1
|
Kumar A, Krausko M, Jásik J. SYNAPTOTAGMIN 4 is expressed mainly in the phloem and participates in abiotic stress tolerance in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1363555. [PMID: 39011301 PMCID: PMC11246894 DOI: 10.3389/fpls.2024.1363555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/04/2024] [Indexed: 07/17/2024]
Abstract
Plant synaptotagmins structurally resemble animal synaptotagmins and extended-synaptotagmins. Animal synaptotagmins are well-characterized calcium sensors in membrane trafficking, and extended-synaptotagmins mediate lipid transfer at the endoplasmic reticulum-plasma membrane contact sites. Here, we characterize SYNAPTOTAGMIN 4 (SYT4), which belongs to the six-member family in Arabidopsis. Fluorometric GUS assay showed that the SYT4 promoter was strongest in roots and the least active in rosettes and cauline leaves, which was confirmed by qPCR. In seedlings, promoter activity was influenced by several factors, such as plant growth regulators, mannitol, sucrose, polyethylene glycol and cold. GUS histochemistry revealed SYT4 promoter activity in the phloem of all organs and even almost exclusively in sieve element precursors and differentiating sieve elements. Accordingly, the SYT-GFP fusion protein also accumulated in these cells with maximal abundance in sieve element precursors. The protein formed a network in the cytoplasm, but during sieve tube differentiation, it deposited at the cell periphery and disappeared from mature tubes. Using photoconvertible fluorescence technology, we showed that a high abundance of SYT4 protein in meristematic protophloem cells was due to its extensive synthesis. SYT4 protein synthesis was interrupted in differentiating sieve elements, but protein degradation was also reduced. In addition to phloem, the fusion protein was detected in shoot and root stem cell niche as early as the late heart stage of the embryo. We isolated and molecularly and biologically characterized five syt4 T-DNA insertion alleles and subjected them to phenotype analysis. The allele with the C2B domain interrupted by an T-DNA insertion exhibits increased sensitivity to factors such as auxins, osmotics, salicylic acid, sodium chloride, and the absence of sucrose in the root growth test.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Experimental Plant Biology, Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Krausko
- Department of Experimental Plant Biology, Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ján Jásik
- Department of Experimental Plant Biology, Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
2
|
Sun Y, Yang B, De Rybel B. Hormonal control of the molecular networks guiding vascular tissue development in the primary root meristem of Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6964-6974. [PMID: 37343122 PMCID: PMC7615341 DOI: 10.1093/jxb/erad232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Vascular tissues serve a dual function in plants, both providing physical support and controlling the transport of nutrients, water, hormones, and other small signaling molecules. Xylem tissues transport water from root to shoot; phloem tissues transfer photosynthates from shoot to root; while divisions of the (pro)cambium increase the number of xylem and phloem cells. Although vascular development constitutes a continuous process from primary growth in the early embryo and meristem regions to secondary growth in the mature plant organs, it can be artificially separated into distinct processes including cell type specification, proliferation, patterning, and differentiation. In this review, we focus on how hormonal signals orchestrate the molecular regulation of vascular development in the Arabidopsis primary root meristem. Although auxin and cytokinin have taken center stage in this aspect since their discovery, other hormones including brassinosteroids, abscisic acid, and jasmonic acid also take leading roles during vascular development. All these hormonal cues synergistically or antagonistically participate in the development of vascular tissues, forming a complex hormonal control network.
Collapse
Affiliation(s)
- Yanbiao Sun
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Baojun Yang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Technologiepark 71, 9052 Ghent, Belgium
- VIB Centre for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| |
Collapse
|
3
|
Wang X, Mäkilä R, Mähönen AP. From procambium patterning to cambium activation and maintenance in the Arabidopsis root. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102404. [PMID: 37352651 DOI: 10.1016/j.pbi.2023.102404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 06/25/2023]
Abstract
In addition to primary growth, which elongates the plant body, many plant species also undergo secondary growth to thicken their body. During primary vascular development, a subset of the vascular cells, called procambium and pericycle, remain undifferentiated to later gain vascular cambium and cork cambium identity, respectively. These two cambia are the lateral meristems providing secondary growth. The vascular cambium produces secondary xylem and phloem, which give plants mechanical support and transport capacity. Cork cambium produces a protective layer called cork. In this review, we focus on recent advances in understanding the formation of procambium and its gradual maturation to active cambium in the Arabidopsis thaliana root.
Collapse
Affiliation(s)
- Xin Wang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Riikka Mäkilä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Matilla AJ. The Interplay between Enucleated Sieve Elements and Companion Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:3033. [PMID: 37687278 PMCID: PMC10489895 DOI: 10.3390/plants12173033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 09/10/2023]
Abstract
In order to adapt to sessile life and terrestrial environments, vascular plants have developed highly sophisticated cells to transport photosynthetic products and developmental signals. Of these, two distinct cell types (i.e., the sieve element (SE) and companion cell) are arranged in precise positions, thus ensuring effective transport. During SE differentiation, most of the cellular components are heavily modified or even eliminated. This peculiar differentiation implies the selective disintegration of the nucleus (i.e., enucleation) and the loss of cellular translational capacity. However, some cellular components necessary for transport (e.g., plasmalemma) are retained and specific phloem proteins (P-proteins) appear. Likewise, MYB (i.e., APL) and NAC (i.e., NAC45 and NAC86) transcription factors (TFs) and OCTOPUS proteins play a notable role in SE differentiation. The maturing SEs become heavily dependent on neighboring non-conducting companion cells, to which they are connected by plasmodesmata through which only 20-70 kDa compounds seem to be able to pass. The study of sieve tube proteins still has many gaps. However, the development of a protocol to isolate proteins that are free from any contaminating proteins has constituted an important advance. This review considers the very detailed current state of knowledge of both bound and soluble sap proteins, as well as the role played by the companion cells in their presence. Phloem proteins travel long distances by combining two modes: non-selective transport via bulk flow and selective regulated movement. One of the goals of this study is to discover how the protein content of the sieve tube is controlled. The majority of questions and approaches about the heterogeneity of phloem sap will be clarified once the morphology and physiology of the plasmodesmata have been investigated in depth. Finally, the retention of specific proteins inside an SE is an aspect that should not be forgotten.
Collapse
Affiliation(s)
- Angel J Matilla
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, 14971-Santiago de Compostela, Spain
| |
Collapse
|
5
|
Wallner ES, Tonn N, Shi D, Luzzietti L, Wanke F, Hunziker P, Xu Y, Jung I, Lopéz-Salmerón V, Gebert M, Wenzl C, Lohmann JU, Harter K, Greb T. OBERON3 and SUPPRESSOR OF MAX2 1-LIKE proteins form a regulatory module driving phloem development. Nat Commun 2023; 14:2128. [PMID: 37059727 PMCID: PMC10104830 DOI: 10.1038/s41467-023-37790-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Spatial specificity of cell fate decisions is central for organismal development. The phloem tissue mediates long-distance transport of energy metabolites along plant bodies and is characterized by an exceptional degree of cellular specialization. How a phloem-specific developmental program is implemented is, however, unknown. Here we reveal that the ubiquitously expressed PHD-finger protein OBE3 forms a central module with the phloem-specific SMXL5 protein for establishing the phloem developmental program in Arabidopsis thaliana. By protein interaction studies and phloem-specific ATAC-seq analyses, we show that OBE3 and SMXL5 proteins form a complex in nuclei of phloem stem cells where they promote a phloem-specific chromatin profile. This profile allows expression of OPS, BRX, BAM3, and CVP2 genes acting as mediators of phloem differentiation. Our findings demonstrate that OBE3/SMXL5 protein complexes establish nuclear features essential for determining phloem cell fate and highlight how a combination of ubiquitous and local regulators generate specificity of developmental decisions in plants.
Collapse
Affiliation(s)
- Eva-Sophie Wallner
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
- Gilbert Biological Sciences, Stanford University, Stanford, CA, 94305-5020, USA
| | - Nina Tonn
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Dongbo Shi
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
- Japan RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Institute for Biochemistry and Biology (IBB), University of Potsdam, Potsdam, 14476, Germany
- Japan Science and Technology Agency (JST), Saitama, Kawaguchi, Japan
| | - Laura Luzzietti
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Friederike Wanke
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Pascal Hunziker
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Yingqiang Xu
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Ilona Jung
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Vadir Lopéz-Salmerón
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
- BD Bioscience, 69126, Heidelberg, Germany
| | - Michael Gebert
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Christian Wenzl
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Jan U Lohmann
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany
| | - Klaus Harter
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
Reinhardt D, Gola EM. Law and order in plants - the origin and functional relevance of phyllotaxis. TRENDS IN PLANT SCIENCE 2022; 27:1017-1032. [PMID: 35643801 DOI: 10.1016/j.tplants.2022.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/31/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
The regular arrangement of organs (phyllotaxis) in vegetative shoots and flowers is one of the most stunning features of plants. Spiral patterns characterized by Fibonacci numbers have attracted the particular interest of natural scientists and mathematicians. Numerous reviews have dealt with the molecular genetic mechanisms underlying phyllotaxis, and modeling studies have sought to recreate phyllotaxis according to mathematical, biochemical, or physical laws. However, what is the functional significance of regular plant architecture, and how did it evolve? We discuss the developmental constraints and selective forces that may have favored the selection of phyllotaxis, and we argue that a central driver of regular phyllotaxis may have been limitations in the allocation of founder cells and metabolic resources to the different tissues in the shoot apex.
Collapse
Affiliation(s)
- Didier Reinhardt
- Department of Biology, Route Albert Gockel 3, University of Fribourg, 1700 Fribourg, Switzerland.
| | - Edyta M Gola
- Department of Plant Developmental Biology, Faculty of Plant Sciences, University of Wroclaw, Kanonia 6/8, 50-328, Wroclaw, Poland
| |
Collapse
|
7
|
Sivanesan I, Nayeem S, Venkidasamy B, Kuppuraj SP, RN C, Samynathan R. Genetic and epigenetic modes of the regulation of somatic embryogenesis: a review. Biol Futur 2022; 73:259-277. [DOI: 10.1007/s42977-022-00126-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 06/16/2022] [Indexed: 01/17/2023]
|
8
|
Alejo-Vinogradova MT, Ornelas-Ayala D, Vega-León R, Garay-Arroyo A, García-Ponce B, R Álvarez-Buylla E, Sanchez MDLP. Unraveling the role of epigenetic regulation in asymmetric cell division during plant development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:38-49. [PMID: 34518884 DOI: 10.1093/jxb/erab421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Asymmetric cell divisions are essential to generate different cellular lineages. In plants, asymmetric cell divisions regulate the correct formation of the embryo, stomatal cells, apical and root meristems, and lateral roots. Current knowledge of regulation of asymmetric cell divisions suggests that, in addition to the function of key transcription factor networks, epigenetic mechanisms play crucial roles. Therefore, we highlight the importance of epigenetic regulation and chromatin dynamics for integration of signals and specification of cells that undergo asymmetric cell divisions, as well as for cell maintenance and cell fate establishment of both progenitor and daughter cells. We also discuss the polarization and segregation of cell components to ensure correct epigenetic memory or resetting of epigenetic marks during asymmetric cell divisions.
Collapse
Affiliation(s)
- M Teresa Alejo-Vinogradova
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Diego Ornelas-Ayala
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Rosario Vega-León
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Adriana Garay-Arroyo
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Berenice García-Ponce
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - Elena R Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| | - María de la Paz Sanchez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de plantas. Instituto de Ecología, Universidad Nacional Autónoma de México, 3er Circuito Ext. Junto a J. Botánico, Ciudad Universitaria. UNAM, México D.F. 04510, México
| |
Collapse
|
9
|
Rutten JP, Ten Tusscher KH. Bootstrapping and Pinning down the Root Meristem; the Auxin-PLT-ARR Network Unites Robustness and Sensitivity in Meristem Growth Control. Int J Mol Sci 2021; 22:ijms22094731. [PMID: 33946960 PMCID: PMC8125115 DOI: 10.3390/ijms22094731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 12/26/2022] Open
Abstract
After germination, the meristem of the embryonic plant root becomes activated, expands in size and subsequently stabilizes to support post-embryonic root growth. The plant hormones auxin and cytokinin, together with master transcription factors of the PLETHORA (PLT) family have been shown to form a regulatory network that governs the patterning of this root meristem. Still, which functional constraints contributed to shaping the dynamics and architecture of this network, has largely remained unanswered. Using a combination of modeling approaches we reveal how the interplay between auxin and PLTs enables meristem activation in response to above-threshold stimulation, while its embedding in a PIN-mediated auxin reflux loop ensures localized PLT transcription and thereby, a finite meristem size. We furthermore demonstrate how this constrained PLT transcriptional domain enables independent control of meristem size and division rates, further supporting a division of labor between auxin and PLT. We subsequently reveal how the weaker auxin antagonism of the earlier active Arabidopsis response regulator 12 (ARR12) may arise from the absence of a DELLA protein interaction domain. Our model indicates that this reduced strength is essential to prevent collapse in the early stages of meristem expansion while at later stages the enhanced strength of Arabidopsis response regulator 1 (ARR1) is required for sufficient meristem size control. Summarizing, our work indicates that functional constraints significantly contribute to shaping the auxin-cytokinin-PLT regulatory network.
Collapse
|
10
|
Bagdassarian KS, Brown CM, Jones ET, Etchells P. Connections in the cambium, receptors in the ring. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:96-103. [PMID: 32866742 DOI: 10.1016/j.pbi.2020.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/05/2020] [Accepted: 07/22/2020] [Indexed: 05/04/2023]
Abstract
In plants, pluripotent cells in meristems divide to provide cells for the formation of postembryonic tissues. The cambium is the meristem from which the vascular tissue is derived and is the main driver for secondary (radial) growth in dicots. Xylem and phloem are specified on opposing sides of the cambium, and tightly regulated cell divisions ensure their spatial separation. Peptide ligands, phytohormones, and their receptors are central to maintaining this patterning and regulating proliferation. Here, we describe recent advances in our understanding of how these signals are integrated to control vascular development and secondary growth.
Collapse
Affiliation(s)
| | - Catherine M Brown
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Ewan T Jones
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Peter Etchells
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom.
| |
Collapse
|
11
|
Seo M, Kim H, Lee JY. Information on the move: vascular tissue development in space and time during postembryonic root growth. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:110-117. [PMID: 32905917 DOI: 10.1016/j.pbi.2020.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 05/27/2023]
Abstract
Cascades of temporal and spatial regulation of gene expression play crucial roles in the vascular development in plant roots. Once vascular cell fates are determined, the timing of their differentiation is tightly controlled in a cell-autonomous manner. In contrast, extensive cell-to-cell communication contributes to the positioning and specifying of vascular cell types in the root meristem. Diverse factors moving short distances in a radial direction were found to be key contributors to these processes. Furthermore, signals from differentiated phloem were found to influence the phloem precursor and determine how the corresponding asymmetric cell division proceeded. These findings highlight the potential importance of underexplored types of intercellular communication in relation to vascular tissue development during postembryonic root growth.
Collapse
Affiliation(s)
- Minji Seo
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyoujin Kim
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-Young Lee
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
12
|
Shahan R. It's All in the Neighborhood: SHORTROOT-Mediated Intercellular Signals Coordinate Phloem Development in the Root. THE PLANT CELL 2020; 32:1350-1351. [PMID: 32132130 PMCID: PMC7203923 DOI: 10.1105/tpc.20.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Rachel Shahan
- Department of BiologyDuke UniversityDurham, North Carolina
| |
Collapse
|
13
|
Kim H, Zhou J, Kumar D, Jang G, Ryu KH, Sebastian J, Miyashima S, Helariutta Y, Lee JY. SHORTROOT-Mediated Intercellular Signals Coordinate Phloem Development in Arabidopsis Roots. THE PLANT CELL 2020; 32:1519-1535. [PMID: 32111671 PMCID: PMC7203941 DOI: 10.1105/tpc.19.00455] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/06/2020] [Accepted: 02/25/2020] [Indexed: 05/19/2023]
Abstract
Asymmetric cell division (ACD) and positional signals play critical roles in the tissue patterning process. In the Arabidopsis (Arabidopsis thaliana) root meristem, two major phloem cell types arise via ACDs of distinct origins: one for companion cells (CCs) and the other for proto- and metaphloem sieve elements (SEs). The molecular mechanisms underlying each of these processes have been reported; however, how these are coordinated has remained elusive. Here, we report a new phloem development process coordinated via the SHORTROOT (SHR) transcription factor in Arabidopsis. The movement of SHR into the endodermis regulates the ACD for CC formation by activating microRNA165/6, while SHR moving into the phloem regulates the ACD generating the two phloem SEs. In the phloem, SHR sequentially activates NAC-REGULATED SEED MORPHOLOGY 1 (NARS1) and SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN 2 (SND2), and these three together form a positive feedforward loop. Under this regulatory scheme, NARS1, generated in the CCs of the root differentiation zone, establishes a top-down signal that drives the ACD for phloem SEs in the meristem. SND2 appears to function downstream to amplify NARS1 via positive feedback. This new regulatory mechanism expands our understanding of the sophisticated vascular tissue patterning processes occurring during postembryonic root development.plantcell;32/5/1519/FX1F1fx1.
Collapse
Affiliation(s)
- Hyoujin Kim
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Korea
| | - Jing Zhou
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Korea
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
- Elo Life Systems, Durham, North Carolina 27709
| | - Deepak Kumar
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Korea
| | - Geupil Jang
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Korea
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Kook Hui Ryu
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Korea
| | - Jose Sebastian
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Korea
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur 760010, India
| | - Shunsuke Miyashima
- Institute of Biotechnology, Department of Biological and Environmental Sciences, University of Helsinki, FIN-00014, Finland
| | - Ykä Helariutta
- Institute of Biotechnology, Department of Biological and Environmental Sciences, University of Helsinki, FIN-00014, Finland
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, United Kingdom
| | - Ji-Young Lee
- School of Biological Sciences, College of Natural Science, Seoul National University, Seoul 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
| |
Collapse
|
14
|
Smit ME, Llavata-Peris CI, Roosjen M, van Beijnum H, Novikova D, Levitsky V, Sevilem I, Roszak P, Slane D, Jürgens G, Mironova V, Brady SM, Weijers D. Specification and regulation of vascular tissue identity in the Arabidopsis embryo. Development 2020; 147:dev186130. [PMID: 32198154 DOI: 10.1242/dev.186130] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/05/2020] [Indexed: 12/30/2022]
Abstract
Development of plant vascular tissues involves tissue identity specification, growth, pattern formation and cell-type differentiation. Although later developmental steps are understood in some detail, it is still largely unknown how the tissue is initially specified. We used the early Arabidopsis embryo as a simple model to study this process. Using a large collection of marker genes, we found that vascular identity was specified in the 16-cell embryo. After a transient precursor state, however, there was no persistent uniform tissue identity. Auxin is intimately connected to vascular tissue development. We found that, although an AUXIN RESPONSE FACTOR5/MONOPTEROS (ARF5/MP)-dependent auxin response was required, it was not sufficient for tissue specification. We therefore used a large-scale enhanced yeast one-hybrid assay to identify potential regulators of vascular identity. Network and functional analysis of candidate regulators suggest that vascular identity is under robust, complex control. We found that one candidate regulator, the G-class bZIP transcription factor GBF2, can modulate vascular gene expression by tuning MP output through direct interaction. Our work uncovers components of a gene regulatory network that controls the initial specification of vascular tissue identity.
Collapse
Affiliation(s)
- Margot E Smit
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Cristina I Llavata-Peris
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Henriette van Beijnum
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Daria Novikova
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Victor Levitsky
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Iris Sevilem
- Institute of Biotechnology, HiLIFE/Organismal and Evolurionary Biology Research Programma, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
| | - Pawel Roszak
- Institute of Biotechnology, HiLIFE/Organismal and Evolurionary Biology Research Programma, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00014, Finland
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Daniel Slane
- Max Planck Institute for Developmental Biology, Cell Biology, Tübingen, 72076, Germany
| | - Gerd Jürgens
- Max Planck Institute for Developmental Biology, Cell Biology, Tübingen, 72076, Germany
| | - Victoria Mironova
- Novosibirsk State University, LCT&EB, Novosibirsk, 630090, Russia
- Institute of Cytology and Genetics, Novosibirsk, 630090, Russia
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| |
Collapse
|
15
|
López-Salmerón V, Cho H, Tonn N, Greb T. The Phloem as a Mediator of Plant Growth Plasticity. Curr Biol 2020; 29:R173-R181. [PMID: 30836090 DOI: 10.1016/j.cub.2019.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developmental plasticity, defined as the capacity to respond to changing environmental conditions, is an inherent feature of plant growth. Recent studies have brought the phloem tissue, the quintessential conduit for energy metabolites and inter-organ communication, into focus as an instructive developmental system. Those studies have clarified long-standing questions about essential aspects of phloem development and function, such as the pressure flow hypothesis, mechanisms of phloem unloading, and source-sink relationships. Interestingly, plants with impaired phloem development show characteristic changes in body architecture, thereby highlighting the capacity of the phloem to integrate environmental cues and to fine-tune plant development. Therefore, understanding the plasticity of phloem development provides scenarios of how environmental stimuli are translated into differential plant growth. In this Review, we summarize novel insights into how phloem identity is established and how phloem cells fulfil their core function as transport units. Moreover, we discuss possible interfaces between phloem physiology and development as sites for mediating the plastic growth mode of plants.
Collapse
Affiliation(s)
- Vadir López-Salmerón
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Hyunwoo Cho
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Nina Tonn
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Thomas Greb
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany.
| |
Collapse
|
16
|
Kalmbach L, Helariutta Y. Sieve Plate Pores in the Phloem and the Unknowns of Their Formation. PLANTS (BASEL, SWITZERLAND) 2019; 8:E25. [PMID: 30678196 PMCID: PMC6409547 DOI: 10.3390/plants8020025] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 01/13/2023]
Abstract
Sieve pores of the sieve plates connect neighboring sieve elements to form the conducting sieve tubes of the phloem. Sieve pores are critical for phloem function. From the 1950s onwards, when electron microscopes became increasingly available, the study of their formation had been a pillar of phloem research. More recent work on sieve elements instead has largely focused on sieve tube hydraulics, phylogeny, and eco-physiology. Additionally, advanced molecular and genetic tools available for the model species Arabidopsis thaliana helped decipher several key regulatory mechanisms of early phloem development. Yet, the downstream differentiation processes which form the conductive sieve tube are still largely unknown, and our understanding of sieve pore formation has only moderately progressed. Here, we summarize our current knowledge on sieve pore formation and present relevant recent advances in related fields such as sieve element evolution, physiology, and plasmodesmata formation.
Collapse
Affiliation(s)
- Lothar Kalmbach
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.
| | - Ykä Helariutta
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
17
|
|
18
|
Affiliation(s)
- Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK.
| | - Chun Kit Kwok
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
19
|
Kondo Y. Reconstitutive approach for investigating plant vascular development. JOURNAL OF PLANT RESEARCH 2018; 131:23-29. [PMID: 29181650 DOI: 10.1007/s10265-017-0998-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/10/2017] [Indexed: 06/07/2023]
Abstract
Plants generate various tissues and organs via a strictly regulated developmental program. The plant vasculature is a complex tissue system consisting of xylem and phloem tissues with a layer of cambial cells in between. Multiple regulatory steps are involved in vascular development. Although molecular and genetic studies have uncovered a variety of key factors controlling vascular development, studies of the actual functions of these factors have been limited due to the inaccessibility of the plant vasculature. Thus, to obtain a different perspective, culture systems have been widely used to analyze the sequential processes that occur during vascular development. A tissue culture system known as VISUAL, in which molecular genetic analysis can easily be performed, was recently established in Arabidopsis thaliana. This reconstitutive approach to vascular development enables this process to be investigated quickly and easily. In this review, I summarize our recent knowledge of the regulatory mechanisms underlying vascular development and provide future perspectives on vascular analyses that can be performed using VISUAL.
Collapse
Affiliation(s)
- Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 1130033, Japan.
| |
Collapse
|
20
|
Kondo Y, Sugano SS. Opening new avenues for plant developmental research. JOURNAL OF PLANT RESEARCH 2018; 131:3-4. [PMID: 29204751 DOI: 10.1007/s10265-017-1002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Shigeo S Sugano
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-0058, Japan.
- PRESTO, JST, 4-1-8 Honmachi, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|