1
|
Li W, Li P, Deng Y, Zhang Z, Situ J, Huang J, Li M, Xi P, Jiang Z, Kong G. Litchi aspartic protease LcAP1 enhances plant resistance via suppressing cell death triggered by the pectate lyase PlPeL8 from Peronophythora litchii. THE NEW PHYTOLOGIST 2024; 242:2682-2701. [PMID: 38622771 DOI: 10.1111/nph.19755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024]
Abstract
Plant cell death is regulated in plant-pathogen interactions. While some aspartic proteases (APs) participate in regulating programmed cell death or defense responses, the defense functions of most APs remain largely unknown. Here, we report on a virulence factor, PlPeL8, which is a pectate lyase found in the hemibiotrophic pathogen Peronophythora litchii. Through in vivo and in vitro assays, we confirmed the interaction between PlPeL8 and LcAP1 from litchi, and identified LcAP1 as a positive regulator of plant immunity. PlPeL8 induced cell death associated with NbSOBIR1 and NbMEK2. The 11 conserved residues of PlPeL8 were essential for inducing cell death and enhancing plant susceptibility. Twenty-three LcAPs suppressed cell death induced by PlPeL8 in Nicotiana benthamiana depending on their interaction with PlPeL8. The N-terminus of LcAP1 was required for inhibiting PlPeL8-triggered cell death and susceptibility. Furthermore, PlPeL8 led to higher susceptibility in NbAPs-silenced N. benthamiana than the GUS-control. Our results indicate the crucial roles of LcAP1 and its homologs in enhancing plant resistance via suppression of cell death triggered by PlPeL8, and LcAP1 represents a promising target for engineering disease resistance. Our study provides new insights into the role of plant cell death in the arms race between plants and hemibiotrophic pathogens.
Collapse
Affiliation(s)
- Wen Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Zijing Zhang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Junjian Situ
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Ji Huang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Minhui Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Pinggen Xi
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Zide Jiang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Guanghui Kong
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
2
|
Chen L, Hu Y, Huang L, Chen L, Duan X, Wang G, Ou H. Comparative transcriptome revealed the molecular responses of Aconitum carmichaelii Debx. to downy mildew at different stages of disease development. BMC PLANT BIOLOGY 2024; 24:332. [PMID: 38664645 PMCID: PMC11044490 DOI: 10.1186/s12870-024-05048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Aconitum carmichaelii Debx. has been widely used as a traditional medicinal herb for a long history in China. It is highly susceptible to various dangerous diseases during the cultivation process. Downy mildew is the most serious leaf disease of A. carmichaelii, affecting plant growth and ultimately leading to a reduction in yield. To better understand the response mechanism of A. carmichaelii leaves subjected to downy mildew, the contents of endogenous plant hormones as well as transcriptome sequencing were analyzed at five different infected stages. RESULTS The content of 3-indoleacetic acid, abscisic acid, salicylic acid and jasmonic acid has changed significantly in A. carmichaelii leaves with the development of downy mildew, and related synthetic genes such as 9-cis-epoxycarotenoid dioxygenase and phenylalanine ammonia lyase were also significant for disease responses. The transcriptomic data indicated that the differentially expressed genes were primarily associated with plant hormone signal transduction, plant-pathogen interaction, the mitogen-activated protein kinase signaling pathway in plants, and phenylpropanoid biosynthesis. Many of these genes also showed potential functions for resisting downy mildew. Through weighted gene co-expression network analysis, the hub genes and genes that have high connectivity to them were identified, which could participate in plant immune responses. CONCLUSIONS In this study, we elucidated the response and potential genes of A. carmichaelii to downy mildew, and observed the changes of endogenous hormones content at different infection stages, so as to contribute to the further screening and identification of genes involved in the defense of downy mildew.
Collapse
Affiliation(s)
- Lijuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiwen Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Long Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianglei Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Guangzhi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Hong Ou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
3
|
Pereira G, Pereira J, Santos RB, Figueiredo A. Uncovering the role of DNA methyltransferases in grapevine - Plasmopara viticola interaction: From genome-wide characterization to global methylation patterns. Gene 2022; 837:146693. [PMID: 35738444 DOI: 10.1016/j.gene.2022.146693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/10/2022] [Accepted: 06/17/2022] [Indexed: 11/04/2022]
Abstract
Epigenetic regulation has recently gained prominence in the field of plant-pathogen interactions, providing a deeper understanding of the molecular mechanisms associated with plant infection. In grapevine interaction with pathogens, epigenetic regulation still remains a black box. In this work, we characterized grapevine DNA methyltransferase gene family and identified nine DNA methyltransferases genes across eight grapevine chromosomes coding for 17 proteins. We also assessed the modulation of global cytosine methylation and gene expression levels of these genes with the aim of establishing a connection between DNA methylation and grapevine resistance towards downy mildew. Our results revealed that, in the incompatible interaction, an early hypomethylation, coupled with downregulation of DNMT and CMT genes occurs very early after pathogen inoculation. Additionally, the compatible interaction is characterized by a hypermethylation at 6hpi. A temporal delay is evident between the shifts in DNA methyltransferases gene expression in both compatible and incompatible interactions which in turn may be reflected in the global methylation percentage. Overall, we present the first evidence of an epigenetic regulation role in grapevine defense against P. viticola.
Collapse
Affiliation(s)
- Gonçalo Pereira
- Grapevine Pathogen Systems Lab, BioISI - Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisboa, Portugal
| | - João Pereira
- Grapevine Pathogen Systems Lab, BioISI - Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisboa, Portugal
| | - Rita B Santos
- Grapevine Pathogen Systems Lab, BioISI - Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisboa, Portugal; Plant Biology Department, Faculty of Sciences, BioISI, University of Lisbon, Lisboa, Portugal.
| | - Andreia Figueiredo
- Grapevine Pathogen Systems Lab, BioISI - Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisbon, Lisboa, Portugal; Plant Biology Department, Faculty of Sciences, BioISI, University of Lisbon, Lisboa, Portugal
| |
Collapse
|