerance in a confined field. Transgenic Res 2022; 31:579-591. [PMID: 35997870 DOI: 10.1007/s11248-022-00321-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022]
Abstract
Drought is an abiotic stress that limits plant growth and productivity, and the development of trees with improved drought tolerance is expected to expand potential plantation areas and to promote sustainable development. Previously we reported that transgenic poplars (Populus tremula × P. tremuloides, T89) harboring the stress-responsive galactinol synthase gene, AtGolS2, derived from Arabidopsis thaliana were developed and showed improved drought stress tolerance in laboratory conditions. Herein we report a field trial evaluation of the AtGolS2-transgenic poplars. The rainfall-restricted treatments on the poplars started in late May 2020, 18 months after transplanting to the field, and were performed for 100 days. During these treatments, the leaf injury levels were observed by measuring photosynthetic quantum yields twice a week. Observed leaf injury levels varied in response to soil moisture fluctuation and showed a large difference between transgenic and non-transgenic poplars during the last month. Comparison of the leaf injury levels against three stress classes clustered by the machine learning approach revealed that the transgenic poplars exhibited significant alleviation of leaf injuries in the most severe stress class. The transgenes and transcript levels were stable in the transgenic poplars cultivated in the field conditions. These results indicated that the overexpression of AtGolS2 significantly improved the drought stress tolerance of transgenic poplars not only in the laboratory but also in the field. In future studies, molecular breeding using AtGolS2 will be an effective method for developing practical drought-tolerant forest trees.
Collapse
|
11
|
Dominguez PG, Niittylä T. Mobile forms of carbon in trees: metabolism and transport. TREE PHYSIOLOGY 2022; 42:458-487. [PMID: 34542151 PMCID: PMC8919412 DOI: 10.1093/treephys/tpab123] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/16/2021] [Accepted: 09/12/2021] [Indexed: 05/26/2023]
Abstract
Plants constitute 80% of the biomass on earth, and almost two-thirds of this biomass is found in wood. Wood formation is a carbon (C)-demanding process and relies on C transport from photosynthetic tissues. Thus, understanding the transport process is of major interest for understanding terrestrial biomass formation. Here, we review the molecules and mechanisms used to transport and allocate C in trees. Sucrose is the major form in which C is transported in plants, and it is found in the phloem sap of all tree species investigated so far. However, in several tree species, sucrose is accompanied by other molecules, notably polyols and the raffinose family of oligosaccharides. We describe the molecules that constitute each of these transport groups, and their distribution across different tree species. Furthermore, we detail the metabolic reactions for their synthesis, the mechanisms by which trees load and unload these compounds in and out of the vascular system, and how they are radially transported in the trunk and finally catabolized during wood formation. We also address a particular C recirculation process between phloem and xylem that occurs in trees during the annual cycle of growth and dormancy. A search of possible evolutionary drivers behind the diversity of C-carrying molecules in trees reveals no consistent differences in C transport mechanisms between angiosperm and gymnosperm trees. Furthermore, the distribution of C forms across species suggests that climate-related environmental factors will not explain the diversity of C transport forms. However, the consideration of C-transport mechanisms in relation to tree-rhizosphere coevolution deserves further attention. To conclude the review, we identify possible future lines of research in this field.
Collapse
Affiliation(s)
- Pia Guadalupe Dominguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Hurlingham, Buenos Aires B1686IGC, Argentina
| | - Totte Niittylä
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå 90183, Sweden
| |
Collapse
|
12
|
Cui R, Wang X, Malik WA, Lu X, Chen X, Wang D, Wang J, Wang S, Chen C, Guo L, Chen Q, Ye W. Genome-wide identification and expression analysis of Raffinose synthetase family in cotton. BMC Bioinformatics 2021; 22:356. [PMID: 34187353 PMCID: PMC8243485 DOI: 10.1186/s12859-021-04276-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 06/17/2021] [Indexed: 11/27/2022] Open
Abstract
Background The Raffinose synthetase (RAFS) genes superfamily is critical for the synthesis of raffinose, which accumulates in plant leaves under abiotic stress. However, it remains unclear whether RAFS contributes to resistance to abiotic stress in plants, specifically in the Gossypium species. Results In this study, we identified 74 RAFS genes from G. hirsutum, G. barbadense, G. arboreum and G. raimondii by using a series of bioinformatic methods. Phylogenetic analysis showed that the RAFS gene family in the four Gossypium species could be divided into four major clades; the relatively uniform distribution of the gene number in each species ranged from 12 to 25 based on species ploidy, most likely resulting from an ancient whole-genome polyploidization. Gene motif analysis showed that the RAFS gene structure was relatively conservative. Promoter analysis for cis-regulatory elements showed that some RAFS genes might be regulated by gibberellins and abscisic acid, which might influence their expression levels. Moreover, we further examined the functions of RAFS under cold, heat, salt and drought stress conditions, based on the expression profile and co-expression network of RAFS genes in Gossypium species. Transcriptome analysis suggested that RAFS genes in clade III are highly expressed in organs such as seed, root, cotyledon, ovule and fiber, and under abiotic stress in particular, indicating the involvement of genes belonging to clade III in resistance to abiotic stress. Gene co-expressed network analysis showed that GhRFS2A-GhRFS6A, GhRFS6D, GhRFS7D and GhRFS8A-GhRFS11A were key genes, with high expression levels under salt, drought, cold and heat stress. Conclusion The findings may provide insights into the evolutionary relationships and expression patterns of RAFS genes in Gossypium species and a theoretical basis for the identification of stress resistance materials in cotton. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04276-4.
Collapse
Affiliation(s)
- Ruifeng Cui
- College of Agriculture / Xinjiang Agricultural University / Xinjiang Research Base, State Key Laboratory of Cotton Biology, Urumqi, 830052, Xinjiang, China.,State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Xiaoge Wang
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Waqar Afzal Malik
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Junjuan Wang
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuai Wang
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Chao Chen
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Lixue Guo
- State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Quanjia Chen
- College of Agriculture / Xinjiang Agricultural University / Xinjiang Research Base, State Key Laboratory of Cotton Biology, Urumqi, 830052, Xinjiang, China.
| | - Wuwei Ye
- College of Agriculture / Xinjiang Agricultural University / Xinjiang Research Base, State Key Laboratory of Cotton Biology, Urumqi, 830052, Xinjiang, China. .,State Key Laboratory of Cotton Biology / Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture / Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
13
|
Solovyeva AE, Shelenga TV, Shavarda AL, Burlyaeva MO. Comparative analysis of wild and cultivated Lathyrus L. species to assess their content of sugars, polyols, free fatty acids, and phytosterols. Vavilovskii Zhurnal Genet Selektsii 2021; 24:730-737. [PMID: 33738389 PMCID: PMC7960445 DOI: 10.18699/vj20.667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Under the condition of climate change, the need for crops resistant to abiotic and biotic stresses is increasing.
Lathyrus spp. are characterized by a high nutritional value of their green biomass. The grass pea is one of
the most resistant to drought, waterlogging, cold, salinity, diseases and pests among cultivated legumes, and it is
grown at minimal cost. The creation of new Lathyrus L. sorts with an improved nutrient composition of nutrients
will allow to obtain high-quality feed in areas with extremely unstable weather conditions. In this connection, we
studied the patterns of variability in the parameters of the carbohydrate complex (sugars, their lactone and methyl
forms), polyols (including phenol-containing alcohols), phytosterols, free fatty acids (FFA) and acylglycerols in the
green mass of 32 samples of Lathyrus sativus L., L. tuberosus L., L. sylvestris L., L. vernus (L.) Bernh., L. latifolius L.,
L. linifolius (Reichard) Bassler. from the VIR collection, reproduced in the Leningrad region in contrasting conditions
2012, 2013.The content of identified compounds varied depending on the genotype, species, and weather
conditions. High temperatures and high level of precipitation in 2013 contributed to the accumulation of monosaccharides,
in more colder and drier conditions in 2012 – oligosaccharides, most of polyols and FFA. The cultivated
species (L. sativus) was distinguished by its high sugar content, and the wild species as follows: L. latifolius by FFA;
L. linifolius by ononitol, myo-inositol, and glycerol 3-phosphate; L. vernus by MAG and methylpentofuranoside. The
species cultivated in culture (L. sativus) was distinguished by a high sugar content, wild species: L. latifolius – by FFA,
L. linifolius – ononitol, myo-inositol and glycerol-3-phosphate, L. vernus – MAG and methylpentofuranoside. According
to our results, the studied samples are promising for the selection of Lathyrus varieties with high nutrition
quality and stress-resistant.
Collapse
Affiliation(s)
- A E Solovyeva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - T V Shelenga
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| | - A L Shavarda
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia St. Petersburg State University, St. Petersburg, Russia V.L. Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - M O Burlyaeva
- Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, Russia
| |
Collapse
|
14
|
Yoshida T, Yamaguchi-Shinozaki K. Metabolic engineering: Towards water deficiency adapted crop plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153375. [PMID: 33609854 DOI: 10.1016/j.jplph.2021.153375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Water deficiency caused by drought is one of the severe environmental conditions limiting plant growth, development, and yield. In this review article, we will summarize the changes in transcription, metabolism, and phytohormones under drought stress conditions and show the key transcription factors in these processes. We will also highlight the recent attempts to enhance stress tolerance without growth retardation and discuss the perspective on the development of stress adapted crops by engineering transcription factors.
Collapse
Affiliation(s)
- Takuya Yoshida
- Max-Planck-Institut Für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany; Centre of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657, Tokyo, Japan; Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 156-8502, Tokyo, Japan
| |
Collapse
|
15
|
Minen RI, Martinez MP, Iglesias AA, Figueroa CM. Biochemical characterization of recombinant UDP-sugar pyrophosphorylase and galactinol synthase from Brachypodium distachyon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:780-788. [PMID: 32866791 DOI: 10.1016/j.plaphy.2020.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Raffinose (Raf) protects plant cells during seed desiccation and under different abiotic stress conditions. The biosynthesis of Raf starts with the production of UDP-galactose by UDP-sugar pyrophosphorylase (USPPase) and continues with the synthesis of galactinol by galactinol synthase (GolSase). Galactinol is then used by Raf synthase to produce Raf. In this work, we report the biochemical characterization of USPPase (BdiUSPPase) and GolSase 1 (BdiGolSase1) from Brachypodium distachyon. The catalytic efficiency of BdiUSPPase was similar with galactose 1-phosphate and glucose 1-phosphate, but 5- to 17-fold lower with other sugar 1-phosphates. The catalytic efficiency of BdiGolSase1 with UDP-galactose was three orders of magnitude higher than with UDP-glucose. A structural model of BdiGolSase1 allowed us to determine the residues putatively involved in the binding of substrates. Among these, we found that Cys261 lies within the putative catalytic pocket. BdiGolSase1 was inactivated by oxidation with diamide and H2O2. The activity of the diamide-oxidized enzyme was recovered by reduction with dithiothreitol or E. coli thioredoxin, suggesting that BdiGolSase1 is redox-regulated.
Collapse
Affiliation(s)
- Romina I Minen
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - María P Martinez
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina.
| |
Collapse
|
16
|
Bielsa B, Hewitt S, Reyes-Chin-Wo S, Dhingra A, Rubio-Cabetas MJ. Identification of water use efficiency related genes in 'Garnem' almond-peach rootstock using time-course transcriptome analysis. PLoS One 2018; 13:e0205493. [PMID: 30308016 PMCID: PMC6181374 DOI: 10.1371/journal.pone.0205493] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/26/2018] [Indexed: 11/19/2022] Open
Abstract
Drought is one of the main abiotic stresses with far-reaching ecological and socioeconomic impacts, especially in perennial food crops such as Prunus. There is an urgent need to identify drought resilient rootstocks that can adapt to changes in water availability. In this study, we tested the hypothesis that PEG-induced water limitation stress will simulate drought conditions and drought-related genes, including transcription factors (TFs), will be differentially expressed in response to this stress. 'Garnem' genotype, an almond × peach hybrid [P. amygdalus Batsch, syn P. dulcis (Mill.) x P. persica (L.) Batsch] was exposed to PEG-6000 solution, and a time-course transcriptome analysis of drought-stressed roots was performed at 0, 2 and 24 h time points post-stress. Transcriptome analysis resulted in the identification of 12,693 unique differentially expressed contigs (DECs) at the 2 h time point, and 7,705 unique DECs at the 24 h time point after initiation of the drought treatment. Interestingly, three drought-induced genes, directly related to water use efficiency (WUE) namely, ERF023 TF; LRR receptor-like serine/threonine-kinase ERECTA; and NF-YB3 TF, were found induced under stress. The RNAseq results were validated with quantitative RT-PCR analysis of eighteen randomly selected differentially expressed contigs (DECs). Pathway analysis in the present study provides valuable information regarding metabolic events that occur during stress-induced signalling in 'Garnem' roots. This information is expected to be useful in understanding the potential mechanisms underlying drought stress responses and drought adaptation strategies in Prunus species.
Collapse
Affiliation(s)
- Beatriz Bielsa
- Hortofruticulture Department. Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
| | - Seanna Hewitt
- Molecular Plant Sciences, Washington State University, Pullman, Washington, United States of America
- Department of Horticulture, Washington State University, Pullman, Washington, United States of America
| | | | - Amit Dhingra
- Molecular Plant Sciences, Washington State University, Pullman, Washington, United States of America
- Department of Horticulture, Washington State University, Pullman, Washington, United States of America
| | - María José Rubio-Cabetas
- Hortofruticulture Department. Agrifood Research and Technology Centre of Aragon (CITA), Zaragoza, Spain
| |
Collapse
|
17
|
Zeng X, Xu Y, Jiang J, Zhang F, Ma L, Wu D, Wang Y, Sun W. Identification of cold stress responsive microRNAs in two winter turnip rape (Brassica rapa L.) by high throughput sequencing. BMC PLANT BIOLOGY 2018; 18:52. [PMID: 29587648 PMCID: PMC5870505 DOI: 10.1186/s12870-018-1242-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/17/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Low temperature is a major abiotic stress affecting the production of rapeseed in China by impeding plant growth and development. A comprehensive knowledge of small-RNA expression pattern in Brassica rapa under cold stress could improve our knowledge of microRNA-mediated stress responses. RESULTS A total of 353 cold-responsive miRNAs, 84 putative novel and 269 conserved miRNAs, were identified from the leaves and roots of two winter turnip rape varieties 'Longyou 7' (cold-tolerant) and 'Tianyou 4' (cold-sensitive), which were stressed under - 4 °C for 8 h. Eight conserved (miR166h-3p-1, miR398b-3p, miR398b-3p-1, miR408d, miR156a-5p, miR396h, miR845a-1, miR166u) and two novel miRNAs (Bra-novel-miR3153-5p and Bra-novel-miR3172-5p) were differentially expressed in leaves of 'Longyou 7' under cold stress. Bra-novel-miR3936-5p was up-regulated in roots of 'Longyou 7' under cold stress. Four and five conserved miRNAs were differentially expressed in leaves and roots of 'Tianyou 4' after cold stress. Besides, we found two conserved miRNAs (miR319e and miR166m-2) were down-regulated in non-stressed roots of 'Longyou 7' compared with 'Tianyou 4'. After cold stress, we found two and eight miRNAs were differentially expressed in leaves and roots of 'Longyou 7' compared with 'Tianyou 4'. The differentially expressed miRNAs between two cultivars under cold stress include novel miRNAs and the members of the miR166 and miR319 families. A total of 211 target genes for 15 known miRNAs and two novel miRNAs were predicted by bioinformatic analysis, mainly involved in metabolic processes and stress responses. Five differentially expressed miRNAs and predicted target genes were confirmed by quantitative reverse transcription PCR, and the expressional changes of target genes were negatively correlated to differentially expressed miRNAs. Our data indicated that some candidate miRNAs (e.g., miR166e, miR319, and Bra-novel-miR3936-5p) may play important roles in plant response to cold stress. CONCLUSIONS Our work indicates that miRNA and putative target genes mediated metabolic processes and stress responses are significant to cold tolerance in B. rapa.
Collapse
Affiliation(s)
- Xiucun Zeng
- College of Agronomy and Biotechnology, Hexi University, Zhangye, 734000 China
| | - Yaozhao Xu
- College of Agronomy and Biotechnology, Hexi University, Zhangye, 734000 China
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 China
| | - Jinjin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Fenqin Zhang
- College of Agronomy and Biotechnology, Hexi University, Zhangye, 734000 China
| | - Li Ma
- College of Agronomy and Biotechnology, Hexi University, Zhangye, 734000 China
| | - Dewei Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Youping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Wancang Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
18
|
You J, Wang Y, Zhang Y, Dossa K, Li D, Zhou R, Wang L, Zhang X. Genome-wide identification and expression analyses of genes involved in raffinose accumulation in sesame. Sci Rep 2018. [PMID: 29531231 PMCID: PMC5847563 DOI: 10.1038/s41598-018-22585-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sesame (Sesamum indicum L.) is an important oilseed crop. However, multiple abiotic stresses severely affect sesame growth and production. Raffinose family oligosaccharides (RFOs), such as raffinose and stachyose, play an important role in desiccation tolerance of plants and developing seeds. In the present study, three types of key enzymes, galactinol synthase (GolS), raffinose synthase (RafS) and stachyose synthase (StaS), responsible for the biosynthesis of RFOs were identified at the genome-wide scale in sesame. A total of 7 SiGolS and 15 SiRS genes were identified in the sesame genome. Transcriptome analyses showed that SiGolS and SiRS genes exhibited distinct expression profiles in different tissues and seed developmental stages. Comparative expression analyses under various abiotic stresses indicated that most of SiGolS and SiRS genes were significantly regulated by drought, osmotic, salt, and waterlogging stresses, but slightly affected by cold stress. The up-regulation of several SiGolS and SiRS genes by multiple abiotic stresses suggested their active implication in sesame abiotic stress responses. Taken together, these results shed light on the RFOs-mediated abiotic stress resistance in sesame and provide a useful framework for improving abiotic stress resistance of sesame through genetic engineering.
Collapse
Affiliation(s)
- Jun You
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yanyan Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yujuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Special Economic Crop Research Center of Shandon Academy of Agricultural Sciences, Shandong Cotton Research Center, Jinan, 250100, China
| | - Komivi Dossa
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.,Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la Sécheresse (CERAAS), BP 3320 Route de Khombole, Thiès, Senegal
| | - Donghua Li
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Rong Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Linhai Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Xiurong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China.
| |
Collapse
|
19
|
La Mantia J, Unda F, Douglas CJ, Mansfield SD, Hamelin R. Overexpression of AtGolS3 and CsRFS in poplar enhances ROS tolerance and represses defense response to leaf rust disease. TREE PHYSIOLOGY 2018; 38:457-470. [PMID: 28981890 DOI: 10.1093/treephys/tpx100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Plants respond to pathogens through an orchestration of signaling events that coordinate modifications to transcriptional profiles and physiological processes. Resistance to necrotrophic pathogens often requires jasmonic acid, which antagonizes the salicylic acid dependent biotrophic defense response. Recently, myo-inositol has been shown to negatively impact salicylic acid (SA) levels and signaling, while galactinol enhances jasmonic acid (JA)-dependent induced systemic resistance to necrotrophic pathogens. To investigate the function of these compounds in biotrophic pathogen defense, we characterized the defense response of Populus alba × grandidentata overexpressing Arabidopsis GALACTINOL SYNTHASE3 (AtGolS) and Cucumber sativus RAFFINOSE SYNTHASE (CsRFS) challenged with Melampsora aecidiodes, a causative agent of poplar leaf rust disease. Relative to wild-type leaves, the overexpression of AtGolS3 and CsRFS increased accumulation of galactinol and raffinose and led to increased leaf rust infection. During the resistance response, inoculated wild-type leaves displayed reduced levels of galactinol and repressed transcript abundance of two endogenous GolS genes compared to un-inoculated wild-type leaves prior to the up-regulation of NON-EXPRESSOR OF PR1 and PATHOGENESIS-RELATED1. Transcriptome analysis and qRT-PCR validation also revealed the repression of genes participating in calcium influx, phosphatidic acid biosynthesis and signaling, and salicylic acid signaling in the transgenic lines. In contrast, enhanced tolerance to H2O2 and up-regulation of antioxidant biosynthesis genes were exhibited in the overexpression lines. Thus, we conclude that overexpression of AtGolS and CsRFS antagonizes the defense response to poplar leaf rust disease through repressing reactive oxygen species and attenuating calcium and phosphatidic acid signaling events that lead to SA defense.
Collapse
Affiliation(s)
- Jonathan La Mantia
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver BC V6T 1Z4, Canada
- United States Department of Agriculture, Wooster, OH 44691, USA
| | - Faride Unda
- Department of Wood Science, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Richard Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver BC V6T 1Z4, Canada
- Natural Resources Canada, Laurentian Forestry Center 1055 rue du P.E.P.S., Québec G1V 4C7, Canada
| |
Collapse
|
20
|
Fan Y, Yu M, Liu M, Zhang R, Sun W, Qian M, Duan H, Chang W, Ma J, Qu C, Zhang K, Lei B, Lu K. Genome-Wide Identification, Evolutionary and Expression Analyses of the GALACTINOL SYNTHASE Gene Family in Rapeseed and Tobacco. Int J Mol Sci 2017; 18:E2768. [PMID: 29261107 PMCID: PMC5751367 DOI: 10.3390/ijms18122768] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/16/2017] [Accepted: 12/17/2017] [Indexed: 11/16/2022] Open
Abstract
Galactinol synthase (GolS) is a key enzyme in raffinose family oligosaccharide (RFO) biosynthesis. The finding that GolS accumulates in plants exposed to abiotic stresses indicates RFOs function in environmental adaptation. However, the evolutionary relationships and biological functions of GolS family in rapeseed (Brassica napus) and tobacco (Nicotiana tabacum) remain unclear. In this study, we identified 20 BnGolS and 9 NtGolS genes. Subcellular localization predictions showed that most of the proteins are localized to the cytoplasm. Phylogenetic analysis identified a lost event of an ancient GolS copy in the Solanaceae and an ancient duplication event leading to evolution of GolS4/7 in the Brassicaceae. The three-dimensional structures of two GolS proteins were conserved, with an important DxD motif for binding to UDP-galactose (uridine diphosphate-galactose) and inositol. Expression profile analysis indicated that BnGolS and NtGolS genes were expressed in most tissues and highly expressed in one or two specific tissues. Hormone treatments strongly induced the expression of most BnGolS genes and homologous genes in the same subfamilies exhibited divergent-induced expression. Our study provides a comprehensive evolutionary analysis of GolS genes among the Brassicaceae and Solanaceae as well as an insight into the biological function of GolS genes in hormone response in plants.
Collapse
Affiliation(s)
- Yonghai Fan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Mengna Yu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Miao Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Rui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Wei Sun
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Mingchao Qian
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Huichun Duan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Wei Chang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Jinqi Ma
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Kai Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
| | - Bo Lei
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Guiyang 550081, China.
- Upland Flue-Cured Tobacco Quality and Ecology Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang 550081, China.
| | - Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
21
|
Camel V, Galeano E, Carrer H. RED DE COEXPRESIÓN DE 320 GENES DE Tectona grandis RELACIONADOS CON PROCESOS DE ESTRÉS ABIÓTICO Y XILOGÉNESIS. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2017. [DOI: 10.1016/j.recqb.2017.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
22
|
Sheshadri SA, Nishanth MJ, Simon B. Stress-Mediated cis-Element Transcription Factor Interactions Interconnecting Primary and Specialized Metabolism in planta. FRONTIERS IN PLANT SCIENCE 2016; 7:1725. [PMID: 27933071 PMCID: PMC5122738 DOI: 10.3389/fpls.2016.01725] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/02/2016] [Indexed: 05/07/2023]
Abstract
Plant specialized metabolites are being used worldwide as therapeutic agents against several diseases. Since the precursors for specialized metabolites come through primary metabolism, extensive investigations have been carried out to understand the detailed connection between primary and specialized metabolism at various levels. Stress regulates the expression of primary and specialized metabolism genes at the transcriptional level via transcription factors binding to specific cis-elements. The presence of varied cis-element signatures upstream to different stress-responsive genes and their transcription factor binding patterns provide a prospective molecular link among diverse metabolic pathways. The pattern of occurrence of these cis-elements (overrepresentation/common) decipher the mechanism of stress-responsive upregulation of downstream genes, simultaneously forming a molecular bridge between primary and specialized metabolisms. Though many studies have been conducted on the transcriptional regulation of stress-mediated primary or specialized metabolism genes, but not much data is available with regard to cis-element signatures and transcription factors that simultaneously modulate both pathway genes. Hence, our major focus would be to present a comprehensive analysis of the stress-mediated interconnection between primary and specialized metabolism genes via the interaction between different transcription factors and their corresponding cis-elements. In future, this study could be further utilized for the overexpression of the specific transcription factors that upregulate both primary and specialized metabolism, thereby simultaneously improving the yield and therapeutic content of plants.
Collapse
Affiliation(s)
| | | | - Bindu Simon
- School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
23
|
Liu Y, Zhang L, Chen L, Ma H, Ruan Y, Xu T, Xu C, He Y, Qi M. Molecular cloning and expression of an encoding galactinol synthase gene (AnGolS1) in seedling of Ammopiptanthus nanus. Sci Rep 2016; 6:36113. [PMID: 27786294 PMCID: PMC5081558 DOI: 10.1038/srep36113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/11/2016] [Indexed: 12/16/2022] Open
Abstract
Based on the galactinol synthase (AnGolS1) fragment sequence from a cold-induced Suppression Subtractive Hybridization (SSH) library derived from Ammopiptanthus nanus (A. nanus) seedlings, AnGolS1 mRNA (including the 5' UTR and 3' UTR) (GenBank accession number: GU942748) was isolated and characterized by rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR). A substrate reaction test revealed that AnGolS1 possessed galactinol synthase activity in vitro and could potentially be an early-responsive gene. Furthermore, quantitative real-time PCR (qRT-PCR) indicated that AnGolS1 was responded to cold, salts and drought stresses, however, significantly up-regulated in all origans by low temperatures, especially in plant stems. In addition, the hybridization signals in the fascicular cambium were strongest in all cells under low temperature. Thus, we propose that AnGolS1 plays critical roles in A. nanus low-temperature stress resistance and that fascicular cambium cells could be involved in AnGolS1 mRNA transcription, galactinol transportation and coordination under low-temperature stress.
Collapse
Affiliation(s)
- YuDong Liu
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District 110866, P.R. China.,Key Laboratory of Protected Horticulture of Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, P.R. China.,Collaborative Innovation Center of Protected Vegetable Suround Bohai Gulf Region, No. 120 Dongling Road, Shenhe District 110866, P.R. China
| | - Li Zhang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, No. 120 Dongling Road, Shenhe District 110866, P.R. China
| | - LiJing Chen
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, No. 120 Dongling Road, Shenhe District 110866, P.R. China
| | - Hui Ma
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, No. 120 Dongling Road, Shenhe District 110866, P.R. China
| | - YanYe Ruan
- Liaoning Plant Gene Engineering Research Center, No. 120 Dongling Road, Shenhe District 110866, P.R. China
| | - Tao Xu
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District 110866, P.R. China.,Key Laboratory of Protected Horticulture of Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, P.R. China.,Collaborative Innovation Center of Protected Vegetable Suround Bohai Gulf Region, No. 120 Dongling Road, Shenhe District 110866, P.R. China
| | - ChuanQiang Xu
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District 110866, P.R. China.,Key Laboratory of Protected Horticulture of Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, P.R. China.,Collaborative Innovation Center of Protected Vegetable Suround Bohai Gulf Region, No. 120 Dongling Road, Shenhe District 110866, P.R. China
| | - Yi He
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District 110866, P.R. China.,Key Laboratory of Protected Horticulture of Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, P.R. China
| | - MingFang Qi
- Horticulture Department, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District 110866, P.R. China.,Key Laboratory of Protected Horticulture of Ministry of Education, No. 120 Dongling Road, Shenhe District 110866, P.R. China.,Collaborative Innovation Center of Protected Vegetable Suround Bohai Gulf Region, No. 120 Dongling Road, Shenhe District 110866, P.R. China
| |
Collapse
|
24
|
Differentially expressed galactinol synthase(s) in chickpea are implicated in seed vigor and longevity by limiting the age induced ROS accumulation. Sci Rep 2016; 6:35088. [PMID: 27725707 PMCID: PMC5057127 DOI: 10.1038/srep35088] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/23/2016] [Indexed: 01/21/2023] Open
Abstract
Galactinol synthase (GolS) catalyzes the first and rate limiting step of Raffinose Family Oligosaccharide (RFO) biosynthetic pathway, which is a highly specialized metabolic event in plants. Increased accumulation of galactinol and RFOs in seeds have been reported in few plant species, however their precise role in seed vigor and longevity remain elusive. In present study, we have shown that galactinol synthase activity as well as galactinol and raffinose content progressively increase as seed development proceeds and become highly abundant in pod and mature dry seeds, which gradually decline as seed germination progresses in chickpea (Cicer arietinum). Furthermore, artificial aging also stimulates galactinol synthase activity and consequent galactinol and raffinose accumulation in seed. Molecular analysis revealed that GolS in chickpea are encoded by two divergent genes (CaGolS1 and CaGolS2) which potentially encode five CaGolS isoforms through alternative splicing. Biochemical analysis showed that only two isoforms (CaGolS1 and CaGolS2) are biochemically active with similar yet distinct biochemical properties. CaGolS1 and CaGolS2 are differentially regulated in different organs, during seed development and germination however exhibit similar subcellular localization. Furthermore, seed-specific overexpression of CaGolS1 and CaGolS2 in Arabidopsis results improved seed vigor and longevity through limiting the age induced excess ROS and consequent lipid peroxidation.
Collapse
|
25
|
Filiz E, Ozyigit II, Vatansever R. Genome-wide identification of galactinol synthase (GolS) genes in Solanum lycopersicum and Brachypodium distachyon. Comput Biol Chem 2015; 58:149-57. [PMID: 26232767 DOI: 10.1016/j.compbiolchem.2015.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 06/15/2015] [Accepted: 07/17/2015] [Indexed: 12/22/2022]
Abstract
GolS genes stand as potential candidate genes for molecular breeding and/or engineering programs in order for improving abiotic stress tolerance in plant species. In this study, a total of six galactinol synthase (GolS) genes/proteins were retrieved for Solanum lycopersicum and Brachypodium distachyon. GolS protein sequences were identified to include glyco_transf_8 (PF01501) domain structure, and to have a close molecular weight (36.40-39.59kDa) and amino acid length (318-347 aa) with a slightly acidic pI (5.35-6.40). The sub-cellular location was mainly predicted as cytoplasmic. S. lycopersicum genes located on chr 1 and 2, and included one segmental duplication while genes of B. distachyon were only on chr 1 with one tandem duplication. GolS sequences were found to have well conserved motif structures. Cis-acting analysis was performed for three abiotic stress responsive elements, including ABA responsive element (ABRE), dehydration and cold responsive elements (DRE/CRT) and low-temperature responsive element (LTRE). ABRE elements were found in all GolS genes, except for SlGolS4; DRE/CRT was not detected in any GolS genes and LTRE element found in SlGolS1 and BdGolS1 genes. AU analysis in UTR and ORF regions indicated that SlGolS and BdGolS mRNAs may have a short half-life. SlGolS3 and SlGolS4 genes may generate more stable transcripts since they included AATTAAA motif for polyadenylation signal POLASIG2. Seconder structures of SlGolS proteins were well conserved than that of BdGolS. Some structural divergences were detected in 3D structures and predicted binding sites exhibited various patterns in GolS proteins.
Collapse
Affiliation(s)
- Ertugrul Filiz
- Duzce University, Department of Crop and Animal Production, Cilimli Vocational School, 81750 Cilimli, Duzce, Turkey.
| | - Ibrahim Ilker Ozyigit
- Marmara University, Faculty of Science and Arts, Department of Biology, 34722 Goztepe, Istanbul, Turkey
| | - Recep Vatansever
- Marmara University, Faculty of Science and Arts, Department of Biology, 34722 Goztepe, Istanbul, Turkey
| |
Collapse
|
26
|
Santos TBD, de Lima RB, Nagashima GT, Petkowicz CLDO, Carpentieri-Pípolo V, Pereira LFP, Domingues DS, Vieira LGE. Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought. Genet Mol Biol 2015; 38:182-90. [PMID: 26273221 PMCID: PMC4530651 DOI: 10.1590/s1415-475738220140171] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 11/07/2014] [Indexed: 12/03/2022] Open
Abstract
Increased synthesis of galactinol and raffinose family oligosaccharides (RFOs) has been reported in vegetative tissues in response to a range of abiotic stresses. In this work, we evaluated the transcriptional profile of a Coffea canephora galactinol synthase gene (CcGolS1) in two clones that differed in tolerance to water deficit in order to assess the contribution of this gene to drought tolerance. The expression of CcGolS1 in leaves was differentially regulated by water deficit, depending on the intensity of stress and the genotype. In clone 109A (drought-susceptible), the abundance of CcGolS1 transcripts decreased upon exposure to drought, reaching minimum values during recovery from severe water deficit and stress. In contrast, CcGolS1 gene expression in clone 14 (drought-tolerant) was stimulated by water deficit. Changes in galactinol and RFO content did not correlate with variation in the steady-state transcript level. However, the magnitude of increase in RFO accumulation was higher in the tolerant cultivar, mainly under severe water deficit. The finding that the drought-tolerant coffee clone showed enhanced accumulation of CcGolS1 transcripts and RFOs under water deficit suggests the possibility of using this gene to improve drought tolerance in this important crop.
Collapse
Affiliation(s)
- Tiago Benedito Dos Santos
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, PR, Brazil ; Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Rogério Barbosa de Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | | | | - Luiz Filipe Protasio Pereira
- Laboratório de Biotecnologia Vegetal, Instituto Agronômico do Paraná, Londrina, PR, Brazil ; Embrapa Café, Brasília, DF, Brazil
| | | | | |
Collapse
|