1
|
de Souza Feitosa MI, Boiteux LS, de Noronha Fonseca ME, Veloso JS, Pinho DB, Câmara MPS, Reis A. Multigene-based establishment of a novel Pleosporales family (Leandriaceae) and neotypification of Leandria momordicae Rangel. Mycologia 2025:1-16. [PMID: 40367105 DOI: 10.1080/00275514.2025.2491954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/08/2025] [Indexed: 05/16/2025]
Abstract
Leandria momordicae Rangel is the etiological agent of net spot, which is a very important disease of cucumber (Cucumis sativus), chayote (Sicyos edule), and in other Cucurbitaceae species. Although this pathogen was described more than a century ago infecting Momordica charantia, its taxonomic positioning has not yet been clarified. Moreover, a standard isolate of this fungus is not available in any reference mycological collection. In this context, the aims of the present work were (i) to clarify the taxonomic position of the fungus via morphological and phylogenetic analyses; (ii) to deposit a neotype of L. momordicae in a public mycological collection; (iii) to provide the first DNA sequences of the pathogen in GenBank. The morphometrical characteristics of distinct L. momordicae isolates were similar to those originally described. The phylogenetic analyses were carried out using information of five genomic regions. Using the BLASTn algorithm, it was observed that the L. momordicae-derived sequences displayed higher identity levels to fungal sequences of the order Pleosporales, which were subsequently included in the analyses. All sequences from the nine isolates of L. momordicae grouped within a single phylogenetic clade distinct from the other taxa in Pleosporales. Therefore, it is suggested the establishment of a new family of Pleosporales to include L. momordicae to which the name Leandriaceae is proposed. In addition, an ex-neotype and a neotype were illustrated and deposited in the Herbarium of the Federal University of Viçosa (VIC4754) and in the culture collection "Octávio Almeida Drummond" (COAD3403). The present study reinforces the view that many "hidden" fungal taxa are yet to be discovery under Neotropical conditions.
Collapse
Affiliation(s)
| | - Leonardo Silva Boiteux
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco 52171-900, Brazil
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Centro Nacional de Pesquisa em Hortaliças (CNPH), Brasília 70275-970, Brazil
- Departamento de Fitopatologia, Universidade de Brasília (UnB), Instituto de Ciências Biológicas (IB), Brasília 70910-900, Brazil
| | - Maria Esther de Noronha Fonseca
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Centro Nacional de Pesquisa em Hortaliças (CNPH), Brasília 70275-970, Brazil
| | - Josiene Silva Veloso
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco 52171-900, Brazil
| | - Danilo Batista Pinho
- Departamento de Fitopatologia, Universidade de Brasília (UnB), Instituto de Ciências Biológicas (IB), Brasília 70910-900, Brazil
| | - Marcos Paz Saraiva Câmara
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco 52171-900, Brazil
| | - Ailton Reis
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Pernambuco 52171-900, Brazil
- Empresa Brasileira de Pesquisa Agropecuária (Embrapa), Centro Nacional de Pesquisa em Hortaliças (CNPH), Brasília 70275-970, Brazil
| |
Collapse
|
2
|
Li XP, Shen WH, Wang JW, Zheng LP. Production of fungal hypocrellin photosensitizers: Exploiting bambusicolous fungi and elicitation strategies in mycelium cultures. Mycology 2024; 16:593-616. [PMID: 40415904 PMCID: PMC12096664 DOI: 10.1080/21501203.2024.2430726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/12/2024] [Indexed: 05/27/2025] Open
Abstract
Hypocrellins, a group of naturally occurring perylenequinone pigments produced by Shiraia bambusicola, are notable for their potential use in photodynamic therapy (PDT) for treating cancers and viruses. Traditionally, hypocrellins have been extracted from the fruiting bodies of S. bambusicola, a parasitic fungus on bamboo. However, the yield from wild Shiraia fruiting bodies is often insufficient, prompting a shift towards seeking other fungi with higher yields of hypocrellins as alternative sources. This review comprehensively examines the current research on the isolation, identification, and bioactivity of fungal perylenequinones from Shiraia isolates from ascostromata or fruiting bodies, Shiraia-like endophytes, and other endophytes from bamboos. Additionally, the review discusses the culture methods and conditions for solid-state and submerged fermentation of hypocrellin-producing fungi, including medium components, culture conditions, and optimisation of fermentation factors, as mycelium cultures have emerged as a promising alternative for the production of hypocrellins. Furthermore, novel elicitation strategies are presented to address the bottleneck of lower production of hypocrellins in mycelium cultures, focusing on the preparation, characterisation, and application of biotic and abiotic elicitors. This review aims to facilitate further exploration and utilisation of fungal resources and elicitation strategies for enhanced production of hypocrellins in mycelium cultures.
Collapse
Affiliation(s)
- Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Li Ping Zheng
- Department of Horticultural Sciences, Gold Mantis School of Architecture, Soochow University, Suzhou, China
| |
Collapse
|
3
|
Lu ZM, Zhang RT, Huang XB, Cao XT, Shen XY, Fan L, Hou CL. Optimisation of hypocrellin production in Shiraia-like fungi via genetic modification involving a transcription factor gene and a putative monooxygenase gene. Mycology 2023; 15:272-281. [PMID: 38813477 PMCID: PMC11133952 DOI: 10.1080/21501203.2023.2295406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/11/2023] [Indexed: 05/31/2024] Open
Abstract
Shiraia-like fungi, which are rare parasitic fungi found around bamboo, play an important role in traditional medicine. Their main active component, hypocrellin, is widely used in medicine, food, and cosmetics. By comparing strains with different hypocrellin yields, we identified a transcription factor (SbTF) in the hypocrellin biosynthesis pathway. SbTF from high-yielding zzz816 and low-yielding CNUCC C72 differed in its protein structure. Subsequently, SbTF from high-yielding zzz816 was overexpressed in several strains. This stabilised the yield in zzz816 and significantly increased the yield in low-yielding CNUCC C72. Comparing downstream non-essential genes between wild type and SbTF-overexpressing CNUCC C72 showed that SbMNF was significantly up-regulated. Therefore, it was selected for further study. SbMNF overexpression increased the hypocrellin yield in low-yielding CNUCC C72 and altered the composition of compounds in high-yielding CNUCC 1353PR and zzz816. This involved an increased elsinochrome C yield in CNUCC 1353PR and an increased hypocrellin B yield in zzz816 (by 2 and 70.3 times that in the corresponding wild type, respectively). This study is the first to alter hypocrellin synthesis to alter the levels of one bioactive agent compared to another. The results provide new insights regarding genetic modification and will help to optimise fungal fermentation.
Collapse
Affiliation(s)
- Zi-Min Lu
- College of Life Science, Capital Normal University, Beijing, China
| | - Run-Tong Zhang
- College of Life Science, Capital Normal University, Beijing, China
| | - Xiao-Bo Huang
- College of Life Science, Capital Normal University, Beijing, China
| | - Xue-Ting Cao
- College of Life Science, Capital Normal University, Beijing, China
| | - Xiao-Ye Shen
- College of Life Science, Capital Normal University, Beijing, China
| | - Li Fan
- College of Life Science, Capital Normal University, Beijing, China
| | - Cheng-Lin Hou
- College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
4
|
Shen WH, Zhou LL, Li XP, Cong RP, Huang QY, Zheng LP, Wang JW. Bamboo polysaccharides elicit hypocrellin A biosynthesis of a bambusicolous fungus Shiraia sp. S9. World J Microbiol Biotechnol 2023; 39:341. [PMID: 37828354 DOI: 10.1007/s11274-023-03789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Hypocrellin A (HA), a fungal perylenequinone from bambusicolous Shiraia species, is a newly developed photosensitizer for photodynamic therapy in cancer and other infectious diseases. The lower yield of HA is an important bottleneck for its biomedical application. This study is the first report of the enhancement of HA production in mycelium culture of Shiraia sp. S9 by the polysaccharides from its host bamboo which serve as a strong elicitor. A purified bamboo polysaccharide (BPSE) with an average molecular weight of 34.2 kDa was found to be the most effective elicitor to enhance fungal HA production and characterized as a polysaccharide fraction mainly composed of arabinose and galactose (53.7: 36.9). When BPSE was added to the culture at 10 mg/L on day 3, the highest HA production of 422.8 mg/L was achieved on day 8, which was about 4.0-fold of the control. BPSE changed the gene expressions mainly responsible for central carbon metabolism and the cellular oxidative stress. The induced generation of H2O2 and nitric oxide was found to be involved in both the permeabilization of cell membrane and HA biosynthesis, leading to enhancements in both intra- and extracellular HA production. Our results indicated the roles of plant polysaccharides in host-fungal interactions and provided a new elicitation technique to improve fungal perylenequinone production in mycelium cultures.
Collapse
Affiliation(s)
- Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Lu Lu Zhou
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rui Peng Cong
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Qun Yan Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Li Ping Zheng
- Department of Horticultural Sciences, Soochow University, Suzhou, 215123, China.
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
5
|
Xu R, Huang QY, Shen WH, Li XP, Zheng LP, Wang JW. Volatiles of Shiraia fruiting body-associated Pseudomonas putida No.24 stimulate fungal hypocrellin production. Synth Syst Biotechnol 2023; 8:427-436. [PMID: 37409170 PMCID: PMC10319174 DOI: 10.1016/j.synbio.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023] Open
Abstract
Hypocrellins are major bioactive perylenequinones from Shiraia fruiting bodies and have been developed as efficient photosensitizers for photodynamic therapy. Pseudomonas is the second dominant genus inside Shiraia fruiting bodies, but with less known actions on the host fungus. In this work, the effects of bacterial volatiles from the Shiraia-associated Pseudomonas on fungal hypocrellin production were investigated. Pseudomonas putida No.24 was the most active to promote significantly accumulation of Shiraia perylenequinones including hypocrellin A (HA), HC, elsinochrome A (EA) and EC. Headspace analysis of the emitted volatiles revealed dimethyl disulfide as one of active compounds to promote fungal hypocrellin production. The bacterial volatiles induced an apoptosis in Shiraia hyphal cell, which was associated with the generation of reactive oxygen species (ROS). ROS generation was proved to mediate the volatile-induced membrane permeability and up-regulation of gene expressions for hypocrellin biosynthesis. In the submerged volatile co-culture, the bacterial volatiles stimulated not only HA content in mycelia, but also HA secretion into the medium, leading to the enhanced HA production to 249.85 mg/L, about 2.07-fold over the control. This is the first report on the regulation of Pseudomonas volatiles on fungal perylenequinone production. These findings could be helpful to understand the roles of bacterial volatiles in fruiting bodies and also provide new elicitation method using bacterial volatiles to stimulate fungal secondary metabolite production.
Collapse
Affiliation(s)
- Rui Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Qun Yan Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Li Ping Zheng
- Department of Horticultural Sciences, Soochow University, Suzhou, 215123, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| |
Collapse
|
6
|
Li X, Omolehin O, Hemmings G, Tseng HT, Taylor A, Taylor C, Kong P, Daughtrey M, Luster D, Gouker F, Hong C. Boxwood phyllosphere fungal and bacterial communities and their differential responses to film-forming anti-desiccants. BMC Microbiol 2023; 23:219. [PMID: 37573307 PMCID: PMC10422719 DOI: 10.1186/s12866-023-02956-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/21/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Anti-desiccant is a class of agrochemicals widely used to protect plants from water stresses, rapid temperature variations, heat and sunburn, frost and freeze damages, transplant shock, and pathogen and pest attack. Although anti-desiccants are generally considered non-toxic to organisms, it is unclear whether they may impact the phyllosphere microbial communities. In this study, three film-forming anti-desiccant products, TransFilm, Vapor Gard, and Wilt-Pruf were applied to the canopy of two boxwood cultivars 'Vardar Valley' and 'Justin Brouwers' on April 13 and August 26, 2021. Shoot samples were collected from boxwood plants treated with each of the three products, as well as nontreated control on June 16, August 26 (before the second treatment), and October 18. Microbial and plant genomic DNA was isolated together and 16S rRNA gene and the extended internal transcribed spacer regions were amplified with PCR and sequenced on a Nanopore MinION platform for bacterial and fungal identification. RESULTS Bacterial communities were more diverse than fungal communities. At the phylum level, the boxwood phyllosphere was dominated by Proteobacteria and Ascomycota; at the genus level, Methylobacterium and Shiraia were the most abundant bacteria and fungi, respectively. Among the three film-forming anti-desiccants, Vapor Gard and Wilt-Pruf had more impact than TransFilm on the microbial communities. Specifically, broader impacts were observed on fungal than bacterial community composition and structure, with most affected fungi being suppressed while bacteria promoted. CONCLUSION This study addressed several major knowledge gaps regarding boxwood phyllosphere microbiota and the impact of anti-desiccants on plant microbiome. We identified diverse microbial communities of boxwood, a major evergreen woody crop and an iconic landscape plant. We also found differential effects of three film-forming anti-desiccants on the composition and structure of bacterial and fungal communities. These findings advanced our understanding of the associated microbiome of this landmark plant, enabling growers to fully utilize the potentials of microbiome and three anti-desiccants in improving boxwood health and productivity.
Collapse
Affiliation(s)
- Xiaoping Li
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA, USA.
| | - Olanike Omolehin
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA, USA
| | - Ginger Hemmings
- Plant Industry Division, North Carolina Department of Agriculture and Consumer Services, Dobson, NC, USA
| | - Hsien Tzer Tseng
- Plant Industry Division, North Carolina Department of Agriculture and Consumer Services, Raleigh, NC, USA
| | - Amanda Taylor
- North Carolina University Cooperative Extension, Morganton, NC, USA
| | - Chad Taylor
- Plant Industry Division, North Carolina Department of Agriculture and Consumer Services, Boone, NC, USA
| | - Ping Kong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA, USA
| | - Margery Daughtrey
- Long Island Horticultural Research and Extension Center, Cornell University, Riverhead, NY, USA
| | - Douglas Luster
- Foreign Disease-Weed Science Research Unit, USDA-ARS-NEA, Fort Detrick, MD, USA
| | - Fred Gouker
- U.S. National Arboretum, Floral and Nursery Plants Research Unit, USDA-ARS, Beltsville, MD, USA
| | - Chuanxue Hong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA, USA
| |
Collapse
|
7
|
Shen WH, Cong RP, Li XP, Huang QY, Zheng LP, Wang JW. Effects of branched-chain amino acids on Shiraia perylenequinone production in mycelium cultures. Microb Cell Fact 2023; 22:57. [PMID: 36964527 PMCID: PMC10039612 DOI: 10.1186/s12934-023-02066-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND Perylenequinones from Shiraia fruiting bodies are excellent photosensitizers and widely used for anti-cancer photodynamic therapy (PDT). The lower yield of Shiraia perylenequinones becomes a significant bottleneck for their medical application. Branched-chain amino acids (BCAAs) not only serve as important precursors for protein synthesis, but also are involved in signaling pathway in cell growth and development. However, there are few reports concerning their regulation of fungal secondary metabolism. In present study, the eliciting effects of BCAAs including L-isoleucine (L-Ile), L-leucine (L-Leu) and L-valine (L-Val) on Shiraia perylenequinone production were investigated. RESULTS Based on the analysis of the transcriptome and amino acid contents of Shiraia in the production medium, we revealed the involvement of BCAAs in perylenequinone biosynthesis. The fungal conidiation was promoted by L-Val treatment at 1.5 g/L, but inhibited by L-Leu. The spore germination was promoted by both. The production of fungal perylenequinones including hypocrellins A (HA), HC and elsinochromes A-C (EA-EC) was stimulated significantly by L-Val at 1.5 g/L, but sharply suppressed by L-Leu. After L-Val treatment (1.5 g/L) in Shiraia mycelium cultures, HA, one of the main bioactive perylenequinones reached highest production 237.92 mg/L, about 2.12-fold than that of the control. Simultaneously, we found that the expression levels of key genes involved in the central carbon metabolism and in the late steps for perylenequinone biosynthesis were up-regulated significantly by L-Val, but most of them were down-regulated by L-Leu. CONCLUSIONS Our transcriptome analysis demonstrated that BCAA metabolism was involved in Shiraia perylenequinone biosynthesis. Exogenous BCAAs exhibit contrasting effects on Shiraia growth and perylenequinones production. L-Val could promote perylenequinone biosynthesis via not only enhancing the central carbon metabolism for more precursors, but also eliciting perylenequinone biosynthetic gene expressions. This is the first report on the regulation of BCAAs on fungal perylenequinone production. These findings provided a basis for understanding physiological roles of BCAAs and a new avenue for increasing perylenequinone production in Shiraia mycelium cultures.
Collapse
Affiliation(s)
- Wen Hao Shen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rui Peng Cong
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Xin Ping Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Qun Yan Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Li Ping Zheng
- Department of Horticultural Sciences, Soochow University, Suzhou, 215123, China
| | - Jian Wen Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
8
|
Melatonin-Induced Inhibition of Shiraia Hypocrellin A Biosynthesis Is Mediated by Hydrogen Peroxide and Nitric Oxide. J Fungi (Basel) 2022; 8:jof8080836. [PMID: 36012825 PMCID: PMC9410495 DOI: 10.3390/jof8080836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Melatonin (MLT), an evolutionarily conserved pleiotropic molecule, is implicated in numerous physiological processes in plants and animals. However, the effects of MLT on microbes have seldom been reported. In this study, we examined the influence of exogenous MLT on the growth and hypocrellin biosynthesis of bambusicolous fungus Shiraia sp. S9. Hypocrellin A (HA) is a photoactivated and photoinduced perylenequinone (PQ) toxin in Shiraia. Exogenous MLT at 100.00 μM not only decreased fungal conidiation and spore germination but inhibited HA contents significantly in fungal cultures under a light/dark (24 h:24 h) shift. MLT treatment was associated with higher activity of antioxidant enzymes (superoxide dismutase, catalase and peroxidase) and a marked decline in reactive oxygen species (ROS) production in the mycelia. Moreover, MLT induced endogenous nitric oxide (NO) production during the culture. The NO donor sodium nitroprusside (SNP) potentiated MLT-induced inhibition of O2− production, but NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) enhanced O2− production, whereas MLT-induced NO level was increased by the ROS scavenger vitamin C (Vc). The changes in NO and H2O2 were proved to be involved in the MLT-induced downregulation of the expressions of HA biosynthetic genes, leading to the suppression of HA production. This study provides new insight into the regulatory roles of MLT on fungal secondary metabolism activities and a basis for understanding self-resistance in phototoxin-producing fungi.
Collapse
|
9
|
Khiralla A, Mohammed AO, Yagi S. Fungal perylenequinones. Mycol Prog 2022; 21:38. [PMID: 35401071 PMCID: PMC8977438 DOI: 10.1007/s11557-022-01790-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 10/27/2022]
|
10
|
Aldrich LN, Burdette JE, de Blanco EC, Coss CC, Eustaquio AS, Fuchs JR, Kinghorn AD, MacFarlane A, Mize B, Oberlies NH, Orjala J, Pearce CJ, Phelps MA, Rakotondraibe LH, Ren Y, Soejarto DD, Stockwell BR, Yalowich JC, Zhang X. Discovery of Anticancer Agents of Diverse Natural Origin. JOURNAL OF NATURAL PRODUCTS 2022; 85:702-719. [PMID: 35213158 PMCID: PMC9034850 DOI: 10.1021/acs.jnatprod.2c00036] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Research progress from mainly over the last five years is described for a multidisciplinary collaborative program project directed toward the discovery of potential anticancer agents from a broad range of taxonomically defined organisms. Selected lead compounds with potential as new antitumor agents that are representative of considerable structural diversity have continued to be obtained from each of tropical plants, terrestrial and aquatic cyanobacteria, and filamentous fungi. Recently, a new focus has been on the investigation of the constituents of U.S. lichens and their fungal mycobionts. A medicinal chemistry and pharmacokinetics component of the project has optimized structurally selected lead natural products, leading to enhanced cytotoxic potencies against selected cancer cell lines. Biological testing has shown several compounds to have in vivo activity, and relevant preliminary structure-activity relationship and mechanism of action studies have been performed. Several promising lead compounds worthy of further investigation have been identified from the most recent collaborative work performed.
Collapse
Affiliation(s)
- Leslie N. Aldrich
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Joanna E. Burdette
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | | | - Christopher C. Coss
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alessandra S. Eustaquio
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - James R. Fuchs
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - A. Douglas Kinghorn
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amanda MacFarlane
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Brittney Mize
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 24702, United States
| | - Jimmy Orjala
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Cedric J. Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Mitch A. Phelps
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | | | - Yulin Ren
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Djaja Doel Soejarto
- College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Field Museum of Natural History, Chicago, Illinois 60605, United States
| | - Brent R. Stockwell
- Department of Biological Sciences, Columbia University, New York, New York 10027, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Jack C. Yalowich
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaoli Zhang
- College of Medicine, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
11
|
Tong X, Wang QT, Shen XY, Hou CL, Cannon PF. Phylogenetic Position of Shiraia-Like Endophytes on Bamboos and the Diverse Biosynthesis of Hypocrellin and Hypocrellin Derivatives. J Fungi (Basel) 2021; 7:563. [PMID: 34356942 PMCID: PMC8304798 DOI: 10.3390/jof7070563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 01/11/2023] Open
Abstract
The main active ingredients of the fruiting bodies of Shiraia bambusicola and Rubroshiraia bambusae are Hypocrellins, belonging perylenequinones with potential photodynamic activity against cancer and microbial diseases. However, the strains of S. bambusicola and R. bambusae do not produce hypocrellins in culture, so resource exploitation of natural products was seriously restricted. In this study, a series of novel Shiraia-like fungal endophyte strains, with varying sporulation ability and synthesizing diverse secondary metabolites, was isolated from different bamboos. Based on phylogenetic analyses and morphological characteristics of the endophytes, Pseudoshiraia conidialis gen. et sp. nov. is proposed. The secondary metabolites of different fruiting bodies and strains have been comprehensively analyzed for the first time, finding that the endophytic strains are shown not only to produce hypocrellins, but also other perylenequinonoid compounds. It was noteworthy that the highest yield of total perylenequinone production and hypocrellin A appeared in P. conidialis CNUCC 1353PR (1410.13 mg/L), which was significantly higher than any other wild type P. conidialis strains in published reports. In view of these results, the identification of Shiraia-like endophytes not only confirm the phylogenetic status of similar strains, but will further assist in developing the production of valuable natural products.
Collapse
Affiliation(s)
- Xin Tong
- College of Life Science, Capital Normal University, Xisanhuanbeilu 105, Haidian, Beijing 100048, China; (X.T.); (Q.-T.W.)
| | - Qiu-Tong Wang
- College of Life Science, Capital Normal University, Xisanhuanbeilu 105, Haidian, Beijing 100048, China; (X.T.); (Q.-T.W.)
| | - Xiao-Ye Shen
- College of Life Science, Capital Normal University, Xisanhuanbeilu 105, Haidian, Beijing 100048, China; (X.T.); (Q.-T.W.)
| | - Cheng-Lin Hou
- College of Life Science, Capital Normal University, Xisanhuanbeilu 105, Haidian, Beijing 100048, China; (X.T.); (Q.-T.W.)
| | | |
Collapse
|
12
|
Al Subeh ZY, Raja HA, Monro S, Flores-Bocanegra L, El-Elimat T, Pearce CJ, McFarland SA, Oberlies NH. Enhanced Production and Anticancer Properties of Photoactivated Perylenequinones. JOURNAL OF NATURAL PRODUCTS 2020; 83:2490-2500. [PMID: 32786877 PMCID: PMC7493285 DOI: 10.1021/acs.jnatprod.0c00492] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hypocrellins and hypomycins are naturally occurring fungal perylenequinones with potential photodynamic activity against cancer and microbial diseases. This project pursued three lines of research. First, the production of perylenequinones was enhanced by investigating the effect of culture medium and light exposure on their biosynthesis. Solid-fermentation cultures on rice medium allowed for enhanced production of hypocrellins as compared to Cheerios or oatmeal medium. Alternatively, increased production of hypomycins, which are structurally related to the hypocrellins, was observed on oatmeal medium. In both cases, light exposure was an essential factor for the enhanced biosynthesis. In addition, this led to the discovery of two new perylenequinones, ent-shiraiachrome A (5) and hypomycin E (8), which were elucidated based on spectroscopic data. Finally, the photocytotoxic effects of both classes of compounds were evaluated against human skin melanoma, with EC50 values at nanomolar levels for hypocrellins and micromolar levels for hypomycins. In contrast, both classes of compounds showed reduced dark toxicity (EC50 values >100 μM), demonstrating promising phototherapeutic indices.
Collapse
Affiliation(s)
- Zeinab Y. Al Subeh
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Huzefa A. Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Susan Monro
- Department of Chemistry, Acadia University, 6 University Avenue, Wolfville, NS B4P 2R6, Canada
| | - Laura Flores-Bocanegra
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| | - Tamam El-Elimat
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Cedric J. Pearce
- Mycosynthetix, Inc., Hillsborough, North Carolina 27278, United States
| | - Sherri A. McFarland
- Department of Chemistry, Acadia University, 6 University Avenue, Wolfville, NS B4P 2R6, Canada
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Nicholas H. Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina 27402, United States
| |
Collapse
|
13
|
Species diversity of Pleosporalean taxa associated with Camellia sinensis (L.) Kuntze in Taiwan. Sci Rep 2020; 10:12762. [PMID: 32728102 PMCID: PMC7391694 DOI: 10.1038/s41598-020-69718-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/16/2020] [Indexed: 01/04/2023] Open
Abstract
Pleosporales species are important plant pathogens, saprobes, and endophytes on a wide range of economically important plant hosts. The classification of Pleosporales has undergone various modifications in recent years due to the addition of many families described from multiple habitats with a high level of morphological deviation. Numerous asexual genera have been described in Pleosporales that can be either hyphomyceteous or coelomycetous. Phoma- or coniothyrium-like species are common and have been revealed as polyphyletic in the order Pleosporales and linked with several sexual genera. A total of 31 pleosporalean strains were isolated in different regions of Taiwan between 2017 and 2018 from the leaves of Camellia sinensis plants with symptoms of leaf spot disease. These strains were evaluated morphologically and genotypically using multi-locus sequence analyses of the ITS, LSU, SSU, rpb2, tef1 and tub2 genes. The results demonstrated the affiliation of these strains with the various families in Pleosporales and revealed the presence of one new genus (Neoshiraia) and eight new species (Alloconiothyrium camelliae, Amorocoelophoma camelliae, Leucaenicola camelliae, L. taiwanensis, Neoshiraia camelliae, N. taiwanensis, Paraconiothyrium camelliae and Paraphaeosphaeria camelliae). Furthermore, to the best of our understanding, Didymella segeticola, Ectophoma pomi and Roussoella mexican were reported for the first time from C. sinensis in Taiwan.
Collapse
|
14
|
Dai DQ, Wijayawardene NN, Tang LZ, Liu C, Han LH, Chu HL, Wang HB, Liao CF, Yang EF, Xu RF, Li YM, Hyde KD, Bhat DJ, Cannon PF. Rubroshiraia gen. nov., a second hypocrellin-producing genus in Shiraiaceae (Pleosporales). MycoKeys 2019; 58:1-26. [PMID: 31534413 PMCID: PMC6726671 DOI: 10.3897/mycokeys.58.36723] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/13/2019] [Indexed: 12/22/2022] Open
Abstract
Shiraiaceae is an important family in Pleosporales (Dothideomycetes), which includes medical fungi and plant pathogens. Two hypocrellin-producing taxa, Shiraiabambusicola and a novel genus Rubroshiraiagen. nov., typified by Rubroshiraiabambusae are treated in this article. Maximum likelihood analysis, generated via RAxML (GTR+G model), using a combined SSU, LSU, TEF1 and RPB2 sequence dataset, shows that Rubroshiraia is close to Shiraia and belongs to the family Shiraiaceae. Descriptions, illustrations and a taxonomic key are provided for the genera in Shiraiaceae. Rubroshiraia morphologically differs from Shiraia in having small and dark ascostromata and filiform ascospores. Production of the ascostromatal metabolites, hypocrellin A and B, were examined by HPLC and spectrophotometer. The content of hypocrellin A and B of specimen HKAS 102255 (R.bambusae) is twice that produced by HKAS 102253 (S.bambusicola). To clarify the relationship between R.bambusae and Hypocrellabambusae, type material of the latter was examined and provided the illustration.
Collapse
Affiliation(s)
- Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China Qujing Normal University Qujing China
| | - Nalin N Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China Qujing Normal University Qujing China
| | - Li-Zhou Tang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China Qujing Normal University Qujing China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China Kunming Institute of Zoology, Chinese Academy of Sciences Kunming China
| | - Chao Liu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China Qujing Normal University Qujing China
| | - Li-Hong Han
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China Qujing Normal University Qujing China
| | - Hong-Long Chu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China Qujing Normal University Qujing China
| | - Hai-Bo Wang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China Qujing Normal University Qujing China
| | - Chun-Fang Liao
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China Qujing Normal University Qujing China
| | - Er-Fu Yang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China Qujing Normal University Qujing China
| | - Rui-Fang Xu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China Qujing Normal University Qujing China
| | - Yun-Min Li
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China Qujing Normal University Qujing China
| | - Kevin D Hyde
- Centre of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand Mae Fah Luang University Chiang Rai Thailand
| | - D Jayarama Bhat
- No. 128/1-J, Azad Housing Society, Curca, P.O. Goa Velha 403108, India Unaffiliated Goa India
| | - Paul F Cannon
- Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK Royal Botanic Gardens Kew United Kingdom
| |
Collapse
|
15
|
Ariyawansa HA, Phillips AJL, Chuang WY, Tsai I. Tzeananiaceae, a new pleosporalean family associated with Ophiocordycepsmacroacicularis fruiting bodies in Taiwan. MycoKeys 2018:1-17. [PMID: 30100794 PMCID: PMC6072833 DOI: 10.3897/mycokeys.37.27265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/13/2018] [Indexed: 12/03/2022] Open
Abstract
The order Pleosporales comprises a miscellaneous group of fungi and is considered to be the largest order of the class Dothideomycetes. The circumscription of Pleosporales has undergone numerous changes in recent years due to the addition of large numbers of families reported from various habitats and with a large amount of morphological variation. Many asexual genera have been reported in Pleosporales and can be either hyphomycetes or coelomycetes. Phoma-like taxa are common and have been shown to be polyphyletic within the order and allied with several sexual genera. During the exploration of biodiversity of pleosporalean fungi in Taiwan, a fungal strain was isolated from mycelium growing on the fruiting body of an Ophiocordyceps species. Fruiting structures that developed on PDA were morphologically similar to Phoma and its relatives in having pycnidial conidiomata with hyaline conidia. The fungus is characterised by holoblastic, cylindrical, aseptate conidiogenous cells and cylindrical, hyaline, aseptate, guttulated, thin-walled conidia. Phylogenetic analysis based on six genes, ITS, LSU, rpb2, SSU, tef1 and tub2, produced a phylogenetic tree with the newly generated sequences grouping in a distinct clade separate from all of the known families. Therefore, a new pleosporalean family Tzeananiaceae is established to accommodate the monotypic genus Tzeanania and the species T.taiwanensis in Pleosporales, Dothideomycetes. The Ophiocordyceps species was identified as O.macroacicularis and this is a new record in Taiwan.
Collapse
Affiliation(s)
- Hiran A Ariyawansa
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taiwan National Taiwan University Taipei Taiwan
| | - Alan J L Phillips
- Universidade de Lisboa, Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016 Lisbon, Portugal Universidade de Lisboa Lisbon Portugal
| | - Wei-Yu Chuang
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taiwan National Taiwan University Taipei Taiwan
| | - Ichen Tsai
- Department of Plant Pathology and Microbiology, College of Bio-Resources and Agriculture, National Taiwan University, Taiwan National Taiwan University Taipei Taiwan
| |
Collapse
|
16
|
Wanasinghe DN, Hyde KD, Jeewon R, Crous PW, Wijayawardene NN, Jones EBG, Bhat DJ, Phillips AJL, Groenewald JZ, Dayarathne MC, Phukhamsakda C, Thambugala KM, Bulgakov TS, Camporesi E, Gafforov YS, Mortimer PE, Karunarathna SC. Phylogenetic revision of Camarosporium ( Pleosporineae, Dothideomycetes) and allied genera. Stud Mycol 2017; 87:207-256. [PMID: 28966419 PMCID: PMC5607397 DOI: 10.1016/j.simyco.2017.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A concatenated dataset of LSU, SSU, ITS and tef1 DNA sequence data was analysed to investigate the taxonomic position and phylogenetic relationships of the genus Camarosporium in Pleosporineae (Dothideomycetes). Newly generated sequences from camarosporium-like taxa collected from Europe (Italy) and Russia form a well-supported monophyletic clade within Pleosporineae. A new genus Camarosporidiella and a new family Camarosporidiellaceae are established to accommodate these taxa. Four new species, Neocamarosporium korfii, N. lamiacearum, N. salicorniicola and N. salsolae, constitute a strongly supported clade with several known taxa for which the new family, Neocamarosporiaceae, is introduced. The genus Staurosphaeria based on S. lycii is resurrected and epitypified, and shown to accommodate the recently introduced genus Hazslinszkyomyces in Coniothyriaceae with significant statistical support. Camarosporium quaternatum, the type species of Camarosporium and Camarosporomyces flavigena cluster together in a monophyletic clade with significant statistical support and sister to the Leptosphaeriaceae. To better resolve interfamilial/intergeneric level relationships and improve taxonomic understanding within Pleosporineae, we validate Camarosporiaceae to accommodate Camarosporium and Camarosporomyces. The latter taxa along with other species are described in this study.
Collapse
Key Words
- Ca. aborescentis (Phukhams. et al.) Phukhams., Wanas. & K.D. Hyde
- Ca. arezzoensis (Tibpromma et al.) Wanas. & K.D. Hyde
- Ca. celtidis (Shear) Thambugala, Wanas. & K.D. Hyde
- Ca. clematidis (Wijayaw. et al.) Wijayaw., Wanas. & K.D. Hyde
- Ca. elongata (Fr.) Wanas., Wijayaw. & K.D. Hyde
- Ca. eufemiana Wanas., Camporesi & K.D. Hyde
- Ca. halimodendri Wanas., Bulgakov & K.D. Hyde
- Ca. italica Wanas., Camporesi & K.D. Hyde
- Ca. laburni (Pers.) Wanas., Bulgakov, Camporesi & K.D. Hyde
- Ca. laburnicola (R.H. Perera et al.) Wanas. & K.D. Hyde
- Ca. mackenziei Wanas., Bulgakov & K.D. Hyde
- Ca. melnikii Wanas., Bulgakov & K.D. Hyde
- Ca. mirabellensis Wanas., Camporesi & K.D. Hyde
- Ca. moricola (Chethana et al.) Wanas. & K.D. Hyde
- Ca. premilcurensis Wanas., Camporesi & K.D. Hyde
- Ca. robiniicola (Wijayaw. et al.) Wijayaw., Wanas. & K.D. Hyde
- Ca. schulzeri Wanas., Bulgakov & K.D. Hyde
- Ca. spartii (Trail) Wijayaw., Wanas. & K.D. Hyde
- Camarosporiaceae Wanas., K.D. Hyde & Crous
- Camarosporidiella Wanas., Wijayaw. & K.D. Hyde
- Camarosporidiella caraganicola (Phukhams. et al.) Phukhams., Wanas. & K.D. Hyde
- Camarosporidiella elaeagnicola Wanas., Bulgakov & K.D. Hyde
- Camarosporidiella: Ca.
- Camarosporidiellaceae Wanas., Wijayaw., Crous & K.D. Hyde
- Camarosporium: Cm.
- Camarosporomyces: Cs.
- Cucurbitaria: Cu
- Multigene phylogeny
- Muriformly septate
- N. lamiacearum Dayar., E.B.G. Jones & K.D. Hyde
- N. obiones (Jaap) Wanas. & K.D. Hyde
- N. salicorniicola Dayarathne, E.B.G. Jones & K.D. Hyde
- N. salsolae Wanas., Gafforov & K.D. Hyde
- Neocamarosporiaceae Wanas., Wijayaw., Crous & K.D. Hyde
- Neocamarosporium chenopodii (Ellis & Kellerm.) Wanas. & K.D. Hyde
- Neocamarosporium korfii Wanas., E.B.G. Jones & K.D. Hyde
- Pleomorphism
- Pleosporales
- Staurosphaeria aloes (Crous & M.J. Wingf.) Crous
- Staurosphaeria lycii Rabenh
- Staurosphaeria lyciicola (Crous & R.K. Schumach.) Crous, Wanas. & K.D. Hyde
- Staurosphaeria rhamnicola Wanas., Yu. Sh. Gafforov & K.D. Hyde
- Taxonomy
- Wanas. & K.D. Hyde
Collapse
Affiliation(s)
- D N Wanasinghe
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China.,World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan, China.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - K D Hyde
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China.,World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan, China.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - R Jeewon
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - P W Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85167, 3508 AD Utrecht, The Netherlands.,Department of Microbiology and Plant Pathology, Forestry & Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - N N Wijayawardene
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - E B G Jones
- Department of Botany and Microbiology, King Saudi University, Riyadh, Saudi Arabia
| | - D J Bhat
- No. 128/1-J, Azad Housing Society, Curca, Goa Velha, India
| | - A J L Phillips
- University of Lisbon, Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande 1749-016, Lisbon, Portugal
| | - J Z Groenewald
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - M C Dayarathne
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China.,World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan, China.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - C Phukhamsakda
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China.,World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan, China.,Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - K M Thambugala
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - T S Bulgakov
- Russian Research Institute of Floriculture and Subtropical Crops, Yana Fabritsiusa Street, 2/28, Krasnodar Region, Sochi 354002, Russia
| | - E Camporesi
- Società per gli Studi Naturalistici della Romagna, C.P. 144, Bagnacavallo, RA, Italy.,A.M.B. Gruppo Micologico Forlivese "Antonio Cicognani", Via Roma 18, Forlì, Italy.,A.M.B. Circolo Micologico "Giovanni Carini", C.P. 314, Brescia, Italy
| | - Y S Gafforov
- Laboratory of Mycology, Institute of Botany and Zoology, Academy of Sciences of the Republic of Uzbekistan, 232 Bogishamol Street, Tashkent 100053, Uzbekistan
| | - P E Mortimer
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China.,World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan, China
| | - S C Karunarathna
- Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China.,World Agro Forestry Centre, East and Central Asia, 132 Lanhei Road, Kunming 650201, Yunnan, China
| |
Collapse
|
17
|
Shen XY, Li T, Chen S, Fan L, Gao J, Hou CL. Characterization and phylogenetic analysis of the mitochondrial genome of Shiraia bambusicola reveals special features in the order of pleosporales. PLoS One 2015; 10:e0116466. [PMID: 25790308 PMCID: PMC4366305 DOI: 10.1371/journal.pone.0116466] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 12/08/2014] [Indexed: 12/20/2022] Open
Abstract
Shiraia bambusicola P. Henn. is a pathogenic fungus of bamboo, and its fruiting bodies are regarded as folk medicine. We determined and analyzed its complete mitochondrial DNA sequence (circular DNA molecule of 39,030 bp, G + C content of 25.19%). It contains the typical genes encoding proteins involved in electron transport and coupled oxidative phosphorylation (nad1-6 and nad4L, cob and cox1-3), one ATP synthase subunit (atp6), 4 hypothetical proteins, and two genes for large and small rRNAs (rnl and rns). There is a set of 32 tRNA genes comprising all 20 amino acids, and these genes are evenly distributed on the two strands. Phylogenetic analyses based on concatenated mitochondrial proteins indicated that S. bambusicola clustered with members of the order Pleosporales, which is in agreement with previous results. The gene arrangements of Dothideomycetes species contained three regions of gene orders partitioned in their mitochondrial genomes, including block 1 (nad6-atp6), block 2 (nad1-cox3) and block 3 (genes around rns). S. bambusicola displayed unique special features that differed from the other Pleosporales species, especially in the coding regions around rns (trnR-trnY). Moreover, a comparison of gene orders in mitochondrial genomes from Pezizomycotina revealed that although all encoded regions are located on the same strand in most Pezizomycotina mtDNAs, genes from Dothideomycetes species had different orientations, as well as diverse positions and colocalization of genes (such as cox3, cox1-cox2 and nad2-nad3); these distinctions were regarded as class-specific features. Interestingly, two incomplete copies of the atp6 gene were found on different strands of the mitogenomic DNA, a finding that has not been observed in the other analyzed fungal species. In our study, mitochondrial genomes from Dothideomycetes species were comprehensively analyzed for the first time, including many species that have not appeared in previous reports.
Collapse
Affiliation(s)
- Xiao-Ye Shen
- College of Life Science, Capital Normal University, Beijing, People’s Republic of China
| | - Tong Li
- College of Life Science, Capital Normal University, Beijing, People’s Republic of China
| | - Shuang Chen
- College of Life Science, Capital Normal University, Beijing, People’s Republic of China
| | - Li Fan
- College of Life Science, Capital Normal University, Beijing, People’s Republic of China
| | - Jian Gao
- Key Laboratory of Bamboo and Rattan Science and Technology of the SFA, International Centre for Bamboo and Rattan, Beijing, People’s Republic of China
| | - Cheng-Lin Hou
- College of Life Science, Capital Normal University, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Phookamsak R, Liu JK, Manamgoda DS, Wanasinghe DN, Ariyawansa H, Mortimer PE, Chukeatirote E, McKenzie EH, Hyde KD. Epitypification of Two Bambusicolous Fungi from Thailand. CRYPTOGAMIE MYCOL 2014. [DOI: 10.7872/crym.v35.iss3.2014.239] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Shen XY, Cheng YL, Cai CJ, Fan L, Gao J, Hou CL. Diversity and antimicrobial activity of culturable endophytic fungi isolated from moso bamboo seeds. PLoS One 2014; 9:e95838. [PMID: 24759896 PMCID: PMC3997407 DOI: 10.1371/journal.pone.0095838] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 03/31/2014] [Indexed: 11/18/2022] Open
Abstract
Bamboos, regarded as therapeutic agents in ethnomedicine, have been used to inhibit inflammation and enhance natural immunity for a long time in Asia, and there are many bamboo associated fungi with medical and edible value. In the present study, a total of 350 fungal strains were isolated from the uncommon moso bamboo (Phyllostachys edulis) seeds for the first time. The molecular diversity of these endophytic fungi was investigated and bioactive compound producers were screened for the first time. All the fungal endophytes were categorized into 69 morphotypes according to culturable characteristics and their internal transcriber spacer (ITS) regions were analyzed by BLAST search with the NCBI database. The fungal isolates showed high diversity and were divided in Ascomycota (98.0%) and Basidiomycota (2.0%), including at least 19 genera in nine orders. Four particular genera were considered to be newly recorded bambusicolous fungi, including Leptosphaerulina, Simplicillium, Sebacina and an unknown genus in Basidiomycetes. Furthermore, inhibitory effects against clinical pathogens and phytopathogens were screened preliminarily and strains B09 (Cladosporium sp.), B34 (Curvularia sp.), B35 (undefined genus 1), B38 (Penicillium sp.) and zzz816 (Shiraia sp.) displayed broad-spectrum activity against clinical bacteria and yeasts by the agar diffusion method. The crude extracts of isolates B09, B34, B35, B38 and zzz816 under submerged fermentation, also demonstrated various levels of bioactivities against bambusicolous pathogenic fungi. This study is the first report on the antimicrobial activity of endophytic fungi associated with moso bamboo seeds, and the results show that they could be exploited as a potential source of bioactive compounds and plant defense activators. In addition, it is the first time that strains of Shiraia sp. have been isolated and cultured from moso bamboo seeds, and one of them (zzz816) could produce hypocrellin A at high yield, which is significantly different from the other strains published.
Collapse
Affiliation(s)
- Xiao-Ye Shen
- College of Life Science, Capital Normal University, Beijing, People's Republic of China
| | - Yan-Lin Cheng
- College of Life Science, Capital Normal University, Beijing, People's Republic of China
| | - Chun-Ju Cai
- Key Laboratory of Bamboo and Rattan Science and Technology of the SFA, International Centre for Bamboo and Rattan, Beijing, People's Republic of China
| | - Li Fan
- College of Life Science, Capital Normal University, Beijing, People's Republic of China
| | - Jian Gao
- Key Laboratory of Bamboo and Rattan Science and Technology of the SFA, International Centre for Bamboo and Rattan, Beijing, People's Republic of China
| | - Cheng-Lin Hou
- College of Life Science, Capital Normal University, Beijing, People's Republic of China
| |
Collapse
|
20
|
|
21
|
Abstract
One hundred and five generic types of Pleosporales are described and illustrated. A brief introduction and detailed history with short notes on morphology, molecular phylogeny as well as a general conclusion of each genus are provided. For those genera where the type or a representative specimen is unavailable, a brief note is given. Altogether 174 genera of Pleosporales are treated. Phaeotrichaceae as well as Krie-geriella, Zeuctomorpha and Muroia are excluded from Pleosporales. Based on the multigene phylogenetic analysis, the suborder Massarineae is emended to accommodate five families, viz. Lentitheciaceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae and Trematosphaeriaceae.
Collapse
|
22
|
Tanaka K, Hirayama K, Yonezawa H, Hatakeyama S, Harada Y, Sano T, Shirouzu T, Hosoya T. Molecular taxonomy of bambusicolous fungi: Tetraplosphaeriaceae, a new pleosporalean family with Tetraploa-like anamorphs. Stud Mycol 2011; 64:175-209. [PMID: 20169030 PMCID: PMC2816973 DOI: 10.3114/sim.2009.64.10] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A new pleosporalean family Tetraplosphaeriaceae is established to
accommodate five new genera; 1) Tetraplosphaeria with small ascomata
and anamorphs belonging to Tetraploa s. str., 2)
Triplosphaeria characterised by hemispherical ascomata with rim-like
side walls and anamorphs similar to Tetraploa but with three conidial
setose appendages, 3) Polyplosphaeria with large ascomata surrounded
by brown hyphae and anamorphs producing globose conidia with several setose
appendages, 4) Pseudotetraploa, an anamorphic genus, having
obpyriform conidia with pseudosepta and four to eight setose appendages, and
5) Quadricrura, an anamorphic genus, having globose conidia with one
or two long setose appendages at the apex and four to five short setose
appendages at the base. Fifteen new taxa in these genera mostly collected from
bamboo are described and illustrated. They are linked by their Tetraploa
s. l. anamorphs. To infer phylogenetic placement in the
Pleosporales, analyses based on a combined dataset of small- and
large-subunit nuclear ribosomal DNA (SSU+LSU nrDNA) was carried out.
Tetraplosphaeriaceae, however, is basal to the main pleosporalean
clade and therefore its relationship with other existing families was not
completely resolved. To evaluate the validity of each taxon and to clarify the
phylogenetic relationships within this family, further analyses using
sequences from ITS-5.8S nrDNA (ITS), transcription elongation factor 1-α
(TEF), and β-tubulin (BT), were also conducted. Monophyly of the family
and that of each genus were strongly supported by analyses based on a combined
dataset of the three regions (ITS+TEF+BT). Our results also suggest that
Tetraplosphaeria (anamorph: Tetraploa s. str.) is an
ancestral lineage within this family. Taxonomic placement of the bambusicolous
fungi in Astrosphaeriella, Kalmusia, Katumotoa, Massarina,
Ophiosphaerella, Phaeosphaeria, Roussoella, Roussoellopsis, and
Versicolorisporium, are also discussed based on the SSU+LSU
phylogeny.
Collapse
Affiliation(s)
- K Tanaka
- Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan
| | | | | | | | | | | | | | | |
Collapse
|