1
|
Du X, Zhou L, Li Y, Zhang F, Wang L, Yao J, Chen X, Liu S, Cao Y. Effects of yak rumen anaerobic fungus Orpinomyces sp. YF3 fermented on in vitro wheat straw fermentation and microbial communities in dairy goat rumen fluid, with and without fungal flora. J Anim Physiol Anim Nutr (Berl) 2024; 108:1312-1325. [PMID: 38685575 DOI: 10.1111/jpn.13978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/19/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Rumen fungi play an essential role in the breakdown of dietary fibrous components, facilitating the provision of nutrients and energy to the host animals. This study investigated the fermentation characteristics and effects on rumen microbiota of yak rumen anaerobic fungus Orpinomyces sp. YF3 in goat rumen fluid, both with and without fungal flora, utilizing anaerobic fermentation bottles. Crushed and air-dried wheat straw served as the fermentation substrate, and cycloheximide was used to eradicate microorganisms from the rumen fluid of dairy goats. The experiment compromised four treatment groups (2×2 factorial design): control (C); yak fungus group (CF, Orpinomyces sp. YF3); goat fungi eliminated group (CA, antibiotic: 0.25 mg/mL cycloheximide); goat fungi eliminated+yak fungus group (CAF). Each treatment had six replicates. Fermentation characteristics and microbial composition of the fermentation media were analyzed using one-way analysis of variance and high-throughput sequencing technology. The findings revealed that in the Orpinomyces sp. YF3 addition group (CF and CAF groups), there were significant increases in ammonia nitrogen concentration by 70%, total volatile fatty acids (VFA) by 53%, as well as acetate, isobutyrate, and valerate concentrations, and the ratio of acetate to propionate (p < 0.05), while the propionate proportion declined by 13%, alongside a reduction of butyrate concentration (p < 0.05). Similarly, in the CF and CAF groups, there were a notable increase in the relative abundance of Bacteroidota, Synergistota, Desulfobacterota, Actinobacteria, and Fusobacteriota, alongside a decrease in the relative abundance of Fibrobacterota and Proteobacteria (p < 0.05). Bacteria exhibiting increased relative abundance were positively correlated with the activity of carboxymethyl cellulase and avicelase, total VFA concentration, and acetate proportion, while showing a negatively correlation with propionate proportion. In conclusion, supplementing rumen fermentation media with yak rumen anaerobic fungus Orpinomyces sp. YF3 led to an increase in bacteria associated with fibre degradation and acetic acid production, a decrease in propionate-producing bacteria, enhanced the activity of plant cell wall degrading enzymes, and promoted cellulose degradation, ultimately elevating total VAF concentration and acetate proportion. This presents a novel approach to enhance roughage utilization in ruminants.
Collapse
Affiliation(s)
- Xueer Du
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Linlin Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lamei Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinghua Chen
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Shimin Liu
- UWA Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia
| | - Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Division of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Daute M, Jack F, Walker G. The potential for Scotch Malt Whisky flavour diversification by yeast. FEMS Yeast Res 2024; 24:foae017. [PMID: 38684485 PMCID: PMC11095643 DOI: 10.1093/femsyr/foae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/13/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024] Open
Abstract
Scotch Whisky, a product of high importance to Scotland, has gained global approval for its distinctive qualities derived from the traditional production process, which is defined in law. However, ongoing research continuously enhances Scotch Whisky production and is fostering a diversification of flavour profiles. To be classified as Scotch Whisky, the final spirit needs to retain the aroma and taste of 'Scotch'. While each production step contributes significantly to whisky flavour-from malt preparation and mashing to fermentation, distillation, and maturation-the impact of yeast during fermentation is crucially important. Not only does the yeast convert the sugar to alcohol, it also produces important volatile compounds, e.g. esters and higher alcohols, that contribute to the final flavour profile of whisky. The yeast chosen for whisky fermentations can significantly influence whisky flavour, so the yeast strain employed is of high importance. This review explores the role of yeast in Scotch Whisky production and its influence on flavour diversification. Furthermore, an extensive examination of nonconventional yeasts employed in brewing and winemaking is undertaken to assess their potential suitability for adoption as Scotch Whisky yeast strains, followed by a review of methods for evaluating new yeast strains.
Collapse
Affiliation(s)
- Martina Daute
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Frances Jack
- The Scotch Whisky Research Institute, Research Ave N, EH14 4AP, Edinburgh, Scotland
| | - Graeme Walker
- Division of Engineering and Food Sciences, School of Applied Sciences, Abertay University, Bell St, DD1 1HG, Dundee, Scotland
| |
Collapse
|
3
|
Li L, Li N, Fu J, Liu J, Ping Wen X, Cao H, Xu H, Zhang Y, Cao R. Synthesis of an autochthonous microbial community by analyzing the core microorganisms responsible for the critical flavor of bran vinegar. Food Res Int 2024; 175:113742. [PMID: 38129049 DOI: 10.1016/j.foodres.2023.113742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Traditional bran vinegar brewing unfolds through natural fermentation, a process driven by spontaneous microbial activity. The unique metabolic activities of various microorganisms lead to distinct flavors and qualities in each batch of vinegar, making it challenging to consistently achieve the desired characteristic flavor compounds. Therefore, identifying the critical microbial species responsible for flavor production and designing starter cultures with improved fermentation efficiency and characteristic flavors are effective methods to address this discrepancy. In this study, 11 core functional microbial species affecting the fermentation flavor of Sichuan shai vinegar (Cupei were placed outside solarization and night-dew for more than one year, and vinegar was the liquid leached from Cupei) (SSV), were revealed by combining PacBio full-length diversity sequencing based on previous metagenomics. The effects of environmental factors and microbial interactions on the growth of 11 microorganisms during fermentation were verified using fermentation experiments. Ultimately, the microbial community was strategically synthesized using a 'top-down' approach, successfully replicating the distinctive flavor profile of Sichuan shai vinegar (SSV). The results showed that the interaction between microorganisms and environmental factors affected microorganism growth. Compared with traditional fermentation, the synthetic microbial community's vinegar-fermented grains (Cupei) can reproduce the key flavor of SSV and is conducive to the production of amino acids. In this study, the key flavor of SSV was reproduced through rational design of the synthetic microbial community. This achievement holds profound significance for the broader application of microbiome assembly strategies in the realm of fermented foods.
Collapse
Affiliation(s)
- Li Li
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China.
| | - Na Li
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Junjie Fu
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Jun Liu
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Xue Ping Wen
- College of Biotechnology Engineering, Sichuan University of Science and Engineering, Yibin 644000, China
| | - Hong Cao
- Sichuan Taiyuanjing vinegar Co., Ltd, Zigong 643000, China
| | - Hongwei Xu
- Sichuan Taiyuanjing vinegar Co., Ltd, Zigong 643000, China
| | - Ying Zhang
- Sichuan Taiyuanjing vinegar Co., Ltd, Zigong 643000, China
| | - Rong Cao
- Sichuan Taiyuanjing vinegar Co., Ltd, Zigong 643000, China
| |
Collapse
|
4
|
Zhu HY, Wei YH, Guo LC, Wei XY, Li JN, Zhang RP, Liu XZ, Bai FY. Vishniacozyma pseudocarnescens sp. nov., a new anamorphic tremellomycetous yeast species. Int J Syst Evol Microbiol 2023; 73. [PMID: 37847534 DOI: 10.1099/ijsem.0.006076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023] Open
Abstract
Three strains belonging to the basidiomycetous yeast genus Vishniacozyma were isolated from marine water samples collected from intertidal zones in Liaoning province, northeast China. Phylogenetic analyses based on the sequences of the small subunit (SSU) ribosomal DNA (rDNA), the D1/D2 domain of the large subunit (LSU) ribosomal DNA (rDNA), the internal transcribed spacer region (ITS), the two subunits of DNA polymerase II (RPB1 and RPB2), the translation elongation factor 1-α (TEF1), and the mitochondrial gene cytochrome b (CYTB) showed that these strains together with 20 strains from various geographic and ecological origins from other regions of the world represent a novel species in the genus Vishniacozyma. We propose the name Vishniacozyma pseudocarnescens sp. nov. (holotype CGMCC 2.6457) for the new species, which differs phenotypically from its close relatives V. carnescens, V. tephrensis, and V. victoriae by its ability to grow at 30 °C and on 50 % (w/v) glucose-yeast extract agar.
Collapse
Affiliation(s)
- Hai-Yan Zhu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yu-Hua Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liang-Chen Guo
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xu-Yang Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Jun-Ning Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ri-Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin-Zhan Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
5
|
Boyaci Gunduz CP, Erten H. Yeast Biodiversity in Chickpea Sourdoughs and Comparison of the Microbiological and Chemical Characteristics of the Spontaneous Chickpea Fermentations. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Huseyin Erten
- Cukurova University Faculty of Agriculture Food Engineering Department 01330 Adana TURKEY
| |
Collapse
|
6
|
Chen W, Cheung HK, McMillan M, Turkington TK, Izydorczyk MS, Gräfenhan T. The dynamics of indigenous epiphytic bacterial and fungal communities of barley grains through the commercial malting process in Western Canada. Curr Res Food Sci 2022; 5:1352-1364. [PMID: 36082140 PMCID: PMC9445228 DOI: 10.1016/j.crfs.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Wen Chen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Corresponding author. Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada.
| | - H.Y. Kitty Cheung
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Morgan McMillan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Thomas Kelly Turkington
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | | | - Tom Gräfenhan
- Grain Research Laboratory, Canadian Grain Commission, Winnipeg, MB, Canada
- Corresponding author.
| |
Collapse
|
7
|
Ianieva O, Podgorsky V. Enological potential of non- Saccharomyces yeast strains of enological and brewery origin from Ukrainian Collection of Microorganisms. Mycology 2021; 12:203-215. [PMID: 34552811 PMCID: PMC8451676 DOI: 10.1080/21501203.2020.1837272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Non-conventional wine yeasts are extensively studied as promising producers of hydrolytic enzymes and as potential starter cultures in winemaking due to their ability to improve organoleptic properties of wine. Thirty-six yeast strains of enological and brewery origin from the Ukrainian Collection of Microorganisms belonging to Torulaspora, Kloeckera, Candida, Metschnikowia, Pichia, and Zygosaccharomyces genera have been screened for the production of extracellular hydrolases, stress tolerance, fermentative activity, and other traits of enological interest. This study revealed the high incidence of lipolytic, proteolytic, and β-glucosidase activities among the yeasts, while no pectinase activity was detected. Esterase, cellulase and glucanase activities were found in a small proportion of yeasts (8.33–16.66%). Several Pichia anomala, Kloekera javanica, Pichia membranifaciens, and Metschnikowia pulcherrima strains demonstrated a wide range of hydrolytic activities. High tolerance to stress factors (ethanol, osmotic, and oxidative stress) present during alcoholic fermentation was detected in P. anomala and M. pulcherrima strains. Fermentative activity of several yeast strains was evaluated in microfermentations in a model semi-synthetic medium. Strain P. anomala UCM Y-216 was selected as the most promising culture for winemaking due to its hydrolytic activities, tolerance to stress factors and other valuable metabolic traits. This study represents the first step for selecting a non-conventional yeast strain of enological origin as a potential co-culture for winemaking.
Collapse
Affiliation(s)
- Olga Ianieva
- Department of Physiology of Industrial Microorganisms, Zabolotny Institute of Microbiology and Virology, Kyiv, Ukraine
| | - Valentin Podgorsky
- Department of Physiology of Industrial Microorganisms, Zabolotny Institute of Microbiology and Virology, Kyiv, Ukraine
| |
Collapse
|
8
|
Kim DY, Kim J, Kim JH, Kim WJ. Malt and wort bio-acidification by Pediococcus acidilactici HW01 as starter culture. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Østlie HM, Porcellato D, Kvam G, Wicklund T. Investigation of the microbiota associated with ungerminated and germinated Norwegian barley cultivars with focus on lactic acid bacteria. Int J Food Microbiol 2021; 341:109059. [PMID: 33508581 DOI: 10.1016/j.ijfoodmicro.2021.109059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 10/23/2020] [Accepted: 01/03/2021] [Indexed: 01/04/2023]
Abstract
The microbial community of ungerminated and germinated barley grains from three different cultivars grown at four different locations in Norway was investigated by culture dependent and culture independent methods. Lactic acid bacteria (LAB) was focused in this study and was isolated from germinated barley. The number of LAB ranged between 2.8 and 4.6 log cfu/g in ungerminated grains and between 4.9 and 6.3 log cfu/g in germinated grains. In total 66 out of 190 isolates were Gram+, catalase-negative and presumptive LAB. The LAB isolates were by 16S rRNA sequencing identified to be Carnobacterium maltaromaticum (6), Lactococcus lactis (2), Enterococcus sp. (1) and Leuconostoc sp. (57). Germination significantly influenced the bacterial composition. Regarding the different cultivars and growth places no significant difference in bacterial composition was seen. The most abundant bacterial genus was Pantoea (18.5% of the total sequences), followed by Rhizobium (10.1%) and Sphingomonas (9.9%). Fungal composition was significantly influenced by the germination process and the cultivation place, but no significant difference in fungal composition was detected between the 3 cultivars. The most abundant fungal genera were Cryptococcus (43.8% of all the sequences), Cladosporium (8.2%), Pyrenophora (7.4%) and Vagicola (6.3%). This study revealed knowledge of barley grain associated microbes of Norwegian barley that can be useful to control the malt quality. Germination affected both bacterial and fungal microbiota composition. No difference in bacterial microbiota composition was seen regarding cultivars and cultivation place, however, the fungal microbiota composition was significantly influenced by the cultivation place. Differences in fungal community of ungerminated and germinated barley samples of different geographical locations were more pronounced than differences in bacterial communities.
Collapse
Affiliation(s)
- Hilde Marit Østlie
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway.
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Guro Kvam
- Mattilsynet avdeling Nordre Buskerud, Hadeland and Valdres, Kartverksveien 12, 3511 Hønefoss, Norway
| | - Trude Wicklund
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| |
Collapse
|
10
|
Perri G, Calabrese FM, Rizzello CG, De Angelis M, Gobbetti M, Calasso M. Sprouting process affects the lactic acid bacteria and yeasts of cereal, pseudocereal and legume flours. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
de Menezes GC, Amorim SS, Gonçalves VN, Godinho VM, Simões JC, Rosa CA, Rosa LH. Diversity, Distribution, and Ecology of Fungi in the Seasonal Snow of Antarctica. Microorganisms 2019; 7:E445. [PMID: 31614720 PMCID: PMC6843862 DOI: 10.3390/microorganisms7100445] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/27/2022] Open
Abstract
We characterized the fungal community found in the winter seasonal snow of the Antarctic Peninsula. From the samples of snow, 234 fungal isolates were obtained and could be assigned to 51 taxa of 26 genera. Eleven yeast species displayed the highest densities; among them, Phenoliferia glacialis showed a broad distribution and was detected at all sites that were sampled. Fungi known to be opportunistic in humans were subjected to antifungal minimal inhibition concentration. Debaryomyces hansenii, Rhodotorula mucilaginosa, Penicillium chrysogenum, Penicillium sp. 3, and Penicillium sp. 4 displayed resistance against the antifungals benomyl and fluconazole. Among them, R. mucilaginosa isolates were able to grow at 37 °C. Our results show that the winter seasonal snow of the Antarctic Peninsula contains a diverse fungal community dominated by cosmopolitan ubiquitous fungal species previously found in tropical, temperate, and polar ecosystems. The high densities of these cosmopolitan fungi suggest that they could be present in the air that arrives at the Antarctic Peninsula by air masses from outside Antarctica. Additionally, we detected environmental fungal isolates that were resistant to agricultural and clinical antifungals and able to grow at 37 °C. Further studies will be needed to characterize the virulence potential of these fungi in humans and animals.
Collapse
Affiliation(s)
- Graciéle C.A. de Menezes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (S.S.A.); (V.N.G.); (V.M.G.); (C.A.R.)
| | - Soraya S. Amorim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (S.S.A.); (V.N.G.); (V.M.G.); (C.A.R.)
| | - Vívian N. Gonçalves
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (S.S.A.); (V.N.G.); (V.M.G.); (C.A.R.)
| | - Valéria M. Godinho
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (S.S.A.); (V.N.G.); (V.M.G.); (C.A.R.)
| | - Jefferson C. Simões
- Centro Polar e Climático, Universidade Federal do Rio Grande do Sul, Porto Alegre 91201-970, Brazil;
| | - Carlos A. Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (S.S.A.); (V.N.G.); (V.M.G.); (C.A.R.)
| | - Luiz H. Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil (S.S.A.); (V.N.G.); (V.M.G.); (C.A.R.)
| |
Collapse
|
12
|
Bianco A, Fancello F, Balmas V, Dettori M, Motroni A, Zara G, Budroni M. Microbial communities and malt quality of durum wheat used in brewing. JOURNAL OF THE INSTITUTE OF BREWING 2019. [DOI: 10.1002/jib.555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Angela Bianco
- Department of Agricultural Science; University of Sassari; Sassari Sardinia Italy
| | - Francesco Fancello
- Department of Agricultural Science; University of Sassari; Sassari Sardinia Italy
| | - Virgilio Balmas
- Department of Agricultural Science; University of Sassari; Sassari Sardinia Italy
| | - Marco Dettori
- Agricultural Research Agency of Sardinia (Agris); Cagliari Sardinia Italy
| | - Andrea Motroni
- Hydro-Meteo-Climate Department, Sardinian Regional Agency for Environmental Protection; Sassari Italy
| | - Giacomo Zara
- Department of Agricultural Science; University of Sassari; Sassari Sardinia Italy
| | - Marilena Budroni
- Department of Agricultural Science; University of Sassari; Sassari Sardinia Italy
| |
Collapse
|
13
|
Cubillos FA, Gibson B, Grijalva-Vallejos N, Krogerus K, Nikulin J. Bioprospecting for brewers: Exploiting natural diversity for naturally diverse beers. Yeast 2019; 36:383-398. [PMID: 30698853 DOI: 10.1002/yea.3380] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/29/2022] Open
Abstract
The burgeoning interest in archaic, traditional, and novel beer styles has coincided with a growing appreciation of the role of yeasts in determining beer character as well as a better understanding of the ecology and biogeography of yeasts. Multiple studies in recent years have highlighted the potential of wild Saccharomyces and non-Saccharomyces yeasts for production of beers with novel flavour profiles and other desirable properties. Yeasts isolated from spontaneously fermented beers as well as from other food systems (wine, bread, and kombucha) have shown promise for brewing application, and there is evidence that such cross-system transfers have occurred naturally in the past. We review here the available literature pertaining to the use of nonconventional yeasts in brewing, with a focus on the origins of these yeasts, including methods of isolation. Practical aspects of utilizing nondomesticated yeasts are discussed, and modern methods to facilitate discovery of yeasts with brewing potential are highlighted.
Collapse
Affiliation(s)
- Francisco A Cubillos
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Brian Gibson
- Industrial Biotechnology and Food Solutions, VTT Technical Research Centre of Finland Ltd, Espoo, Finland
| | - Nubia Grijalva-Vallejos
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Kristoffer Krogerus
- Industrial Biotechnology and Food Solutions, VTT Technical Research Centre of Finland Ltd, Espoo, Finland.,Department of Biotechnology and Chemical Technology, Aalto University, School of Chemical Technology, Espoo, Finland
| | - Jarkko Nikulin
- Industrial Biotechnology and Food Solutions, VTT Technical Research Centre of Finland Ltd, Espoo, Finland.,Chemical Process Engineering, Faculty of Technology, University of Oulu, Oulu, Finland
| |
Collapse
|
14
|
Yurkov AM, Kurtzman CP. Three new species of Tremellomycetes isolated from maize and northern wild rice. FEMS Yeast Res 2019; 19:5289409. [DOI: 10.1093/femsyr/foz004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/09/2019] [Indexed: 12/22/2022] Open
Affiliation(s)
- Andrey M Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cletus P Kurtzman
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, US Department of Agriculture, Peoria, IL, USA
| |
Collapse
|
15
|
Microbial community dynamics of Dan'er barley grain during the industrial malting process. Food Microbiol 2018; 76:110-116. [DOI: 10.1016/j.fm.2018.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 03/20/2018] [Accepted: 03/29/2018] [Indexed: 11/20/2022]
|
16
|
Parvizpour S, Razmara J, Shamsir MS. Temperature adaptation analysis of a psychrophilic mannanase through structural, functional and molecular dynamics simulation. MOLECULAR SIMULATION 2018. [DOI: 10.1080/08927022.2018.1492721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Razmara
- Department of Computer Science, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group, Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, Johor, Malaysia
| |
Collapse
|
17
|
Bianco A, Fancello F, Balmas V, Zara G, Dettori M, Budroni M. The microbiome of Sardinian barley and malt. JOURNAL OF THE INSTITUTE OF BREWING 2018. [DOI: 10.1002/jib.522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Angela Bianco
- Department of Agricultural Science; University of Sassari; Sassari Sardinia Italy
| | - Francesco Fancello
- Department of Agricultural Science; University of Sassari; Sassari Sardinia Italy
| | - Virgilio Balmas
- Department of Agricultural Science; University of Sassari; Sassari Sardinia Italy
| | - Giacomo Zara
- Department of Agricultural Science; University of Sassari; Sassari Sardinia Italy
| | - Marco Dettori
- Agricultural Research Agency of Sardinia (Agris); Cagliari Sardinia Italy
| | - Marilena Budroni
- Department of Agricultural Science; University of Sassari; Sassari Sardinia Italy
| |
Collapse
|
18
|
Montemurro M, Pontonio E, Gobbetti M, Rizzello CG. Investigation of the nutritional, functional and technological effects of the sourdough fermentation of sprouted flours. Int J Food Microbiol 2018; 302:47-58. [PMID: 30115372 DOI: 10.1016/j.ijfoodmicro.2018.08.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/25/2018] [Accepted: 08/04/2018] [Indexed: 11/19/2022]
Abstract
In recent years, recommendations on whole grains consumption have been added to the overall dietary guidelines of many countries around the world. Despite the many benefits on human health, whole grains contain several anti-nutritional factors which decrease their nutritional quality leading to a poor use in human diet. Here, an integrate biotechnological approach, combining germination and sourdough fermentation with selected lactic acid bacteria, was set-up in order to improve the functional and nutritional quality of wheat, barley, chickpea, lentil and quinoa grains. Sourdough fermentation with Lactobacillus rossiae LB5, Lactobacillus plantarum 1A7 and Lactobacillus sanfranciscensis DE9 further enhanced the nutritional and functional features of sprouted flours by means of increased peptides, free amino acids and γ‑aminobutyric acid concentrations, and decreased phytic acid, condensed tannins, raffinose and trypsin inhibitory activity. Sensory appreciable wheat breads fortified with the fermented sprouted flours were manufactured and characterized, showing high protein digestibility and low starch availability.
Collapse
Affiliation(s)
- Marco Montemurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Erica Pontonio
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy.
| | - Marco Gobbetti
- Facoltà di Scienze e Tecnologie, Free University of Bozen-Bolzano, 39100 Bolzano, Italy
| | | |
Collapse
|
19
|
Mauch A, Jacob F, Coffey A, Arendt EK. Part I. The Use ofLactobacillus PlantarumStarter Cultures to Inhibit Rootlet Growth during Germination of Barley, Reducing Malting Loss, and its Influence on Malt Quality. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2011-1027-01] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Alexander Mauch
- Department of Food Science, Food Technology and Nutrition and National Food Biotechnology Centre, National University of Ireland, Cork, Ireland
| | - Fritz Jacob
- Forschungszentrum Weihenstephan für Brau- und Lebensmittelqualität, Technische Universität München, Freising-Weihenstephan, Germany
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Elke K. Arendt
- Department of Food Science, Food Technology and Nutrition, National University of Ireland, Cork, Ireland
| |
Collapse
|
20
|
Single-cell Protein and Xylitol Production by a Novel Yeast Strain Candida intermedia FL023 from Lignocellulosic Hydrolysates and Xylose. Appl Biochem Biotechnol 2017; 185:163-178. [PMID: 29098561 PMCID: PMC5937888 DOI: 10.1007/s12010-017-2644-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/19/2017] [Indexed: 11/06/2022]
Abstract
Yeasts are good candidates to utilize the hydrolysates of lignocellulose, the most abundant bioresource, for bioproducts. This study aimed to evaluate the efficiencies of single-cell protein (SCP) and xylitol production by a novel yeast strain, Candida intermedia FL023, from lignocellulosic hydrolysates and xylose. This strain efficiently assimilated hexose, pentose, and cellubiose for cell mass production with the crude protein content of 484.2 g kg−1 dry cell mass. SCP was produced by strain FL023 using corncob hydrolysate and urea as the carbon and nitrogen sources with the dry cell mass productivity 0.86 g L−1 h−1 and the yield of 0.40 g g−1 sugar. SCP was also produced using NaOH-pretreated Miscanthus sinensis straw and corn steep liquor as the carbon and nitrogen sources through simultaneous saccharification and fermentation with the dry cell productivity of 0.23 g L−1 h−1 and yield of 0.17 g g−1 straw. C. intermedia FL023 was tolerant to 0.5 g L−1 furfural, acetic acid, and syringaldehyde in xylitol fermentation and produced 45.7 g L−1 xylitol from xylose with the productivity of 0.38 g L−1 h−1 and the yield of 0.57 g g−1 xylose. This study provides feasible methods for feed and food additive production from the abundant lignocellulosic bioresources.
Collapse
|
21
|
Endophytic symbiont yeasts associated with the Antarctic angiosperms Deschampsia antarctica and Colobanthus quitensis. Polar Biol 2016. [DOI: 10.1007/s00300-016-1940-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Kaur M, Bowman JP, Stewart DC, Evans DE. The fungal community structure of barley malts from diverse geographical regions correlates with malt quality parameters. Int J Food Microbiol 2015; 215:71-8. [DOI: 10.1016/j.ijfoodmicro.2015.08.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/03/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022]
|
23
|
Juvonen R, Honkapää K, Maina NH, Shi Q, Viljanen K, Maaheimo H, Virkki L, Tenkanen M, Lantto R. The impact of fermentation with exopolysaccharide producing lactic acid bacteria on rheological, chemical and sensory properties of pureed carrots (Daucus carota L.). Int J Food Microbiol 2015; 207:109-18. [DOI: 10.1016/j.ijfoodmicro.2015.04.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/13/2015] [Accepted: 04/19/2015] [Indexed: 11/28/2022]
|
24
|
Chaves-López C, Serio A, Grande-Tovar CD, Cuervo-Mulet R, Delgado-Ospina J, Paparella A. Traditional Fermented Foods and Beverages from a Microbiological and Nutritional Perspective: The Colombian Heritage. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12098] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food; Agriculture and Environment; Univ. of Teramo; Via C.R. Lerici, 1 64023 Mosciano Stazione Italy
- Grupo de Biotecnologia Universidad de San Buenaventura Sede Cali; Avenida 10 de Mayo La Umbría Vía a Pance Colombia
| | - Annalisa Serio
- Faculty of Bioscience and Technology for Food; Agriculture and Environment; Univ. of Teramo; Via C.R. Lerici, 1 64023 Mosciano Stazione Italy
| | - Carlos David Grande-Tovar
- Grupo de Biotecnologia Universidad de San Buenaventura Sede Cali; Avenida 10 de Mayo La Umbría Vía a Pance Colombia
| | - Raul Cuervo-Mulet
- Faculty of Bioscience and Technology for Food; Agriculture and Environment; Univ. of Teramo; Via C.R. Lerici, 1 64023 Mosciano Stazione Italy
- Grupo de Biotecnologia Universidad de San Buenaventura Sede Cali; Avenida 10 de Mayo La Umbría Vía a Pance Colombia
| | - Johannes Delgado-Ospina
- Grupo de Biotecnologia Universidad de San Buenaventura Sede Cali; Avenida 10 de Mayo La Umbría Vía a Pance Colombia
| | - Antonello Paparella
- Faculty of Bioscience and Technology for Food; Agriculture and Environment; Univ. of Teramo; Via C.R. Lerici, 1 64023 Mosciano Stazione Italy
| |
Collapse
|
25
|
Korhola M, Hakonen R, Juuti K, Edelmann M, Kariluoto S, Nyström L, Sontag-Strohm T, Piironen V. Production of folate in oat bran fermentation by yeasts isolated from barley and diverse foods. J Appl Microbiol 2014; 117:679-89. [DOI: 10.1111/jam.12564] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/29/2022]
Affiliation(s)
- M. Korhola
- Department of Biosciences; University of Helsinki; Helsinki Finland
| | - R. Hakonen
- Department of Biosciences; University of Helsinki; Helsinki Finland
| | - K. Juuti
- Department of Biosciences; University of Helsinki; Helsinki Finland
| | - M. Edelmann
- Department of Food and Environmental Sciences; University of Helsinki; Helsinki Finland
| | - S. Kariluoto
- Department of Food and Environmental Sciences; University of Helsinki; Helsinki Finland
| | - L. Nyström
- Department of Food and Environmental Sciences; University of Helsinki; Helsinki Finland
| | - T. Sontag-Strohm
- Department of Food and Environmental Sciences; University of Helsinki; Helsinki Finland
| | - V. Piironen
- Department of Food and Environmental Sciences; University of Helsinki; Helsinki Finland
| |
Collapse
|
26
|
Hattingh M, Alexander A, Meijering I, van Reenen C, Dicks L. Malting of barley with combinations of Lactobacillus plantarum, Aspergillus niger, Trichoderma reesei, Rhizopus oligosporus and Geotrichum candidum to enhance malt quality. Int J Food Microbiol 2014; 173:36-40. [DOI: 10.1016/j.ijfoodmicro.2013.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 12/10/2013] [Accepted: 12/20/2013] [Indexed: 11/29/2022]
|
27
|
Jiménez DJ, Dini-Andreote F, van Elsas JD. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:92. [PMID: 24955113 PMCID: PMC4064818 DOI: 10.1186/1754-6834-7-92] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/23/2014] [Indexed: 05/09/2023]
Abstract
BACKGROUND Mixed microbial cultures, in which bacteria and fungi interact, have been proposed as an efficient way to deconstruct plant waste. The characterization of specific microbial consortia could be the starting point for novel biotechnological applications related to the efficient conversion of lignocellulose to cello-oligosaccharides, plastics and/or biofuels. Here, the diversity, composition and predicted functional profiles of novel bacterial-fungal consortia are reported, on the basis of replicated aerobic wheat straw enrichment cultures. RESULTS In order to set up biodegradative microcosms, microbial communities were retrieved from a forest soil and introduced into a mineral salt medium containing 1% of (un)treated wheat straw. Following each incubation step, sequential transfers were carried out using 1 to 1,000 dilutions. The microbial source next to three sequential batch cultures (transfers 1, 3 and 10) were analyzed by bacterial 16S rRNA gene and fungal ITS1 pyrosequencing. Faith's phylogenetic diversity values became progressively smaller from the inoculum to the sequential batch cultures. Moreover, increases in the relative abundances of Enterobacteriales, Pseudomonadales, Flavobacteriales and Sphingobacteriales were noted along the enrichment process. Operational taxonomic units affiliated with Acinetobacter johnsonii, Pseudomonas putida and Sphingobacterium faecium were abundant and the underlying strains were successfully isolated. Interestingly, Klebsiella variicola (OTU1062) was found to dominate in both consortia, whereas K. variicola-affiliated strains retrieved from untreated wheat straw consortia showed endoglucanase/xylanase activities. Among the fungal players with high biotechnological relevance, we recovered members of the genera Penicillium, Acremonium, Coniochaeta and Trichosporon. Remarkably, the presence of peroxidases, alpha-L-fucosidases, beta-xylosidases, beta-mannases and beta-glucosidases, involved in lignocellulose degradation, was indicated by predictive bacterial metagenome reconstruction. Reassuringly, tests for specific (hemi)cellulolytic enzymatic activities, performed on the consortial secretomes, confirmed the presence of such gene functions. CONCLUSION In an in-depth characterization of two wheat straw degrading microbial consortia, we revealed the enrichment and selection of specific bacterial and fungal taxa that were presumably involved in (hemi) cellulose degradation. Interestingly, the microbial community composition was strongly influenced by the wheat straw pretreatment. Finally, the functional bacterial-metagenome prediction and the evaluation of enzymatic activities (at the consortial secretomes) revealed the presence and enrichment of proteins involved in the deconstruction of plant biomass.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen (RUG), Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Francisco Dini-Andreote
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen (RUG), Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen (RUG), Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
28
|
Selbmann L, Zucconi L, Onofri S, Cecchini C, Isola D, Turchetti B, Buzzini P. Taxonomic and phenotypic characterization of yeasts isolated from worldwide cold rock-associated habitats. Fungal Biol 2014; 118:61-71. [DOI: 10.1016/j.funbio.2013.11.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 11/28/2022]
|
29
|
Bacterial community dynamics during industrial malting, with an emphasis on lactic acid bacteria. Food Microbiol 2013; 39:39-46. [PMID: 24387850 DOI: 10.1016/j.fm.2013.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 10/09/2013] [Accepted: 10/30/2013] [Indexed: 11/23/2022]
Abstract
Characterization of the microflora during malting is an essential step towards process management and optimization. Up till now, however, microbial characterization in the malting process has mostly been done using culture-dependent methods, probably leading to biased estimates of microbial diversity. The aim of this study was to characterize the bacterial communities using two culture-independent methods, including Terminal Restriction Fragment Length Polymorphism (T-RFLP) and 454 pyrosequencing, targeting the 16S rRNA gene. Studied samples originated from two harvest years and two malting houses malting the same batch of barley. Besides targeting the entire bacterial community (T-RFLP), emphasis was put on lactic acid bacteria (LAB) (T-RFLP and 454 pyrosequencing). The overall bacterial community richness was limited, but the community structure changed during the process. Zooming in on the LAB community using 454 pyrosequencing revealed a total of 47 species-level operational taxonomic units (OTUs). LAB diversity appeared relatively limited since 88% of the sequences were covered by the same five OTUs (representing members of Weissella, Lactobacillus and Leuconostoc) present in all samples investigated. Fluctuations in the relative abundances of the dominant LAB were observed with the process conditions. In addition, both the year of harvest and malting house influenced the LAB community structure.
Collapse
|
30
|
Morais CG, Cadete RM, Uetanabaro APT, Rosa LH, Lachance MA, Rosa CA. D-xylose-fermenting and xylanase-producing yeast species from rotting wood of two Atlantic Rainforest habitats in Brazil. Fungal Genet Biol 2013; 60:19-28. [DOI: 10.1016/j.fgb.2013.07.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/04/2013] [Accepted: 07/08/2013] [Indexed: 11/28/2022]
|
31
|
Laich F, Vaca I, Chávez R. Rhodotorula portillonensis sp. nov., a basidiomycetous yeast isolated from Antarctic shallow-water marine sediment. Int J Syst Evol Microbiol 2013; 63:3884-3891. [PMID: 23934251 DOI: 10.1099/ijs.0.052753-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During the characterization of the mycobiota associated with shallow-water marine environments from Antarctic sea, a novel pink yeast species was isolated. Sequence analysis of the D1/D2 domain of the LSU rDNA gene and 5.8S-ITS regions revealed that the isolated yeast was closely related to Rhodotorula pallida CBS 320(T) and Rhodotorula benthica CBS 9124(T). On the basis of morphological, biochemical and physiological characterization and phylogenetic analyses, a novel basidiomycetous yeast species, Rhodotorula portillonensis sp. nov., is proposed. The type strain is Pi2(T) ( = CBS 12733(T) = CECT 13081(T)) which was isolated from shallow-water marine sediment in Fildes Bay, King George Island, Antarctica.
Collapse
Affiliation(s)
- Federico Laich
- Instituto Canario de Investigaciones Agrarias, Ctra. Boquerón s/n, Valle de Guerra, Santa Cruz de Tenerife, Spain
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Alameda 3363, Estación Central, 9170022, Santiago, Chile
| |
Collapse
|
32
|
Assessing the xylanolytic bacterial diversity during the malting process. Food Microbiol 2013; 36:406-15. [PMID: 24010623 DOI: 10.1016/j.fm.2013.06.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 06/06/2013] [Accepted: 06/29/2013] [Indexed: 11/23/2022]
Abstract
The presence of microorganisms producing cell wall hydrolyzing enzymes such as xylanases during malting can improve mash filtration behavior and consequently have potential for more efficient wort production. In this study, the xylanolytic bacterial community during malting was assessed by isolation and cultivation on growth media containing arabinoxylan, and identification by 16S rRNA gene sequencing. A total of 33 species-level operational taxonomic units (OTUs) were found, taking into account a 3% sequence dissimilarity cut-off, belonging to four phyla (Actinobacteria, Bacteroidetes, Firmicutes and Proteobacteria) and 25 genera. Predominant OTUs represented xylanolytic bacteria identified as Sphingobacterium multivorum, Stenotrophomonas maltophilia, Aeromonas hydrophila and Pseudomonas fulva. DNA fingerprinting of all xylanolytic isolates belonging to S. multivorum obtained in this study revealed shifts in S. multivorum populations during the process. Xylanase activity was determined for a selection of isolates, with Cellulomonas flavigena showing the highest activity. The xylanase of this species was isolated and purified 23.2-fold by ultrafiltration, 40% ammonium sulfate precipitation and DEAE-FF ion-exchange chromatography and appeared relatively thermostable. This study will enhance our understanding of the role of microorganisms in the barley germination process. In addition, this study may provide a basis for microflora management during malting.
Collapse
|
33
|
TRFLP analysis reveals that fungi rather than bacteria are associated with premature yeast flocculation in brewing. J Ind Microbiol Biotechnol 2012; 39:1821-32. [DOI: 10.1007/s10295-012-1188-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 08/10/2012] [Indexed: 10/27/2022]
Abstract
Abstract
Premature yeast flocculation (PYF) is a sporadic fermentation problem in the brewing industry that results in incomplete yeast utilization of fermentable sugars in wort. Culture-independent, PCR-based fingerprinting techniques were applied in this study to identify the associations between the occurrence of the PYF problem during brewery fermentation with barley malt-associated microbial communities (both bacteria and fungi). Striking differences in the microbial DNA fingerprint patterns for fungi between PYF positive (PYF +ve) and negative (PYF −ve) barley malts were observed using the terminal restriction fragment length polymorphism (TRFLP) technique. The presence of terminal restriction fragments (TRFs) of 360–460 bp size range, for fungal HaeIII restriction enzyme-derived TRFLP profiles appeared to vary substantially between PYF +ve and PYF −ve samples. The source of the barley malt did not influence the fungal taxa implicated in PYF. TRFLP analysis indicates bacterial taxa are unlikely to be important in causing PYF. Virtual digestion of fungal sequences tentatively linked HaeIII TRFs in the 360–460 bp size range to a diverse range of yeast/yeast-like species. Findings from this study suggest that direct monitoring of barley malt samples using molecular methods could potentially be an efficient and viable alternative for monitoring PYF during brewery fermentations.
Collapse
|
34
|
de Garcia V, Zalar P, Brizzio S, Gunde-Cimerman N, van Broock M. Cryptococcus species (Tremellales) from glacial biomes in the southern (Patagonia) and northern (Svalbard) hemispheres. FEMS Microbiol Ecol 2012; 82:523-39. [PMID: 22861821 DOI: 10.1111/j.1574-6941.2012.01465.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 07/22/2012] [Accepted: 07/31/2012] [Indexed: 11/29/2022] Open
Abstract
Cryptococcus species (Basidiomycota) were isolated as the predominant yeast from glacial biomes of both Patagonia (Argentina) and the Svalbard archipelago (Norway). For a selected group of Cryptococcus belonging to Tremellales, assimilative profile, production of extracellular hydrolytic enzymes and ribosomal DNA internal transcribed spacer and large subunit (D1/D2) sequences were analysed. Cryptococcus victoriae, which was originally described from Antarctica, was the most frequently found species at both locations. High variability within the species was observed and described at the genotypic and phenotypic levels, two newly described species were found in both Patagonia and Svalbard: Cryptococcus fonsecae and Cryptococcus psychrotolerans. Two other new species were found only in Patagonia: Cryptococcus frias and Cryptococcus tronadorensis. Three additional new taxa were found, but they are not named as they were only represented by single isolates.
Collapse
Affiliation(s)
- Virginia de Garcia
- Laboratorio de Microbiología Aplicada y Biotecnología, Centro Regional Universitario Bariloche, INIBIOMA-CCT - CONICET, Universidad Nacional del Comahue, Río Negro, Argentina.
| | | | | | | | | |
Collapse
|
35
|
Metabolite fingerprinting of barley whole seeds, endosperms, and embryos during industrial malting. J Biotechnol 2012; 159:177-87. [DOI: 10.1016/j.jbiotec.2012.03.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/06/2012] [Accepted: 03/13/2012] [Indexed: 12/22/2022]
|
36
|
Laitila A, Kotaviita E, Peltola P, Home S, Wilhelmson A. Indigenous Microbial Community of Barley Greatly Influences Grain Germination and Malt Quality. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2007.tb00250.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Katina K, Juvonen R, Laitila A, Flander L, Nordlund E, Kariluoto S, Piironen V, Poutanen K. Fermented Wheat Bran as a Functional Ingredient in Baking. Cereal Chem 2012. [DOI: 10.1094/cchem-08-11-0106] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kati Katina
- VTT Biotechnology and Food Research, P.O. Box 1500, FIN-02044 VTT, Finland
- Corresponding author. Phone: 358-405763426. Fax: 358-207227111. E-mail:
| | - Riikka Juvonen
- VTT Biotechnology and Food Research, P.O. Box 1500, FIN-02044 VTT, Finland
| | - Arja Laitila
- VTT Biotechnology and Food Research, P.O. Box 1500, FIN-02044 VTT, Finland
| | - Laura Flander
- VTT Biotechnology and Food Research, P.O. Box 1500, FIN-02044 VTT, Finland
| | - Emilia Nordlund
- VTT Biotechnology and Food Research, P.O. Box 1500, FIN-02044 VTT, Finland
| | - Susanna Kariluoto
- Department of Food and Environmental Sciences, University of Helsinki, Finland
| | - Vieno Piironen
- Department of Food and Environmental Sciences, University of Helsinki, Finland
| | - Kaisa Poutanen
- VTT Biotechnology and Food Research, P.O. Box 1500, FIN-02044 VTT, Finland
| |
Collapse
|
38
|
van Heerden A, van Zyl WH, Cruywagen CW, Mouton M, Botha A. The lignicolous fungus Coniochaeta pulveracea and its interactions with syntrophic yeasts from the woody phylloplane. MICROBIAL ECOLOGY 2011; 62:609-19. [PMID: 21590300 DOI: 10.1007/s00248-011-9869-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 04/28/2011] [Indexed: 05/20/2023]
Abstract
The yeast-like fungus Coniochaeta pulveracea was studied with regard to its novel lignocellulolytic activities and the possible effect thereof on yeasts from the woody phylloplane. An enrichment procedure was used to isolate C. pulveracea from a decaying Acacia tree, and the identity of the isolate was confirmed using morphology, as well as molecular and phylogenetic techniques. This isolate, as well as strains representing C. pulveracea from different geographical regions, were compared with regard to optimum growth temperature and enzyme activity to representatives of closely related species. These include strains of Coniochaeta boothii, Coniochaeta rhopalochaeta, and Coniochaeta subcorticalis. Plate assays for cellulase and xylanase activity indicated that all representatives of the above-mentioned species were able to produce extracellular hydrolytic enzymes and were also able to degrade birchwood toothpicks during a 50-day incubation period at 30°C. To test the ability of these fungi and their enzymes to release simple sugars from complex cellulosic substrates, filtrates obtained from liquid cultures of Coniochaeta, cultivated on carboxymethyl cellulose (CMC) as sole carbon source, were analyzed using high-performance liquid chromatography analysis. Consequently, the presence of mono- and disaccharides such as glucose and cellobiose was confirmed in these culture filtrates. Two subsequent experiments were conducted to determine whether these simple sugars released from woody material by Coniochaeta may enhance growth of phylloplane yeasts. In the first experiment, representatives of Coniochaeta were co-cultured with selected yeasts suspended in agar plates containing birchwood toothpicks, followed by examination of plates for colony formation. Results indicated that Coniochaeta growth on the toothpicks enhanced growth of nearby yeast colonies in the agar plates. In the second experiment, representatives of selected yeasts and Coniochaeta species were co-cultured on CMC and xylan-containing plates where after yeast colony formation was recorded on the plates. Saccharomyces cerevisiae strains, engineered to utilize specific wood degradation products, i.e., cellobiose or xylose, as sole carbon source were used as positive controls. While it was found that cellobiose released from CMC was assimilated by the yeasts, no evidence could be obtained that xylose released from xylan was used as carbon source by the yeasts. These ambiguous results could be ascribed to secretion of nutritious metabolic end products, other than the products of fungal xylanases.
Collapse
Affiliation(s)
- Andrea van Heerden
- Department of Microbiology, Stellenbosch University, Private Bag X1, Stellenbosch, South Africa
| | | | | | | | | |
Collapse
|
39
|
A novel ascosporogenous yeast species, Zygosaccharomyces siamensis, and the sugar tolerant yeasts associated with raw honey collected in Thailand. FUNGAL DIVERS 2011. [DOI: 10.1007/s13225-011-0115-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Wuczkowski M, Passoth V, Turchetti B, Andersson AC, Olstorpe M, Laitila A, Theelen B, van Broock M, Buzzini P, Prillinger H, Sterflinger K, Schnürer J, Boekhout T, Libkind D. Description of Holtermanniella gen. nov., including Holtermanniella
takashimae sp. nov. and four new combinations, and proposal of the order Holtermanniales to accommodate tremellomycetous yeasts of the Holtermannia clade. Int J Syst Evol Microbiol 2011; 61:680-689. [DOI: 10.1099/ijs.0.019737-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The novel genus Holtermanniella is proposed here to accommodate four Cryptococcus species closely related to Holtermannia corniformis that are included in the Holtermannia clade (Basidiomycota, Agaricomycotina). Thus, four novel combinations are proposed: Holtermanniella nyarrowii comb. nov., Holtermanniella festucosa comb. nov., Holtermanniella mycelialis comb. nov. and Holtermanniella wattica comb. nov. In addition, a novel anamorphic yeast species was studied with 15 isolates obtained from different habitats around the world. Analysis of the sequences of the D1/D2 region of their large subunit rDNA showed that the novel species is placed phylogenetically within the Holtermannia clade of the Tremellomycetes (Agaricomycotina, Basidiomycota). PCR fingerprinting and sequencing of ITS1–5.8S–ITS2 showed genetic intraspecific variability among the strains: three groups were formed, which did not correlate with geographical origin or substrate. This novel species, designated the type species of Holtermanniella gen. nov., is described as Holtermanniella takashimae sp. nov.; the type strain is CBS 11174T (=HB 982T =DBVPG 8012T). The order Holtermanniales ord. nov. is proposed here to include Holtermannia (the type genus) and Holtermanniella.
Collapse
Affiliation(s)
- Michael Wuczkowski
- University of Natural Resources and Applied Life Sciences, Institute of Applied Microbiology (IAM), Austrian Center of Biological Resources and Applied Mycology (ACBR), Muthgasse 18, 1190 Wien, Austria
| | - Volkmar Passoth
- Swedish University of Agricultural Sciences (SLU), Department for Microbiology, Uppsala, Sweden
| | - Benedetta Turchetti
- Department of Applied Biology & Industrial Yeasts Collection DBVPG, Università di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Ann-Christin Andersson
- Swedish University of Agricultural Sciences (SLU), Department for Microbiology, Uppsala, Sweden
| | - Matilda Olstorpe
- Swedish University of Agricultural Sciences (SLU), Department for Microbiology, Uppsala, Sweden
| | - Arja Laitila
- VTT Technical Research Centre of Finland, PO Box 1000, Tietotie 2, Espoo, 02044 VTT, Finland
| | - Bart Theelen
- CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - María van Broock
- Lab. Microbiología Aplicada y Biotecnología, INIBIOMA, CONICET-UNComahue, Quintral 1250, (8400), Bariloche, Río Negro, Argentina
| | - Pietro Buzzini
- Department of Applied Biology & Industrial Yeasts Collection DBVPG, Università di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Hansjörg Prillinger
- University of Natural Resources and Applied Life Sciences, Institute of Applied Microbiology (IAM), Austrian Center of Biological Resources and Applied Mycology (ACBR), Muthgasse 18, 1190 Wien, Austria
| | - Katja Sterflinger
- University of Natural Resources and Applied Life Sciences, Institute of Applied Microbiology (IAM), Austrian Center of Biological Resources and Applied Mycology (ACBR), Muthgasse 18, 1190 Wien, Austria
| | - Johan Schnürer
- Swedish University of Agricultural Sciences (SLU), Department for Microbiology, Uppsala, Sweden
| | - Teun Boekhout
- CBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Diego Libkind
- Lab. Microbiología Aplicada y Biotecnología, INIBIOMA, CONICET-UNComahue, Quintral 1250, (8400), Bariloche, Río Negro, Argentina
| |
Collapse
|
41
|
Laitila A, Sarlin T, Raulio M, Wilhelmson A, Kotaviita E, Huttunen T, Juvonen R. Yeasts in malting, with special emphasis on Wickerhamomyces anomalus (synonym Pichia anomala). Antonie van Leeuwenhoek 2010; 99:75-84. [PMID: 20872177 DOI: 10.1007/s10482-010-9511-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 09/15/2010] [Indexed: 10/19/2022]
Abstract
Malted barley is a major raw material of beer, as well as distilled spirits and several food products. The production of malt (malting) exploits the biochemical reactions of a natural process, grain germination. In addition to germinating grain, the malting process includes another metabolically active component: a diverse microbial community that includes various types of bacteria and fungi. Therefore, malting can be considered as a complex ecosystem involving two metabolically active groups. Yeasts and yeast-like fungi are an important part of this ecosystem, but previously the significance of yeasts in malting has been largely underestimated. Characterization and identification of yeasts in industrial processes revealed 25 ascomycetous yeasts belonging to 10 genera, and 18 basidiomycetous yeasts belonging to 7 genera. In addition, two ascomycetous yeast-like fungi belonging to the genera Aureobasidium and Exophiala were commonly detected. Yeasts and yeast-like fungi produced extracellular hydrolytic enzymes with a potentially positive contribution to the malt enzyme spectrum. Several ascomycetous yeast strains showed strong antagonistic activity against field and storage moulds, Wickerhamomyces anomalus (synonym Pichia anomala) being the most effective species. Malting studies revealed that W. anomalus VTT C-04565 effectively restricted Fusarium growth and hydrophobin production during malting and prevented beer gushing. In order to broaden the antimicrobial spectrum and to improve malt brewhouse performance, W. anomalus could be combined with other starter cultures such as Lactobacillus plantarum. Well-characterized microbial mixtures consisting of barley and malt-derived microbes open up several possibilities to improve malt properties and to ensure the safety of the malting process.
Collapse
Affiliation(s)
- Arja Laitila
- VTT Technical Research Centre of Finland, P.O.Box 1000, 02044 Espoo, Finland.
| | | | | | | | | | | | | |
Collapse
|
42
|
Olstorpe M, Schnürer J, Passoth V. Microbial changes during storage of moist crimped cereal barley grain under Swedish farm conditions. Anim Feed Sci Technol 2010. [DOI: 10.1016/j.anifeedsci.2009.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Olstorpe M, Axelsson L, Schnürer J, Passoth V. Effect of starter culture inoculation on feed hygiene and microbial population development in fermented pig feed composed of a cereal grain mix with wet wheat distillersâ grain. J Appl Microbiol 2010; 108:129-38. [DOI: 10.1111/j.1365-2672.2009.04399.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Oliveira RQ, Rosa CA, Uetanabaro APT, Azeredo A, Neto AG, Assis SA. Polygalacturonase secreted by yeasts from Brazilian semi-arid environments. Int J Food Sci Nutr 2009; 60 Suppl 7:72-80. [PMID: 19462328 DOI: 10.1080/09637480802534517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Microbial pectinolytic enzymes are known to play a commercially important role in a number of industrial processes. The objective of this study was to investigate the extracellular polygalacturonases of yeasts isolated from Brazilian semi-arid environments. Among the 250 colonies tested, only 33 produced extracellular polygalacturonases: Aureobasidium pullulans (18 isolates), Candida boidinii (one isolate), Trichosporonoides sp. (three isolates), Kluyveromyces marxianus (one isolate), Cryptococcus liquefaciens (one isolate), Pseudozyma sp. (four isolates), and yeast-like related to fungal endophyte (five isolates). The highest activity of polygalacturonase was observed in Pseudozyma sp. CCMB 300 (14.17+/-0.08 micromol acid galacturonic released/min/mg protein). This study shows the potential of yeasts and yeast-like organisms isolated from Brazilian semi-arid environments to produce pectinolytic enzymes.
Collapse
Affiliation(s)
- Rodrigo Q Oliveira
- Laboratório de Enzimologia e Tecnologia das Fermentações, Departamento de Saúde, Universidade Estadual de Feira de Santana (UEFS), BA, Brazil
| | | | | | | | | | | |
Collapse
|
45
|
Assessment of wood degradation by Pycnoporus sanguineus when co-cultured with selected fungi. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9773-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
|
47
|
Laitila A, Sarlin T, Kotaviita E, Huttunen T, Home S, Wilhelmson A. Yeasts isolated from industrial maltings can suppress Fusarium growth and formation of gushing factors. J Ind Microbiol Biotechnol 2007; 34:701-13. [PMID: 17680285 DOI: 10.1007/s10295-007-0241-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 07/05/2007] [Indexed: 10/23/2022]
Abstract
Fusarium infection of barley and malt can cause severe problems in the malting and brewing industry. In addition to being potential mycotoxin producers, Fusarium fungi are known to cause beer gushing (spontaneous overfoaming of beer). Cereal-derived bacteria and yeasts are potential biocontrol agents. In this study, the antifungal potential of selected yeasts (12 strains) derived from the industrial malting ecosystem was studied in vitro with a plate-screening assay. Several ascomycetous yeast strains showed antagonistic activity against field and storage moulds, Pichia anomala being the most effective strain. The effects of P. anomala VTT C-04565 (C565) were examined in laboratory scale malting with naturally contaminated barley exhibiting gushing potential. P. anomala C565 restricted Fusarium growth and hydrophobin production during malting and prevented beer gushing. Grain germination was not disturbed by the presence of yeast. Addition of P. anomala C565 into the steeping seemed to retard wort filtration, but the filtration performance was recovered when yeast culture was combined with Lactobacillus plantarum VTT E-78076. Well-characterized microbial cultures could be used as food-grade biocontrol agents and they offer a natural tool for tailoring of malt properties.
Collapse
Affiliation(s)
- Arja Laitila
- VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 VTT, Finland.
| | | | | | | | | | | |
Collapse
|
48
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
49
|
Gianinetti A, Ferrari B, Frigeri P, Stanca AM. In vivo modeling of beta-glucan degradation in contrasting barley (Hordeum vulgare L.) genotypes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:3158-66. [PMID: 17381125 DOI: 10.1021/jf0636768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
An important determinative of malt quality is the malt beta-glucan content, which in turn depends on the initial barley beta-glucan content as well as the beta-glucan depolymerization by beta-glucanase (EC 3.2.1.73) during malting. Another enzyme, named beta-glucan solubilase, has been suggested to act prior to beta-glucanase; its existence, however, has not been unequivocally proven. We monitored changes in beta-glucan levels and in the development of beta-glucan-degrading enzymes during malting of five lots of contrasting barley genotypes. Two models of in vivo kinetics for beta-glucan degradation were then compared as follows: (i) a biphasic model based on the sequential action of beta-glucan solubilase and beta-glucanase and (ii) a monophasic model assuming that all beta-glucans are depolymerized by beta-glucanase without the previous intervention of another enzyme. Confirmatory regression analysis was used to test the fit of the models to the observed data. Our results show that beta-glucan degradation is mostly monophasic, although some enzyme other than beta-glucanase seems to be required for the early solubilization of a small fraction of insoluble beta-glucans (on average, 7% of total beta-glucans). Furthermore, the genotype-dependent kinetic rate constant (indicating beta-glucan degradability), in addition to beta-glucanase activity, is suggested to play a major role in malting quality.
Collapse
Affiliation(s)
- Alberto Gianinetti
- CRA, Experimental Institute for Cereal Research, via S. Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | | | | | | |
Collapse
|
50
|
Molecular identification of species comprising an unusual biofilm from a groundwater treatment plant. ACTA ACUST UNITED AC 2006. [DOI: 10.1017/s1479050507002098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ABSTRACTOrica's groundwater treatment plant in Botany, NSW, Australia, was designed to remove and destroy volatile organic compounds from polluted groundwater and to treat the water for reuse on the Botany Industrial Park. The initial steps in this process involved acidification of the groundwater and air stripping. During this operation, very large quantities of a biofilm formed within the air stripper, necessitating weekly clean-outs. We investigated the composition of this biofilm using molecular methods. Total DNA extracted from biofilm material was used as a template for amplification of both bacterial 16 S ribosomal DNA (rDNA) and the eukaryotic rDNA internal transcribed spacer region. Cloning and sequencing of these products showed that the biofilm was composed primarily of a bacterium belonging to the genusAcidocella, a filamentous fungus (Trichoderma asperellum), and the ascomycetous yeastsPichia,CandidaandGeotrichum. This unusual biofilm was composed of acidophiles that were capable of rapidly generating large amounts of biomass under these conditions. When acidification of the groundwater ceased, the biofilm no longer formed.
Collapse
|