1
|
Marchuk EA, Kvitchenko AK, Kameneva LA, Yuferova AA, Kislov DE. East Asian forest-steppe outpost in the Khanka Lowland (Russia) and its conservation. JOURNAL OF PLANT RESEARCH 2024; 137:997-1018. [PMID: 39180624 DOI: 10.1007/s10265-024-01570-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
The Khanka Lowland forest-steppe is the most eastern outpost of the Eurasian steppe biome. It includes unique grassland plant communities with rare steppe species. These coenosis have changed under the influence of anthropogenic activity, especially during the last 100 years and included both typical steppe species and nemoral mesophytic species. To distinguish these ecological groups of plants the random forest method with three datasets of environmental variables was applied. Specifically, a model of classification with the most important bioindices to predict a mesophytic ecological group of plants with a sensitivity greater than 80% was constructed. The data demonstrated the presence of steppe species that arrived at different times in the Primorye Territory. Most of these species are associated with the Mongolian-Daurian relict steppe complex and habit in the Khanka Lowland. Other species occur only in mountains in Primorye Territory and do not persist in the Khanka Lowland. These findings emphasize the presence of relict steppe communities with a complex of true steppe species in the Khanka Lowland. Steppe communities exhibit features of anthropogenic influence definitely through the long land use period but are not anthropogenic in origin. The most steppe species are located at the eastern border of distribution in the Khanka Lowlands and are valuable in terms of conservation and sources of information about steppe species origin and the emergence of the steppe biome as a whole.
Collapse
Affiliation(s)
- Elena A Marchuk
- Laboratory of Flora, Botanical Garden-Institute of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690024, Russia.
| | - Anastasiya K Kvitchenko
- Laboratory of Flora, Botanical Garden-Institute of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690024, Russia
- Far Eastern Federal University, Vladivostok, 690922, Russia
| | - Lyubov A Kameneva
- Laboratory of Flora, Botanical Garden-Institute of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690024, Russia
| | - Aleksandra A Yuferova
- Laboratory of Flora, Botanical Garden-Institute of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690024, Russia
| | - Dmitry E Kislov
- Laboratory of Geobotany, Botanical Garden-Institute of the Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690024, Russia
| |
Collapse
|
2
|
Saito R, Nemoto Y, Kondo NI, Kanda K, Takeda T, Beasley JC, Tamaoki M. Study on the relationship between the dispersal of wild boar (Sus scrofa) and the associated variability of Cesium-137 concentrations in its muscle Post-Fukushima Daiichi Nuclear Power Plant accident. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170328. [PMID: 38301788 DOI: 10.1016/j.scitotenv.2024.170328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/03/2024]
Abstract
After the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident in 2011, the wild boar (Sus scrofa) population within the Fukushima Evacuation Zone (FEZ) increased substantially in size and distribution. This growing population and their potential dispersal from the FEZ, where they are exposed to high levels of radionuclides, into the surrounding landscape underscores the need to better understand boar movement patterns in order to establish policies for managing shipping restrictions for boar meat and develop management strategies. In this study, we quantified the genetic population structure of boar in and around Fukushima prefecture using sequence data of the mitochondrial DNA control region and MIG-seq analysis using 348 boar samples to clarify boar dispersal patterns. Among boar samples, seven Asian haplotypes and one European haplotype were detected. The European haplotype originated from hybridization between domestic pigs and native boar in the evacuation zone after the accident and was detected in 15 samples across a broad geographic area. Our MIG-seq analysis revealed genetic structure of boar was significantly different between boar inhabiting the eastern (including FEZ. i.e., East clade) and western (i.e., West clade) regions in Fukushima prefecture. In addition, we investigated the relationships between boar dispersal and Cesium (Cs)-137 activity concentrations in boar muscle using MIG-seq genetic data in Nihonmatsu city, located in the central-northern region of Fukushima. High Cs-137 activity concentrations, exceeding 1000 Bq/kg, in boar muscle had a significantly high probability of belonging to the East clade within localized regions. Thus, our results provide evidence of the spatial scale of dispersal of individuals or offspring of boar from the FEZ. Results of this research also indicate that dispersal of individuals between areas with different Cs-137 contamination levels is one of the biggest factors contributing to variation in Cs-137 activity concentration in boar muscle within localized regions.
Collapse
Affiliation(s)
- Rie Saito
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29802, USA; Fukushima Prefectural Centre for Environmental Creation, 10-2 Fukasaku, Miharu, Fukushima 963-7700, Japan; Fukushima Regional Collaborative Research Center, National Institute for Environmental Studies, 10-2 Fukasaku, Miharu, Fukushima 963-7700, Japan.
| | - Yui Nemoto
- Okutama Practice Forest, Tokyo University of Agriculture, 2137 Hikawa, Okutama, Tokyo 198-0212, Japan
| | - Natsuko Ito Kondo
- Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kosuke Kanda
- Fukushima Prefectural Centre for Environmental Creation, 10-2 Fukasaku, Miharu, Fukushima 963-7700, Japan
| | - Toshimasa Takeda
- Fukushima Regional Collaborative Research Center, National Institute for Environmental Studies, 10-2 Fukasaku, Miharu, Fukushima 963-7700, Japan
| | - James C Beasley
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, SC 29802, USA; Warnell School of Forestry and Natural Resources, University of Georgia, Drawer E, Aiken, SC 29802, USA
| | - Masanori Tamaoki
- Fukushima Regional Collaborative Research Center, National Institute for Environmental Studies, 10-2 Fukasaku, Miharu, Fukushima 963-7700, Japan; Biodiversity Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
3
|
Ikeda H. Virtual issue: phylogeographic studies in the Japanese Archipelago: from geographic patterns of genetic variation to biodiversity in plants. JOURNAL OF PLANT RESEARCH 2023; 136:581-585. [PMID: 37462882 DOI: 10.1007/s10265-023-01478-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Phylogeographic studies have investigated genetic variation and structure within species or closely related lineages and are fundamental for understanding factors and processes of genetic divergence as well as speciation. This virtual issue collects 35 papers on phylogeographic studies published in the Journal of Plant Research and focuses on three major topics in biodiversity: (1) biogeography, (2) systematics, and (3) evolution.
Collapse
Affiliation(s)
- Hajime Ikeda
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Tokyo, Meguro-ku, 153-8902, Japan.
| |
Collapse
|