1
|
Bartold M, Ivanovski S. Biological processes and factors involved in soft and hard tissue healing. Periodontol 2000 2025; 97:16-42. [PMID: 38243683 PMCID: PMC11808446 DOI: 10.1111/prd.12546] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 01/21/2024]
Abstract
Wound healing is a complex and iterative process involving myriad cellular and biologic processes that are highly regulated to allow satisfactory repair and regeneration of damaged tissues. This review is intended to be an introductory chapter in a volume focusing on the use of platelet concentrates for tissue regeneration. In order to fully appreciate the clinical utility of these preparations, a sound understanding of the processes and factors involved in soft and hard tissue healing. This encompasses an appreciation of the cellular and biological mediators of both soft and hard tissues in general as well as specific consideration of the periodontal tissues. In light of good advances in this basic knowledge, there have been improvements in clinical strategies and therapeutic management of wound repair and regeneration. The use of platelet concentrates for tissue regeneration offers one such strategy and is based on the principles of cellular and biologic principles of wound repair discussed in this review.
Collapse
Affiliation(s)
- Mark Bartold
- University of QueenslandBrisbaneQueenslandAustralia
| | | |
Collapse
|
2
|
López-García S, Sánchez-Bautista S, García-Bernal D, Lozano A, Forner L, Sanz JL, Murcia L, Rodríguez-Lozano FJ, Oñate-Sánchez RE. Premixed calcium silicate-based ceramic sealers promote osteogenic/cementogenic differentiation of human periodontal ligament stem cells: A microscopy study. Microsc Res Tech 2024; 87:1584-1597. [PMID: 38433562 DOI: 10.1002/jemt.24545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/12/2023] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
To evaluate the effects of premixed calcium silicate based ceramic sealers on the viability and osteogenic/cementogenic differentiation of human periodontal ligament stem cells (hPDLSCs). The materials evaluated were TotalFill BC Sealer (TFbc), AH Plus Bioceramic Sealer (AHPbc), and Neosealer Flo (Neo). Standardized discs and 1:1, 1:2, and 1:4 eluates of the tested materials were prepared. The following in vitro experiments were carried out: ion release, cell metabolic activity 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell migration, immunofluorescence experiment, cell attachment, gene expression, and mineralization assay. Statistical analyses were performed using one-way ANOVA followed by Tukey's post hoc test (p < .05). Increased Ca2+ release was detected in TFbc compared to AHPbc and Neo (*p < .05). Biological assays showed a discrete cell metabolic activity and cell migration in Neo-treated cell, whereas scanning electronic microscopy assay exhibited that TFbc group had a better cell adhesion process of substrate attachment, spreading, and cytoskeleton development on the niche-like structures of the cement than AHPbc and Neo. The sealers tested were able to induce overexpression of the CEMP-1, ALP, and COL1A1 genes in the first days of exposure, particularly in the case of TFbc (***p < .001). All materials tested significantly increased the mineralization of hPDLSCs when compared to the negative control, although more pronounced calcium deposition was observed in the TFbc-treated cells (***p < .001). Our results suggested that TFbc promotes cell differentiation, both by increasing the expression of key osteo/odontogenic genes and by promoting mineralization of the extracellular matrix, whereas this phenomenon was less evident in Neo and AHPbc. RESEARCH HIGHLIGHTS: TFbc group had a better cell adhesion process of substrate attachment, spreading, and cytoskeleton development on the niche-like structures of the cement than AHPbc and Neo. The sealers tested were able to induce overexpression of the CEMP-1, ALP, and COL1A1 genes in the first days of exposure, particularly in the case of TFbc. All materials tested significantly increased the mineralization of hPDLSCs when compared to the negative control, although more pronounced calcium deposition was observed in the TFbc-treated cells.
Collapse
Affiliation(s)
- Sergio López-García
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | | | - David García-Bernal
- Department of Biochemistry, Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, IMIB Pascual Parrilla, Murcia, Spain
| | - Adrián Lozano
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | - Leopoldo Forner
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | - José L Sanz
- Departament d'Estomatologia, Facultat de Medicina I Odontologia, Universitat de València, Valencia, Spain
| | - Laura Murcia
- Department of Health Sciences, Catholic University San Antonio of Murcia, Murcia, Spain
| | - Francisco J Rodríguez-Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, IMIB Pascual Parrilla, Murcia, Spain
| | - Ricardo E Oñate-Sánchez
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine, University of Murcia, IMIB Pascual Parrilla, Murcia, Spain
| |
Collapse
|
3
|
Hakki SS, Bozkurt SB, Sculean A, Božić D. Hyaluronic acid enhances cell migration, viability, and mineralized tissue-specific genes in cementoblasts. J Periodontal Res 2024; 59:63-73. [PMID: 38069670 DOI: 10.1111/jre.13201] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 02/12/2024]
Abstract
BACKGROUND/OBJECTIVES It has been repeatedly demonstrated that cementum formation is a crucial step in periodontal regeneration. Hyaluronic acid (HA) is an important component of the extracellular matrix which regulates cells functions and cell-cell communication. Hyaluronic acid/derivatives have been used in regenerative periodontal therapy, but the cellular effects of HA are still unknown. To investigate the effects of HA on cementoblast functions, cell viability, migration, mineralization, differentiation, and mineralized tissue-associated genes and cementoblast-specific markers of the cementoblasts were tested. MATERIALS AND METHODS Cementoblasts (OCCM-30) were treated with various dilutions (0, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128) of HA and examined for cell viability, migration, mineralization, and gene expressions. The mRNA expressions of osteocalcin (OCN), runt-related transcription factor 2 (Runx2), bone sialoprotein (BSP), collagen type I (COL-I), alkaline phosphatase (ALP), cementum protein-1 (CEMP-1), cementum attachment protein (CAP), and small mothers against decapentaplegic (Smad) -1, 2, 3, 6, 7, β-catenin (Ctnnb1) were performed with real-time polymerase chain reaction (RT-PCR). Total RNA was isolated on days 3 and 8, and cell viability was determined using MTT assay on days 1 and 3. The cell mineralization was evaluated by von Kossa staining on day 8. Cell migration was assessed 2, 4, 6, and 24 hours following exposure to HA dilutions using an in vitro wound healing assay (0, 1:2, 1:4, 1:8). RESULTS At dilution of 1:2 to 1:128, HA importantly increased cell viability (p < .01). HA at a dilution of 1/2 increased wound healing rates after 4 h compared to the other dilutions and the untreated control group. Increased numbers of mineralized nodules were determined at dilutions of 1:2, 1:4, and 1:8 compared with control group. mRNA expressions of mineralized tissue marker including COL-I, BSP, RunX2, ALP, and OCN significantly improved by HA treatments compared with control group both on 3 days and on 8 days (p < .01). Smad 2, Smad 3, Smad 7, and β-catenin (Ctnnb1) mRNAs were up-regulated, while Smad1 and Smad 6 were not affected by HA administration. Additionally, HA at dilutions of 1:2, 1:4, and 1:8 remarkably enhanced CEMP-1 and CAP expressions in a dilution- and time-dependent manner (p < .01). CONCLUSIONS The present results have demonstrated that HA affected the expression of both mineralized tissue markers and cementoblast-specific genes. Positive effects of HA on the cementoblast functions demonstrated that HA application may play a key role in cementum regeneration.
Collapse
Affiliation(s)
- Sema S Hakki
- Department of Periodontology, Faculty of Dentistry, Selcuk University, Konya, Turkey
| | - Serife Buket Bozkurt
- Department of Biochemistry, Faculty of Medicine, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Darko Božić
- Department of Periodontology, School of Dental Medicine, University Clinical hospital, Zagreb, Croatia
| |
Collapse
|
4
|
Choi MJ, You TM, Jang YJ. Galectin-3 Plays an Important Role in BMP7-Induced Cementoblastic Differentiation of Human Periodontal Ligament Cells by Interacting with Extracellular Components. Stem Cells Int 2023; 2023:5924286. [PMID: 37396953 PMCID: PMC10313471 DOI: 10.1155/2023/5924286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/01/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Human periodontal ligament stem cells (hPDLSCs) contain multipotent postnatal stem cells that differentiate into PDL progenitors, osteoblasts, and cementoblasts. Previously, we obtained cementoblast-like cells from hPDLSCs using bone morphogenetic protein 7 (BMP7) treatment. Differentiation into appropriate progenitor cells requires interactions and changes between stem or progenitor cells and their so-called environment niches, and cell surface markers play an important role. However, cementoblast-specific cell surface markers have not yet been fully studied. Through decoy immunization with intact cementoblasts, we developed a series of monoclonal antibodies against cementoblast-specific membrane/extracellular matrix (ECM) molecules. One of these antibodies, the anti-CM3 antibody, recognized an approximate 30 kDa protein in a mouse cementoblast cell line, and the CM3 antigenic molecule accumulated in the cementum region of human tooth roots. Using mass spectrometric analysis, we found that the antigenic molecules recognized by the anti-CM3 antibody were galectin-3. As cementoblastic differentiation progressed, the expression of galectin-3 increased, and it localized at the cell surface. Inhibition of galectin-3 via siRNA and a specific inhibitor showed the complete blockage of cementoblastic differentiation and mineralization. In contrast, ectopic expression of galectin-3 induced cementoblastic differentiation. Galectin-3 interacted with laminin α2 and BMP7, and these interactions were diminished by galectin-3 inhibitors. These results suggested that galectin-3 participates in binding to the ECM component and trapping BMP7 to induce, in a sustained fashion, the upregulation of cementoblastic differentiation. Finally, galectin-3 could be a potential cementoblast-specific cell surface marker, with functional importance in cell-to-ECM interactions.
Collapse
Affiliation(s)
- Min-Jeong Choi
- Department of Nanobiomedical Science and BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Tae Min You
- Department of Advanced General Dentistry, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science and BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Department of Oral Biochemistry, School of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
5
|
Xie Y, Zheng Y, Chen L, Lan Z. Promotion effect of apical tooth germ cell-conditioned medium on osteoblastic differentiation of periodontal ligament stem cells through regulating miR-146a-5p. BMC Oral Health 2022; 22:541. [PMID: 36434576 PMCID: PMC9700872 DOI: 10.1186/s12903-022-02485-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play an important role in gene regulation that controls stem cells differentiation. Periodontal ligament stem cells (PDLSCs) could differentiate into osteo-/cementoblast-like cells that secretes cementum-like matrix both in vitro and in vivo. Whether miRNAs play key roles in osteoblastic differentiation of PDLSCs triggered by a special microenviroment remains elusive. In this study, we aimed to investigate potential miRNA expression changes in osteoblastic differentiation of PDLSCs by the induction of apical tooth germ cell-conditioned medium (APTG-CM). METHODS AND RESULTS First, we analyzed the ability of APTG-CM to osteogenically differentiate PDLSCs. The results exhibited an enhanced mineralization ability, higher ALP activity and increased expression of osteogenic genes in APTG-CM-induced PDLSCs. Second, we used miRNA sequencing to analyze the miRNA expression profile of PDLSCs derived from three donors under 21-day induction or non-induction of APTG-CM. MiR-146a-5p was found to be up-regulated miRNA in induced PDLSCs and validated by RT-qPCR. Third, we used lentivirus-up/down system to verify the role of miR-146a-5p in the regulation of osteoblastic differentiation of PDLSCs. CONCLUSIONS In conclusion, our results demonstrated that miR-146a-5p was involved in the promotion effect of APTG-CM on osteoblastic differentiation of PDLSCs, and suggested that miR-146a-5p might be a novel way in deciding the direction of PDLSCs differentiation.
Collapse
Affiliation(s)
- Yueqiang Xie
- grid.284723.80000 0000 8877 7471Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, 510140 Guangdong China
| | - Yaxin Zheng
- Department of Orthodontics Division I, Stomatological Hospital of Xiamen Medical College; Xiamen Key Laboratory of Stomatological Disease Diagnosis and Treatment, Xiamen, Fujian China
| | - Liangjiao Chen
- grid.410737.60000 0000 8653 1072Department of Orthodontics, Stomatological Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zedong Lan
- grid.284723.80000 0000 8877 7471Department of Orthodontics, Shenzhen Stomatological Hospital of Southern Medical University, Shenzhen, 518000 Guangdong China
| |
Collapse
|
6
|
Potential donor-dependent regulative effects of endogenous sclerostin expression and mineralization potential in primary human PDL cells in vitro. Ann Anat 2022; 244:151980. [PMID: 35787444 DOI: 10.1016/j.aanat.2022.151980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/21/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES The glycoprotein sclerostin is mostly expressed in osteocytes and plays a central role in human bone metabolism. However, sclerostin and the corresponding SOST gene have been found in periodontal ligament cells under mineralizing conditions as well. The present study aimed to investigate, whether there was a correlation between endogenous SOST expression, the corresponding gene, and mineralization potential in human periodontal ligament cells and to identify different sclerostin expression and secretion patterns in cells derived from individual donors. MATERIAL AND METHODS Primary human periodontal ligament cells of three different donors were cultivated under control or mineralizing conditions for 6, 13, 15 and 18 days, respectively. Calcium deposits were stained with alizarin red and quantified afterwards. Quantitative expression analysis of the SOST gene encoding sclerostin was performed using quantitative reverse transcription polymerase chain reaction (RT-PCR). Additionally, intracellular sclerostin expression was analyzed using Western blotting and extracellular sclerostin secretion was quantified using Enzyme-linked Immunosorbent Assay (ELISA). RESULTS Alizarin red staining identified calcium deposits in periodontal ligament cells under mineralizing conditions beginning from day 13, relative SOST expression occurred on day 6. Whereas staining continued to increase in donor 1 on day 15, it remained stable in donors 2 and 3. Conversely, baseline SOST expression was significantly lower in donor 1 compared to donors 2 and 3. Western blotting and ELISA revealed increased intra- and extracellular sclerostin expression at day 13 under mineralizing conditions. Donor 3 exhibited the highest overall sclerostin levels. CONCLUSIONS Our data emphasize donor-specific characteristics in differentiation potential and sclerostin expression patterns in primary human periodontal ligament cells. Sclerostin might play a central role in modulating osteogenic differentiation in periodontal ligament cells as part of a negative feedback mechanism in avoiding excessive mineralization.
Collapse
|
7
|
Transcriptome Profile of Membrane and Extracellular Matrix Components in Ligament-Fibroblastic Progenitors and Cementoblasts Differentiated from Human Periodontal Ligament Cells. Genes (Basel) 2022; 13:genes13040659. [PMID: 35456465 PMCID: PMC9031187 DOI: 10.3390/genes13040659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
Ligament-fibroblastic cells and cementoblasts, two types of progenitor cells that differentiate from periodontal ligament stem cells (hPDLSCs), are responsible for the formation of the adhesive tissues in the tooth root. Since one of the factors that determines the fate of stem cell differentiation is the change in the microenvironment of the stem/progenitor cells, this study attempted to compare and analyze the molecular differences in the membrane and ECM of the two progenitor cells. Single cells derived from hPDLSCs were treated with TGF-β1 and BMP7 to obtain ligament-fibroblastic and cementoblastic cells, respectively. The transcriptome profiles of three independent replicates of each progenitor were evaluated using next-generation sequencing. The representative differentially expressed genes (DEGs) were verified by qRT-PCR, Western blot analysis, and immunohistochemistry. Among a total of 2245 DEGs identified, 142 and 114 DEGs related to ECM and cell membrane molecules were upregulated in ligament-fibroblastic and cementoblast-like cells, respectively. The major types of integrin and cadherin were found to be different between the two progenitor cells. In addition, the representative core proteins for each glycosaminoglycan-specific proteoglycan class were different between the two progenitors. This study provides a detailed understanding of cell–cell and cell–ECM interactions through the specific components of the membrane and ECM for ligament-fibroblastic and cementoblastic differentiation of hPDLSCs.
Collapse
|
8
|
Potential of Bone-Marrow-Derived Mesenchymal Stem Cells for Maxillofacial and Periodontal Regeneration: A Narrative Review. Int J Dent 2021; 2021:4759492. [PMID: 34795761 PMCID: PMC8594991 DOI: 10.1155/2021/4759492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/19/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Bone-marrow-derived mesenchymal stem cells (BM-MSCs) are one of the most widely studied postnatal stem cell populations and are considered to utilize more frequently in cell-based therapy and cancer. These types of stem cells can undergo multilineage differentiation including blood cells, cardiac cells, and osteogenic cells differentiation, thus providing an alternative source of mesenchymal stem cells (MSCs) for tissue engineering and personalized medicine. Despite the ability to reprogram human adult somatic cells to induced pluripotent stem cells (iPSCs) in culture which provided a great opportunity and opened the new door for establishing the in vitro disease modeling and generating an unlimited source for cell base therapy, using MSCs for regeneration purposes still have a great chance to cure diseases. In this review, we discuss the important issues in MSCs biology including the origin and functions of MSCs and their application for craniofacial and periodontal tissue regeneration, discuss the potential and clinical applications of this type of stem cells in differentiation to maxillofacial bone and cartilage in vitro, and address important future hopes and challenges in this field.
Collapse
|
9
|
Lee E, Kim YS, Lee YM, Kim WK, Lee YK, Kim SH. Identification of stemness and differentially expressed genes in human cementum-derived cells. J Periodontal Implant Sci 2021; 51:329-341. [PMID: 34713994 PMCID: PMC8558007 DOI: 10.5051/jpis.2102600130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 01/09/2023] Open
Abstract
Purpose Periodontal treatment aims at complete regeneration of the periodontium, and developing strategies for periodontal regeneration requires a deep understanding of the tissues composing the periodontium. In the present study, the stemness characteristics and gene expression profiles of cementum-derived cells (CDCs) were investigated and compared with previously established human stem cells. Candidate marker proteins for CDCs were also explored. Methods Periodontal ligament stem cells (PDLSCs), pulp stem cells (PULPSCs), and CDCs were isolated and cultured from extracted human mandibular third molars. Human bone marrow stem cells (BMSCs) were used as a positive control. To identify the stemness of CDCs, cell differentiation (osteogenic, adipogenic, and chondrogenic) and surface antigens were evaluated through flow cytometry. The expression of cementum protein 1 (CEMP1) and cementum attachment protein (CAP) was investigated to explore marker proteins for CDCs through reverse-transcription polymerase chain reaction. To compare the gene expression profiles of the 4 cell types, mRNA and miRNA microarray analysis of 10 samples of BMSCs (n=1), PDLSCs (n=3), PULPSCs (n=3), and CDCs (n=3) were performed. Results The expression of mesenchymal stem cell markers with a concomitant absence of hematopoietic markers was observed in PDLSCs, PULPSCs, CDCs and BMSCs. All 4 cell populations also showed differentiation into osteogenic, adipogenic, and chondrogenic lineages. CEMP1 was strongly expressed in CDCs, while it was weakly detected in the other 3 cell populations. Meanwhile, CAP was not found in any of the 4 cell populations. The mRNA and miRNA microarray analysis showed that 14 mRNA genes and 4 miRNA genes were differentially expressed in CDCs vs. PDLSCs and PULPSCs. Conclusions Within the limitations of the study, CDCs seem to have stemness and preferentially express CEMP1. Moreover, there were several up- or down-regulated genes in CDCs vs. PDLSCs, PULPSCs, and BMSCs and these genes could be candidate marker proteins of CDCs.
Collapse
Affiliation(s)
- EunHye Lee
- Dental Research Institute, Seoul National University, Seoul, Korea
| | - Young-Sung Kim
- Department of Periodontics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yong-Moo Lee
- Department of Periodontology and Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | - Won-Kyung Kim
- Department of Periodontics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Kyoo Lee
- Department of Dentistry, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, Korea
| | - Su-Hwan Kim
- Department of Periodontics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Kim MG, Park CH. Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules 2020; 25:molecules25204802. [PMID: 33086674 PMCID: PMC7587995 DOI: 10.3390/molecules25204802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
The mineralized tissues (alveolar bone and cementum) are the major components of periodontal tissues and play a critical role to anchor periodontal ligament (PDL) to tooth-root surfaces. The integrated multiple tissues could generate biological or physiological responses to transmitted biomechanical forces by mastication or occlusion. However, due to periodontitis or traumatic injuries, affect destruction or progressive damage of periodontal hard tissues including PDL could be affected and consequently lead to tooth loss. Conventional tissue engineering approaches have been developed to regenerate or repair periodontium but, engineered periodontal tissue formation is still challenging because there are still limitations to control spatial compartmentalization for individual tissues and provide optimal 3D constructs for tooth-supporting tissue regeneration and maturation. Here, we present the recently developed strategies to induce osteogenesis and cementogenesis by the fabrication of 3D architectures or the chemical modifications of biopolymeric materials. These techniques in tooth-supporting hard tissue engineering are highly promising to promote the periodontal regeneration and advance the interfacial tissue formation for tissue integrations of PDL fibrous connective tissue bundles (alveolar bone-to-PDL or PDL-to-cementum) for functioning restorations of the periodontal complex.
Collapse
Affiliation(s)
- Min Guk Kim
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Chan Ho Park
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Institute for Biomaterials Research and Development, Kyungpook National University, Daegu 41940, Korea
- Correspondence: ; Tel.: +82-53-660-6890
| |
Collapse
|
11
|
Lim JC, Bae SH, Lee G, Ryu CJ, Jang YJ. Activation of β-catenin by TGF-β1 promotes ligament-fibroblastic differentiation and inhibits cementoblastic differentiation of human periodontal ligament cells. Stem Cells 2020; 38:1612-1623. [PMID: 32930424 DOI: 10.1002/stem.3275] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 08/03/2020] [Indexed: 11/08/2022]
Abstract
TGF-β and Wnt/β-catenin signaling pathways are known to be essential for the development of periodontal tissue. In this study, we examined the crosstalk between TGF-β and Wnt/β-catenin signaling in ligament-fibroblastic differentiation of human periodontal ligament cells (hPDLCs). TGF-β1 treatment significantly increased the expression of ligament-fibroblastic markers, but such expression was preventing by treatment with SB431542, a TGF-β type I receptor inhibitor. As well as phosphorylation of Smad3, TGF-β1 increased β-catenin activation. The depletion of β-catenin reduced the expression of ligament-fibroblastic markers, suggesting that β-catenin is essential for ligament differentiation. The effect of TGF-β1 on β-catenin activation did not seem to be much correlated with Wnt stimuli, but endogenous DKK1 was suppressed by TGF-β1, indicating that β-catenin activation could be increased much more by TGF-β1. In addition to DKK1 suppression, Smad3 phosphorylation by TGF-β1 facilitated the nuclear translocation of cytoplasmic β-catenin. In contrast to ligament-fibroblastic differentiation, inhibition of TGF-β1 signaling was needed for cementoblastic differentiation of hPDLCs. BMP7 treatment accompanied by inhibition of TGF-β1 signaling had a synergistic effect on cementoblastic differentiation. In conclusion, β-catenin activation by TGF-β1 caused ligament-fibroblastic differentiation of hPDLCs, and the presence of TGF-β1 stimuli basically determined whether hPDLCs are differentiated into ligament progenitor or cementoblasts.
Collapse
Affiliation(s)
- Jong-Chan Lim
- Department of Nanobiomedical Science & BK21 Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
| | - Sang-Hoon Bae
- Department of Nanobiomedical Science & BK21 Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
| | - Gyutae Lee
- Yonsei Wooil Dental Hospital, Cheonan, South Korea
| | - Chun Jeih Ryu
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Young-Joo Jang
- Department of Nanobiomedical Science & BK21 Research Center for Regenerative Medicine, Dankook University, Cheonan, South Korea
- College of Dentistry, Dankook University, Cheonan, South Korea
| |
Collapse
|
12
|
Piñeiro-Ramil M, Sanjurjo-Rodríguez C, Castro-Viñuelas R, Rodríguez-Fernández S, Fuentes-Boquete I, Blanco F, Díaz-Prado S. Usefulness of Mesenchymal Cell Lines for Bone and Cartilage Regeneration Research. Int J Mol Sci 2019; 20:E6286. [PMID: 31847077 PMCID: PMC6940884 DOI: 10.3390/ijms20246286] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022] Open
Abstract
The unavailability of sufficient numbers of human primary cells is a major roadblock for in vitro repair of bone and/or cartilage, and for performing disease modelling experiments. Immortalized mesenchymal stromal cells (iMSCs) may be employed as a research tool for avoiding these problems. The purpose of this review was to revise the available literature on the characteristics of the iMSC lines, paying special attention to the maintenance of the phenotype of the primary cells from which they were derived, and whether they are effectively useful for in vitro disease modeling and cell therapy purposes. This review was performed by searching on Web of Science, Scopus, and PubMed databases from 1 January 2015 to 30 September 2019. The keywords used were ALL = (mesenchymal AND ("cell line" OR immortal*) AND (cartilage OR chondrogenesis OR bone OR osteogenesis) AND human). Only original research studies in which a human iMSC line was employed for osteogenesis or chondrogenesis experiments were included. After describing the success of the immortalization protocol, we focused on the iMSCs maintenance of the parental phenotype and multipotency. According to the literature revised, it seems that the maintenance of these characteristics is not guaranteed by immortalization, and that careful selection and validation of clones with particular characteristics is necessary for taking advantage of the full potential of iMSC to be employed in bone and cartilage-related research.
Collapse
Affiliation(s)
- M. Piñeiro-Ramil
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
| | - C. Sanjurjo-Rodríguez
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| | - R. Castro-Viñuelas
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
| | - S. Rodríguez-Fernández
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
| | - I.M. Fuentes-Boquete
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| | - F.J. Blanco
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
- Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), 15006 A Coruña, Spain
| | - S.M. Díaz-Prado
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Departamento de Fisioterapia, Medicina e Ciencias Biomédicas, Facultade de Ciencias da Saúde, Universidade da Coruña (UDC), Campus de A Coruña, 15006 A Coruña, Spain; (C.S.-R.); (R.C.-V.); (S.R.-F.)
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña (CHUAC), Servizo Galego de Saúde (SERGAS), Universidade da Coruña (UDC), 15006 A Coruña, Spain
- Grupo de Investigación en Terapia Celular e Medicina Rexenerativa, Centro de Investigacións Científicas Avanzadas (CICA), Agrupación Estratéxica entre o CICA e o Instituto de Investigación Biomédica de A Coruña (INIBIC), Universidade da Coruña (UDC), 15071 A Coruña, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain;
| |
Collapse
|
13
|
GuttaFlow Bioseal promotes spontaneous differentiation of human periodontal ligament stem cells into cementoblast-like cells. Dent Mater 2018; 35:114-124. [PMID: 30466731 DOI: 10.1016/j.dental.2018.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/27/2018] [Accepted: 11/02/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To evaluate in vitro the cementogenic potential and the biological effects of GuttaFlow Bioseal, GuttaFlow 2, MTA Fillapex and AH Plus on human periodontal ligament stem cells (hPDLSCs). METHODS Cell viability, cell migration and cell morphology assays were performed using eluates of each material. To evaluate cell attachment, hPDLSCs were directly seeded onto the material surfaces and analyzed by scanning electron microscopy (SEM). The effects of endodontic sealers on cementum protein 1 (CEMP1), cementum-derived attachment protein (CAP), bone sialoprotein (BSP), ameloblastin (AMBN), amelogenin (AMELX) and alkaline phosphatase (ALP) gene expression on hPDLSCs were investigated by qPCR and immunofluorescence (IF). Statistical analysis was performed with analysis of variance and Bonferroni or Tukey post-test (α<0.05). RESULTS More than 90% of viable cells were obtained using extracts of GuttaFlow Bioseal and GuttaFlow2 after 72h of culture. By contrast, AH Plus and MTA Fillapex induced significantly lower levels of cell viability. GuttaFlow2 and GuttaFlow Bioseal promoted wound closure in a concentration-dependent manner, comparable to that observed with control extracts (*p<0.05). However, with AH Plus and MTA Fillapex, cell migration was significantly lower than in the control (***p<0.0001). SEM analysis pointed to an organized stress fiber assembly and high degree of cell adhesion on GuttaFlow Bioseal disks but low rates on GuttaFlow2, MTA Fillapex and AH Plus. When hPDLSCs were cultured with GuttaFlow Bioseal-conditioned media, qPCR assays and IF showed a higher level of AMELX, AMBN, CEMP1 and CAP expression than the control (*p<0.05)), whereas no such expression was observed in the other sealers. SIGNIFICANCE Our results showed that GuttaFlow sealers were more cytocompatible than AH Plus and MTA Fillapex, while GuttaFlow Bioseal favored cementoblast differentiation of hPDLSCs in the absence of any growth factors.
Collapse
|
14
|
Shinagawa-Ohama R, Mochizuki M, Tamaki Y, Suda N, Nakahara T. Heterogeneous Human Periodontal Ligament-Committed Progenitor and Stem Cell Populations Exhibit a Unique Cementogenic Property Under In Vitro and In Vivo Conditions. Stem Cells Dev 2017; 26:632-645. [PMID: 28136695 DOI: 10.1089/scd.2016.0330] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An undesirable complication that arises during dental treatments is external apical-root resorption, which causes root-cementum and root-dentin loss. To induce de novo cementogenesis, stem cell therapy is required. Cementum-forming cells (cementoblasts) are known to be differentiated from periodontal-lineage mesenchymal stem cells (MSCs), which are derived from the dental follicle (DF) in developing tissues and the periodontal ligament (PDL) in adult tissues, but the periodontal-lineage MSC type that is optimal for inducing de novo cementogenesis remains unidentified, as does the method to isolate these cells from harvested tissues. Thus, we investigated the cementogenic potential of DF- and PDL-derived MSCs that were isolated by using two widely used cell-isolation methods: enzymatic digestion and outgrowth (OG) methods. DF- and PDL-derived cells isolated by using both methods proliferated actively, and all four isolated cell types showed MSC gene/protein expression phenotype and ability to differentiate into adipogenic and chondrogenic lineages. Furthermore, cementogenic-potential analysis revealed that all cell types produced alizarin red S-positive mineralized materials in in vitro cultures. However, PDL-OG cells presented unique cementogenic features, such as nodular formation of mineralized deposits displaying a cellular intrinsic fiber cementum-like structure, as well as a higher expression of cementoblast-specific genes than in the other cell types. Moreover, in in vivo transplantation experiments, PDL-OG cells formed cellular cementum-like hard tissue containing embedded osteocalcin-positive cells, whereas the other cells formed acellular cementum-like materials. Given that the root-cementum defect is likely regenerated through cellular cementum deposition, PDL-OG cell-based therapies might potentially facilitate the de novo cellular cementogenesis required for regenerating the root defect.
Collapse
Affiliation(s)
- Rei Shinagawa-Ohama
- 1 Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry , Saitama, Japan .,2 Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University , Tokyo, Japan
| | - Mai Mochizuki
- 2 Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University , Tokyo, Japan
| | - Yuichi Tamaki
- 2 Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University , Tokyo, Japan
| | - Naoto Suda
- 1 Division of Orthodontics, Department of Human Development and Fostering, Meikai University School of Dentistry , Saitama, Japan
| | - Taka Nakahara
- 2 Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University , Tokyo, Japan
| |
Collapse
|
15
|
Wang L, Hu H, Cheng Y, Chen J, Bao C, Zou S, Wu G. Screening the Expression Changes in MicroRNAs and Their Target Genes in Mature Cementoblasts Stimulated with Cyclic Tensile Stress. Int J Mol Sci 2016; 17:ijms17122024. [PMID: 27941605 PMCID: PMC5187824 DOI: 10.3390/ijms17122024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 02/05/2023] Open
Abstract
Cementum is a thin layer of cementoblast-produced mineralized tissue covering the root surfaces of teeth. Mechanical forces, which are produced during masticatory activity, play a paramount role in stimulating cementoblastogenesis, which thereby facilitates the maintenance, remodeling and integrity of cementum. However, hitherto, the extent to which a post-transcriptional modulation mechanism is involved in this process has rarely been reported. In this study, a mature murine cementoblast cell line OCCM-30 cells (immortalized osteocalcin positive cementoblasts) was cultured and subjected to cyclic tensile stress (0.5 Hz, 2000 µstrain). We showed that the cyclic tensile stress could not only rearrange the cell alignment, but also influence the proliferation in an S-shaped manner. Furthermore, cyclic tensile stress could significantly promote cementoblastogenesis-related genes, proteins and mineralized nodules. From the miRNA array analyses, we found that 60 and 103 miRNAs were significantly altered 6 and 18 h after the stimulation using cyclic tensile stress, respectively. Based on a literature review and bioinformatics analyses, we found that miR-146b-5p and its target gene Smad4 play an important role in this procedure. The upregulation of miR-146b-5p and downregulation of Smad4 induced by the tensile stress were further confirmed by qRT-PCR. The direct binding of miR-146b-5p to the three prime untranslated region (3' UTR) of Smad4 was established using a dual-luciferase reporter assay. Taken together, these results suggest an important involvement of miR-146b-5p and its target gene Smad4 in the cementoblastogenesis of mature cementoblasts.
Collapse
Affiliation(s)
- Liao Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Haikun Hu
- China Dental Implantology Center, West China Dental Implantology Hospital, Sichuan University, No. 75 Xiaotianzhu Street, Chengdu 610041, China.
| | - Ye Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Jianwei Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, 3rd Section, South Renmin Road, Chengdu 610041, China.
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), VU University Amsterdam and University of Amsterdam, MOVE Research Institute, Gustav Mahlerlaan 3004, 1081LA Amsterdam, The Netherlands.
| |
Collapse
|
16
|
Silk-Fibroin and Graphene Oxide Composites Promote Human Periodontal Ligament Stem Cell Spontaneous Differentiation into Osteo/Cementoblast-Like Cells. Stem Cells Dev 2016; 25:1742-1754. [DOI: 10.1089/scd.2016.0028] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
17
|
Cho H, Tarafder S, Fogge M, Kao K, Lee CH. Periodontal ligament stem/progenitor cells with protein-releasing scaffolds for cementum formation and integration on dentin surface. Connect Tissue Res 2016; 57:488-495. [PMID: 27215800 DOI: 10.1080/03008207.2016.1191478] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
UNLABELLED Purpose/Aim: Cementogenesis is a critical step in periodontal tissue regeneration given the essential role of cementum in anchoring teeth to the alveolar bone. This study is designed to achieve integrated cementum formation on the root surfaces of human teeth using growth factor-releasing scaffolds with periodontal ligament stem/progenitor cells (PDLSCs). MATERIALS AND METHODS Human PDLSCs were sorted by CD146 expression, and characterized using CFU-F assay and induced multi-lineage differentiation. Polycaprolactone scaffolds were fabricated using 3D printing, embedded with poly(lactic-co-glycolic acids) (PLGA) microspheres encapsulating connective tissue growth factor (CTGF), bone morphogenetic protein-2 (BMP-2), or bone morphogenetic protein-7 (BMP-7). After removing cementum on human tooth roots, PDLSC-seeded scaffolds were placed on the exposed dentin surface. After 6-week culture with cementogenic/osteogenic medium, cementum formation and integration were evaluated by histomorphometric analysis, immunofluorescence, and qRT-PCR. RESULTS Periodontal ligament (PDL) cells sorted by CD146 and single-cell clones show a superior clonogenecity and multipotency as compared with heterogeneous populations. After 6 weeks, all the growth factor-delivered groups showed resurfacing of dentin with a newly formed cementum-like layer as compared with control. BMP-2 and BMP-7 showed de novo formation of tissue layers significantly thicker than all the other groups, whereas CTGF and BMP-7 resulted in significantly improved integration on the dentin surface. The de novo mineralized tissue layer seen in BMP-7-treated samples expressed cementum matrix protein 1 (CEMP1). Consistently, BMP-7 showed a significant increase in CEMP1 mRNA expression. CONCLUSION Our findings represent important progress in stem cell-based cementum regeneration as an essential part of periodontium regeneration.
Collapse
Affiliation(s)
- Hankyu Cho
- a Regenerative Engineering Laboratory , Columbia University Medical Center , New York , NY , USA
| | - Solaiman Tarafder
- a Regenerative Engineering Laboratory , Columbia University Medical Center , New York , NY , USA
| | - Michael Fogge
- a Regenerative Engineering Laboratory , Columbia University Medical Center , New York , NY , USA
| | - Kristy Kao
- a Regenerative Engineering Laboratory , Columbia University Medical Center , New York , NY , USA
| | - Chang H Lee
- a Regenerative Engineering Laboratory , Columbia University Medical Center , New York , NY , USA
| |
Collapse
|
18
|
Collado-González M, García-Bernal D, Oñate-Sánchez RE, Ortolani-Seltenerich PS, Lozano A, Forner L, Llena C, Rodríguez-Lozano FJ. Biocompatibility of three new calcium silicate-based endodontic sealers on human periodontal ligament stem cells. Int Endod J 2016; 50:875-884. [DOI: 10.1111/iej.12703] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/21/2016] [Indexed: 02/04/2023]
Affiliation(s)
- M. Collado-González
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital, IMIB, University of Murcia; Murcia Spain
| | - D. García-Bernal
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital, IMIB, University of Murcia; Murcia Spain
| | - R. E. Oñate-Sánchez
- School of Dentistry; Faculty of Medicine; University of Murcia; Murcia Spain
| | | | - A. Lozano
- Department of Stomatology; Universitat de Valencia; Valencia Spain
| | - L. Forner
- Department of Stomatology; Universitat de Valencia; Valencia Spain
| | - C. Llena
- Department of Stomatology; Universitat de Valencia; Valencia Spain
| | - F. J. Rodríguez-Lozano
- Cellular Therapy and Hematopoietic Transplant Unit; Hematology Department; Virgen de la Arrixaca Clinical University Hospital, IMIB, University of Murcia; Murcia Spain
- School of Dentistry; Faculty of Medicine; University of Murcia; Murcia Spain
| |
Collapse
|
19
|
Gauthier P, Yu Z, Tran QT, Bhatti FUR, Zhu X, Huang GTJ. Cementogenic genes in human periodontal ligament stem cells are downregulated in response to osteogenic stimulation while upregulated by vitamin C treatment. Cell Tissue Res 2016; 368:79-92. [PMID: 27757536 DOI: 10.1007/s00441-016-2513-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 09/19/2016] [Indexed: 01/09/2023]
Abstract
Regeneration of periodontal tissues, particularly cementum, is key to regaining periodontal attachment and health. Human periodontal ligament stem cells (hPDLSCs) have been shown to be a good cell source to regenerate periodontal tissues. However, their subpopulations and the differentiation induction in relation to cementogenic lineages is unclear. Thus, we aim to examine the expression of cementum-associated genes in PDLSC subpopulations and determine the effect of broadly used osteogenic stimulus or vitamin C (VC) on the expression of cementogenic and osteogenic genes in PDLSCs. Our real-time quantitative polymerase chain reaction (qPCR) analysis showed that cementogenic marker cementum attachment protein (CAP) expressed only slightly higher in STRO-1+/CD146+, STRO-1-/CD146+ and STRO-1-/CD146- subpopulations than in the original cell pool, while cementum protein 1 (CEMP1) expression in these subpopulations was not different from the original pool. Notably, under the stimulation with osteogenic differentiation medium, CAP and CEMP1 were downregulated while osteogenic markers bone sialoprotein (BSP) and osteocalcin (OCN) were upregulated. Both CAP and CEMP1 were upregulated by VC treatment. Transplantation of VC-treated PDLSCs into immunocompromised mice resulted in forming significantly more ectopic cementum- and bone-like mineral tissues in vivo. Immunohistochemical analysis of the ectopic growth showed that CAP and CEMP1 were mainly expressed in the mineral tissue and in some cells of the fibrous tissues. We conclude that osteogenic stimulation is not inductive but appears to be inhibitory of cementogenic pathways, whereas VC induces cementogenic lineage commitment by PDLSCs and may be a useful stimulus for cementogenesis in periodontal regeneration.
Collapse
Affiliation(s)
- Philippe Gauthier
- Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, 02118, USA.,Faculté de médecine dentaire, Département d'endodontie, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Zongdong Yu
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Quynh T Tran
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38105, USA
| | - Fazal-Ur-Rehman Bhatti
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Xiaofei Zhu
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,VIP Dental Service and Geriatric Dentistry, School and Hospital of Stomatology, Peking University, Beijing, China
| | - George T-J Huang
- Department of Endodontics, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, 02118, USA. .,Faculté de médecine dentaire, Département d'endodontie, Université Laval, Québec, QC, G1V 0A6, Canada. .,Lab, Cancer Research Building, University of Tennessee Health Science Center, 19 S. Manassas St. Lab Rm 225, Office 222, Memphis, TN, 38163, USA.
| |
Collapse
|
20
|
Surarit R, Krishnamra N, Seriwatanachai D. Prolactin receptor and osteogenic induction of prolactin in human periodontal ligament fibroblasts. Cell Biol Int 2016; 40:419-27. [DOI: 10.1002/cbin.10580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 01/12/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Rudee Surarit
- Department of Oral Biology; Faculty of Dentistry; Mahidol University; Yothi Street Bangkok 10400 Thailand
| | - Nateetip Krishnamra
- Department of Physiology; Faculty of Science; Mahidol University; Rama VI Road Bangkok 10400 Thailand
| | - Dutmanee Seriwatanachai
- Department of Oral Biology; Faculty of Dentistry; Mahidol University; Yothi Street Bangkok 10400 Thailand
| |
Collapse
|
21
|
Mao L, Liu J, Zhao J, Chang J, Xia L, Jiang L, Wang X, Lin K, Fang B. Effect of micro-nano-hybrid structured hydroxyapatite bioceramics on osteogenic and cementogenic differentiation of human periodontal ligament stem cell via Wnt signaling pathway. Int J Nanomedicine 2015; 10:7031-44. [PMID: 26648716 PMCID: PMC4648603 DOI: 10.2147/ijn.s90343] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The surface structure of bioceramic scaffolds is crucial for its bioactivity and osteoinductive ability, and in recent years, human periodontal ligament stem cells have been certified to possess high osteogenic and cementogenic differential ability. In the present study, hydroxyapatite (HA) bioceramics with micro-nano-hybrid surface (mnHA [the hybrid of nanorods and microrods]) were fabricated via hydrothermal reaction of the α-tricalcium phosphate granules as precursors in aqueous solution, and the effects of mnHA on the attachment, proliferation, osteogenic and cementogenic differentiations of human periodontal ligament stem cells as well as the related mechanisms were systematically investigated. The results showed that mnHA bioceramics could promote cell adhesion, proliferation, alkaline phosphatase (ALP) activity, and expression of osteogenic/cementogenic-related markers including runt-related transcription factor 2 (Runx2), ALP, osteocalcin (OCN), cementum attachment protein (CAP), and cementum protein (CEMP) as compared to the HA bioceramics with flat and dense surface. Moreover, mnHA bioceramics stimulated gene expression of low-density lipoprotein receptor-related protein 5 (LRP5) and β-catenin, which are the key genes of canonical Wnt signaling. Moreover, the stimulatory effect on ALP activity and osteogenic and cementogenic gene expression, including that of ALP, OCN, CAP, CEMP, and Runx2 of mnHA bioceramics could be repressed by canonical Wnt signaling inhibitor dickkopf1 (Dkk1). The results suggested that the HA bioceramics with mnHA could act as promising grafts for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lixia Mao
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jiaqiang Liu
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jinglei Zhao
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Tongji University, Shanghai, People’s Republic of China
| | - Lunguo Xia
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xiuhui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Tongji University, Shanghai, People’s Republic of China
| | - Kaili Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Tongji University, Shanghai, People’s Republic of China
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, School of Stomatology, Tongji University, Shanghai, People’s Republic of China
| | - Bing Fang
- Center of Craniofacial Orthodontics, Department of Oral and Craniomaxillofacial Science, Top Priority Clinical Medical Center of Shanghai Municipal Commission of Health and Family Planning, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
22
|
Campos DM, Gritsch K, Salles V, Attik GN, Grosgogeat B. Surface Entrapment of Fibronectin on Electrospun PLGA Scaffolds for Periodontal Tissue Engineering. Biores Open Access 2014; 3:117-26. [PMID: 24940563 PMCID: PMC4048976 DOI: 10.1089/biores.2014.0015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nowadays, the challenge in the tissue engineering field consists in the development of biomaterials designed to regenerate ad integrum damaged tissues. Despite the current use of bioresorbable polyesters such as poly(l-lactide) (PLA), poly(d,l-lactide-co-glycolide) (PLGA), and poly-ɛ-caprolactone in soft tissue regeneration researches, their hydrophobic properties negatively influence the cell adhesion. Here, to overcome it, we have developed a fibronectin (FN)-functionalized electrospun PLGA scaffold for periodontal ligament regeneration. Functionalization of electrospun PLGA scaffolds was performed by alkaline hydrolysis (0.1 or 0.01 M NaOH). Then, hydrolyzed scaffolds were coated by simple deposition of an FN layer (10 μg/mL). FN coating was evidenced by X-ray photoelectron analysis. A decrease of contact angle and greater cell adhesion to hydrolyzed, FN-coated PLGA scaffolds were noticed. Suitable degradation behavior without pH variations was observed for all samples up to 28 days. All treated materials presented strong shrinkage, fiber orientation loss, and collapsed fibers. However, functionalization process using 0.01 M NaOH concentration resulted in unchanged scaffold porosity, preserved chemical composition, and similar mechanical properties compared with untreated scaffolds. The proposed simplified method to functionalize electrospun PLGA fibers is an efficient route to make polyester scaffolds more biocompatible and shows potential for tissue engineering.
Collapse
Affiliation(s)
- Doris M Campos
- Laboratoire des Multimatériaux et Interfaces CNRS UMR 5615, Université Lyon 1 , Villeurbanne, France . ; UFR d'odontologie, Université Lyon 1 , Villeurbanne, France
| | - Kerstin Gritsch
- Laboratoire des Multimatériaux et Interfaces CNRS UMR 5615, Université Lyon 1 , Villeurbanne, France . ; UFR d'odontologie, Université Lyon 1 , Villeurbanne, France . ; Centre de Soins, d'Enseignement et de Recherche Dentaires (Département de Parodontologie), Université Lyon 1 , Villeurbanne, France
| | - Vincent Salles
- Laboratoire des Multimatériaux et Interfaces CNRS UMR 5615, Université Lyon 1 , Villeurbanne, France
| | - Ghania N Attik
- Laboratoire des Multimatériaux et Interfaces CNRS UMR 5615, Université Lyon 1 , Villeurbanne, France
| | - Brigitte Grosgogeat
- Laboratoire des Multimatériaux et Interfaces CNRS UMR 5615, Université Lyon 1 , Villeurbanne, France . ; UFR d'odontologie, Université Lyon 1 , Villeurbanne, France . ; Centre de Soins, d'Enseignement et de Recherche Dentaires (Département de Santé Publique), Université Lyon 1 , Villeurbanne, France
| |
Collapse
|