1
|
Long P, Zhou X, Sang M, Li M, Li Q, Chen Z, Zou C, Ma L, Shen Y. PIP family-based association studies uncover ZmPIP1;6 involved in Pb accumulation and water absorption in maize roots. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108974. [PMID: 39068876 DOI: 10.1016/j.plaphy.2024.108974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Excessive lead (Pb) in the soil affects crop growth and development, thus threatening human beings via food chains. Plasma membrane intrinsic proteins (PIPs) facilitate the transport of substrates across cell membranes. Herein, we characterized maize PIPs and identified eight Pb accumulation-associated PIP genes using association studies. Among these, ZmPIP1;6 was simultaneously correlated with root Pb concentrations under various Pb treatment stages. Significant correlations were observed between the ZmPIP1;6 expression abundance and Pb accumulation in maize roots. Ectopic expression in yeast showed that ZmPIP1;6 conferred Pb accumulation in the cells and affected Pb tolerance in yeast. Overexpression in maize demonstrated that ZmPIP1;6 altered the Pb concentration performance and root moisture content under Pb stress. Meanwhile, protein interaction analyses suggested that ZmPIP1; 6 and three PIP2 members formed isoforms and facilitate water uptake in maize roots. However, ZmPIP1; 6 improved Pb absorption in maize roots probably by interacting with CASP-like protein 2C3 and/or another metal transporter. Moreover, the significant variants in the ZmPIP1;6 promoter caused the variations in ZmPIP1;6 expression level and Pb accumulation among various maize germplasms. Our study will contribute to understanding of PIP family-mediated Pb accumulation in crops and bioremediation of Pb-polluted soils.
Collapse
Affiliation(s)
- Ping Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xun Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengxiang Sang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Minglin Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinglin Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chaoying Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Langlang Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaou Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Lu Q, Jin L, Wang P, Liu F, Huang B, Wen M, Wu S. Effects of Interaction of Protein Hydrolysate and Arbuscular Mycorrhizal Fungi Effects on Citrus Growth and Expressions of Stress-Responsive Genes ( Aquaporins and SOSs) under Salt Stress. J Fungi (Basel) 2023; 9:983. [PMID: 37888239 PMCID: PMC10607954 DOI: 10.3390/jof9100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Protein hydrolysates (PHs) and arbuscular mycorrhizal fungi (AMF) are environmentally friendly biostimulants that effectively promote crop growth and alleviate the damage from abiotic stress. However, the physiological and molecular regulatory mechanisms are still unclear. This study aimed to explore the effects of PHs and AMF on growth, mineral nutrient absorption, and expression of Aquaporins and SOSs in Goutoucheng (Citrus aurantium) under salt stress. Results showed that PH application and AMF inoculation significantly promoted plant growth and enhanced mineral element absorption and sodium effluxion in citrus under salt stress. The biomass, root activity, leaves mineral nutrition contents in PHs, AMF, and combined (PHs and AMF) treatments were significantly higher than those of control. Leaves sodium content in three treatments was significantly lower than in the control. AMF and combined treatments showed dominant effects than PHs alone. Besides, PHs interacted with AMF on growth, nutrient absorption, and sodium effluxion. Importantly, AMF and PHs induced stress-responsive genes. PIP1, PIP3, SOS1, and SOS3 expression in PHs and AMF treatments was significantly higher than control. Thus, it was concluded that AMF and PHs enhanced the salt tolerance of citrus by promoting nutrient absorption and sodium effluxion via up-regulating the expression of PIPs and SOSs. The mixed application of PHs and AMF had a better effect.
Collapse
Affiliation(s)
- Qi Lu
- Zhejiang Citrus Research Institute, Taizhou 318026, China; (Q.L.); (L.J.); (F.L.); (B.H.); (M.W.); (S.W.)
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Longfei Jin
- Zhejiang Citrus Research Institute, Taizhou 318026, China; (Q.L.); (L.J.); (F.L.); (B.H.); (M.W.); (S.W.)
| | - Peng Wang
- Zhejiang Citrus Research Institute, Taizhou 318026, China; (Q.L.); (L.J.); (F.L.); (B.H.); (M.W.); (S.W.)
| | - Feng Liu
- Zhejiang Citrus Research Institute, Taizhou 318026, China; (Q.L.); (L.J.); (F.L.); (B.H.); (M.W.); (S.W.)
| | - Bei Huang
- Zhejiang Citrus Research Institute, Taizhou 318026, China; (Q.L.); (L.J.); (F.L.); (B.H.); (M.W.); (S.W.)
| | - Mingxia Wen
- Zhejiang Citrus Research Institute, Taizhou 318026, China; (Q.L.); (L.J.); (F.L.); (B.H.); (M.W.); (S.W.)
| | - Shaohui Wu
- Zhejiang Citrus Research Institute, Taizhou 318026, China; (Q.L.); (L.J.); (F.L.); (B.H.); (M.W.); (S.W.)
| |
Collapse
|
3
|
Lin R, Zheng J, Pu L, Wang Z, Mei Q, Zhang M, Jian S. Genome-wide identification and expression analysis of aquaporin family in Canavalia rosea and their roles in the adaptation to saline-alkaline soils and drought stress. BMC PLANT BIOLOGY 2021; 21:333. [PMID: 34256694 PMCID: PMC8278772 DOI: 10.1186/s12870-021-03034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/03/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Canavalia rosea (Sw.) DC. (bay bean) is an extremophile halophyte that is widely distributed in coastal areas of the tropics and subtropics. Seawater and drought tolerance in this species may be facilitated by aquaporins (AQPs), channel proteins that transport water and small molecules across cell membranes and thereby maintain cellular water homeostasis in the face of abiotic stress. In C. rosea, AQP diversity, protein features, and their biological functions are still largely unknown. RESULTS We describe the action of AQPs in C. rosea using evolutionary analyses coupled with promoter and expression analyses. A total of 37 AQPs were identified in the C. rosea genome and classified into five subgroups: 11 plasma membrane intrinsic proteins, 10 tonoplast intrinsic proteins, 11 Nod26-like intrinsic proteins, 4 small and basic intrinsic proteins, and 1 X-intrinsic protein. Analysis of RNA-Seq data and targeted qPCR revealed organ-specific expression of aquaporin genes and the involvement of some AQP members in adaptation of C. rosea to extreme coral reef environments. We also analyzed C. rosea sequences for phylogeny reconstruction, protein modeling, cellular localizations, and promoter analysis. Furthermore, one of PIP1 gene, CrPIP1;5, was identified as functional using a yeast expression system and transgenic overexpression in Arabidopsis. CONCLUSIONS Our results indicate that AQPs play an important role in C. rosea responses to saline-alkaline soils and drought stress. These findings not only increase our understanding of the role AQPs play in mediating C. rosea adaptation to extreme environments, but also improve our knowledge of plant aquaporin evolution more generally.
Collapse
Affiliation(s)
- Ruoyi Lin
- Guangdong, Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Jiexuan Zheng
- Guangdong, Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Lin Pu
- Guangdong, Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Zhengfeng Wang
- Guangdong, Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Qiming Mei
- Guangdong, Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Mei Zhang
- Guangdong, Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Shuguang Jian
- Guangdong, Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration On Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| |
Collapse
|
4
|
Cao X, Shen Q, Ma S, Liu L, Cheng J. Physiological and PIP Transcriptional Responses to Progressive Soil Water Deficit in Three Mulberry Cultivars. FRONTIERS IN PLANT SCIENCE 2020; 11:1310. [PMID: 32983200 PMCID: PMC7488926 DOI: 10.3389/fpls.2020.01310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Although mulberry cultivars Wubu, Yu711, and 7307 display distinct anatomical, morphological, and agronomic characteristics under natural conditions, it remains unclear if they differ in drought tolerance. To address this question and elucidate the underlying regulatory mechanisms at the whole-plant level, 2-month old saplings of the three mulberry cultivars were exposed to progressive soil water deficit for 5 days. The physiological responses and transcriptional changes of PIPs in different plant tissues were analyzed. Drought stress led to reduced leaf relative water content (RWC) and tissue water contents, differentially expressed PIPs, decreased chlorophyll and starch, increased soluble sugars and free proline, and enhanced activities of antioxidant enzymes in all plant parts of the three cultivars. Concentrations of hydrogen peroxide (H2O2), superoxide anion (O2 •-), and malonaldehyde (MDA) were significantly declined in roots, stimulated in leaves but unaltered in wood and bark. In contrast, except the roots of 7307, soluble proteins were repressed in roots and leaves but induced in wood and bark of the three cultivars in response to progressive water deficit. These results revealed tissue-specific drought stress responses in mulberry. Comparing to cultivar Yu711 and 7307, Wubu showed generally slighter changes in leaf RWC and tissue water contents at day 2, corresponding well to the steady PIP transcript levels, foliar concentrations of chlorophyll, O2 •-, MDA, and free proline. At day 5, Wubu sustained higher tissue water contents in green tissues, displayed stronger responsiveness of PIP transcription, lower concentrations of soluble sugars and starch, lower foliar MDA, higher proline and soluble proteins, higher ROS accumulation and enhanced activities of several antioxidant enzymes. Our results indicate that whole-plant level responses of PIP transcription, osmoregulation through proline and soluble proteins and antioxidative protection are important mechanisms for mulberry to cope with drought stress. These traits play significant roles in conferring the relatively higher drought tolerance of cultivar Wubu and could be potentially useful for future mulberry improvement programmes.
Collapse
Affiliation(s)
- Xu Cao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Qiudi Shen
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Sang Ma
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Li Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| | - Jialing Cheng
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, China
| |
Collapse
|
5
|
Liu W, Jiang Y, Wang C, Zhao L, Jin Y, Xing Q, Li M, Lv T, Qi H. Lignin synthesized by CmCAD2 and CmCAD3 in oriental melon (Cucumis melo L.) seedlings contributes to drought tolerance. PLANT MOLECULAR BIOLOGY 2020; 103:689-704. [PMID: 32472480 DOI: 10.1007/s11103-020-01018-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/26/2020] [Indexed: 05/20/2023]
Abstract
CmCAD2 and CmCAD3 function more positively than CmCAD1 in oriental melon for lignin synthesis which is important to ensure internal water status and thus for drought tolerance. Well-lignification may be the guarantee of efficient axial water transport and barrier of lateral water flow in oriental melon tolerating drought stress, however remains to be verified. As an important enzyme in monolignol synthesis pathway, five cinnamyl alcohol dehydrogenase (CAD) genes were generally induced in melon seedlings by drought. Here we further revealed the roles of CmCAD1, 2, and 3 in lignin synthesis and for drought tolerance. Results found that overexpressing CmCAD2 or 3 strongly recovered CAD activities, lignin synthesis and composition in Arabidopsis cadc cadd, whose lignin synthesis is disrupted, while CmCAD1 functioned modestly. In melon seedlings, silenced CmCAD2 and 3 individually or collectively decreased CAD activities and lignin depositions drastically, resulting in dwarfed phenotypes. Reduced lignin, mainly composed by guaiacyl units catalyzed by CmCAD3, is mainly due to the limited lignification in tracheary elements and development of Casparion strip. While CmCAD1 and 2 exhibited catalysis to p-coumaraldehyde and sinapaldehyde, respectively. Compared with CmCAD1, drought treatments revealed higher sensitivity of CmCAD2 and/or 3 silenced melon seedlings, accompanying with lower relative water contents, water potentials and relatively higher total soluble sugar contents. Slightly up-regulated expressions of aquaporin genes together with limited lignification might imply higher lateral water loss in stems of silenced lines. In Arabidopsis, CmCAD2 and 3 transgenic lines enhanced cadc cadd drought tolerance through recovering lignin synthesis and root development, accompanying with decreased electrolyte leakage ratios and increased RWCs, thus improved survival rates. Briefly, lignin synthesized by CmCAD2 and 3 functions importantly for drought tolerance in melon.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural, Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Yun Jiang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural, Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Chenghui Wang
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural, Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
- College of Ecology and Garden Architecture, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Lili Zhao
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural, Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
- Institute of Vegetable Research, Liaoning Academy of Agricultural Sciences, Shenyang, 110866, Liaoning, People's Republic of China
| | - Yazhong Jin
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing, 163319, Heilongjiang, People's Republic of China
| | - Qiaojuan Xing
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural, Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Meng Li
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural, Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Tinghui Lv
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural, Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China
| | - Hongyan Qi
- Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, National & Local Joint Engineering Research Center of Northern Horticultural, Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, People's Republic of China.
| |
Collapse
|
6
|
Liu S, Fukumoto T, Gena P, Feng P, Sun Q, Li Q, Matsumoto T, Kaneko T, Zhang H, Zhang Y, Zhong S, Zeng W, Katsuhara M, Kitagawa Y, Wang A, Calamita G, Ding X. Ectopic expression of a rice plasma membrane intrinsic protein (OsPIP1;3) promotes plant growth and water uptake. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:779-796. [PMID: 31872463 DOI: 10.1111/tpj.14662] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 11/09/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Plasma membrane intrinsic proteins (PIPs) are known to be major facilitators of the movement of a number of substrates across cell membranes. From a drought-resistant cultivar of Oryza sativa (rice), we isolated an OsPIP1;3 gene single-nucleotide polymorphism (SNP) that is mostly expressed in rice roots and is strongly responsive to drought stress. Immunocytochemistry showed that OsPIP1;3 majorly accumulated on the proximal end of the endodermis and the cell surface around the xylem. Expression of GFP-OsPIP1;3 alone in Xenopus oocytes or rice protoplasts showed OsPIP1;3 mislocalization in the endoplasmic reticulum (ER)-like neighborhood, whereas co-expression of OsPIP2;2 recruited OsPIP1;3 to the plasma membrane and led to a significant enhancement of water permeability in oocytes. Moreover, reconstitution of 10×His-OsPIP1;3 in liposomes demonstrated water channel activity, as revealed by stopped-flow light scattering. Intriguingly, by patch-clamp technique, we detected significant NO3- conductance of OsPIP1;3 in mammalian cells. To investigate the physiological functions of OsPIP1;3, we ectopically expressed the OsPIP1;3 gene in Nicotiana benthamiana (tobacco). The transgenic tobacco plants exhibited higher photosynthesis rates, root hydraulic conductivity (Lpr ) and water-use efficiency, resulting in a greater biomass and a higher resistance to water deficit than the wild-type did. Further experiments suggested that heterologous expression of OsPIP1;3 in cyanobacterium altered bacterial growth under different conditions of CO2 gas supply. Overall, besides shedding light on the multiple functions played by OsPIP1;3, this work provides insights into the translational value of plant AQPs.
Collapse
Affiliation(s)
- Siyu Liu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Tatsuya Fukumoto
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita, 010-0195, Japan
| | - Patrizia Gena
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Peng Feng
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qi Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Tadashi Matsumoto
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita, 010-0195, Japan
| | - Toshiyuki Kaneko
- Research Institute for Bioresources, Okayama University, Kurashiki, 710-0046, Japan
| | - Hang Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Yao Zhang
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Shihua Zhong
- Department of Biochemistry, the University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Weizhong Zeng
- Department of Biophysics, the University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Maki Katsuhara
- Research Institute for Bioresources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yoshichika Kitagawa
- Graduate School of Bioresource Sciences, Akita Prefectural University, Akita, 010-0195, Japan
| | - Aoxue Wang
- College of Horticulture, Northeast Agricultural University, Harbin, 150030, China
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari 'Aldo Moro', Bari, Italy
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
7
|
Pawłowicz I, Masajada K. Aquaporins as a link between water relations and photosynthetic pathway in abiotic stress tolerance in plants. Gene 2018; 687:166-172. [PMID: 30445023 DOI: 10.1016/j.gene.2018.11.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/25/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
Plant aquaporins constitute a large family of proteins involved in facilitating the transport of water and small neutral molecules across biological membranes. In higher plants they are divided into several sub-families, depending on membrane-type localization and permeability to specific solutes. They are abundantly expressed in the majority of plant organs and tissues, and play a function in primary biological processes. Many studies revealed the significant role of aquaporins in acquiring abiotic stresses' tolerance. This review focuses on aquaporins belonging to PIPs sub-family that are permeable to water and/or carbon dioxide. Isoforms transporting water are involved in hydraulic conductance regulation in the leaves and roots, whereas those transporting carbon dioxide control stomatal and mesophyll conductance in the leaves. Changes in PIP aquaporins abundance/activity in stress conditions allow to maintain the water balance and photosynthesis adjustment. Broad analyses showed that tight control between water and carbon dioxide supplementation mediated by aquaporins influences plant productivity, especially in stress conditions. Involvement of aquaporins in adaptation strategies to dehydrative stresses in different plant species are discussed in this review.
Collapse
Affiliation(s)
- Izabela Pawłowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland.
| | - Katarzyna Masajada
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
| |
Collapse
|
8
|
Paudel I, Cohen S, Shlizerman L, Jaiswal AK, Shaviv A, Sadka A. Reductions in root hydraulic conductivity in response to clay soil and treated waste water are related to PIPs down-regulation in Citrus. Sci Rep 2017; 7:15429. [PMID: 29133958 PMCID: PMC5684345 DOI: 10.1038/s41598-017-15762-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/02/2017] [Indexed: 11/09/2022] Open
Abstract
Citrus hydraulic physiology and PIP transcript levels were characterized in heavy (clay) and light (sandy loam) soils with and without treated waste water (TWW) irrigation after a summer irrigation season and at the end of a winter rainy season recovery period. Consistent reductions in clay soils compared to sandy loam were found for fresh water (FW) and TWW irrigation, respectively, in root water uptake, as well as in hydraulic conductivity of whole plant (Ks plant), stem (Ks stem) and root (Ks root). Transcript levels of most PIPs down-regulated following TWW irrigation in both soils, but relative gene expression of three PIPs was significantly higher in summer for sandy soil and FW than for clay soil and TWW; their mRNA levels was significantly correlated to Ks root. A pot experiment, which compared short term influences of saline and TWW found that both treatments, compared to FW, reduced root water uptake and PIPs mRNA levels by 2-fold after 20 days, and the decreases continued with time until the end of the experiment. These latter data indicated that salinity had an important influence. Our results suggest that plant hydraulic adjustment to soil texture and water quality occurs rapidly, i.e. within days, and is modulated by PIPs expression.
Collapse
Affiliation(s)
- Indira Paudel
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan, 5025001, Israel
- Department of Soil and Water, The Robert H. Smith Faculty of Food Agriculture and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shabtai Cohen
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Bet Dagan, 5025001, Israel
| | - Lyudmila Shlizerman
- Department of Fruit Trees Sciences, ARO Volcani Center, Bet Dagan, 5025001, Israel
| | - Amit K Jaiswal
- Department of Soil and Water, The Robert H. Smith Faculty of Food Agriculture and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Protection, ARO Volcani Center, Bet Dagan, 5025001, Israel
| | - Avi Shaviv
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel
| | - Avi Sadka
- Department of Fruit Trees Sciences, ARO Volcani Center, Bet Dagan, 5025001, Israel.
| |
Collapse
|
9
|
Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species. J Appl Genet 2017; 58:421-435. [PMID: 28779288 PMCID: PMC5655603 DOI: 10.1007/s13353-017-0403-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/27/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
Abstract
Festuca arundinacea and F. pratensis are the models in forage grasses to recognize the molecular basis of drought, salt and frost tolerance, respectively. Transcription profiles of plasma membrane intrinsic proteins (PIPs) and tonoplast intrinsic proteins (TIPs) aquaporin genes were obtained for leaves of Festuca species treated with different abiotic stimuli. F. arundinacea plants were exposed to drought and salt stress, whereas F. pratensis plants were cold-hardened. Changes in genes expression measured with use of real time qRT-PCR method were compared between two genotypes characterized with a significantly different level of each stress tolerance. Under drought the transcript level of PIP1;2 and TIP1;1 aquaporin decreased in both analyzed F. arundinacea genotypes, whereas for PIP2;1 only in a high drought tolerant plant. A salt treatment caused a reduction of PIP1;2 transcript level in a high salt tolerant genotype and an increase of TIP1;1 transcript abundance in both F. arundinacea genotypes, but it did not influence the expression of PIP2;1 aquaporin. During cold-hardening a decrease of PIP1;2, PIP2;1, and TIP1;1 aquaporin transcripts was observed, both in high and low frost tolerant genotypes. The obtained results revealed that the selected genotypes responded in a different way to abiotic stresses application. A reduced level of PIP1;2 transcript in F. arundinacea low drought tolerant genotype corresponded with a faster water loss and a lowering of photosynthesis efficiency and gas exchange during drought conditions. In F. pratensis, cold acclimation was associated with a lower level of aquaporin transcripts in both high and low frost tolerant genotypes. This is the first report on aquaporin transcriptional profiling under abiotic stress condition in forage grasses.
Collapse
|