1
|
Huang J, Qin Q, Li K, Xu X, Xu H, Li S. Preparation of Sphingan Oligosaccharides by SpnR Hydrolysis and Their Prebiotic Effects on Intestinal Flora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12308-12318. [PMID: 40340327 DOI: 10.1021/acs.jafc.4c12389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Oligosaccharides have the potential to act as prebiotics and can be obtained by enzymatic hydrolysis of polysaccharides. Sphingans are exopolysaccharides, including gellan, welan, and diutan, which are synthesized by the genus Sphingomonas. Sphingan lyase (SpnR) has attracted a great deal of interest due to its ability to produce oligosaccharides through the degradation of sphingans. However, there are few reports on the catalytic mechanism and hydrolysate analysis of SpnR. Here, SpnR from Sphingomonas sp. HT-1 was heterologously expressed in Escherichia coli. The optimal temperature and pH of the purified SpnR were 35 °C and pH 7.2, respectively. SpnR has good alkali resistance and a relatively mild optimum temperature. Na+ and Fe3+ increased SpnR activities, in contrast to Zn2+ and EDTA. SpnR could degrade sphingans, and the most suitable substrate was welan. Analysis of the cleavage pattern revealed that SpnR acts specifically on the β-1,4-glycosidic bond to obtain minimum trisaccharide sphingan oligosaccharides (SpnOS). The gut microbiota in vitro showed that SpnOS caused a substantial modification in the intestinal microbiota, characterized by an augmented proliferation of beneficial bacterial populations, notably Bacteroides and Lactobacillus.
Collapse
Affiliation(s)
- Jinsong Huang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Qiao Qin
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Kecheng Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoqi Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Dueholm MKD, Besteman M, Zeuner EJ, Riisgaard-Jensen M, Nielsen ME, Vestergaard SZ, Heidelbach S, Bekker NS, Nielsen PH. Genetic potential for exopolysaccharide synthesis in activated sludge bacteria uncovered by genome-resolved metagenomics. WATER RESEARCH 2023; 229:119485. [PMID: 36538841 DOI: 10.1016/j.watres.2022.119485] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
A good floc formation of activated sludge (AS) is crucial for solid-liquid separation and production of clean effluent during wastewater treatment. Floc formation is partly controlled by self-produced extracellular polymeric substances (EPS) such as exopolysaccharides, proteins, and nucleic acids. Little is known about the composition, structure, and function of EPS in AS and which bacteria produce them. To address this knowledge gap for the exopolysaccharides, we took advantage of 1083 high-quality metagenome-assembled genomes (MAGs) obtained from 23 Danish wastewater treatment plants. We investigated the genomic potential for exopolysaccharide biosynthesis in bacterial species typical in AS systems based on genome mining and gene synteny analyses. Putative gene clusters associated with the biosynthesis of alginate, cellulose, curdlan, diutan, hyaluronic acids, Pel, poly-β-1,6-N-acetyl-d-glucosamine (PNAG), Psl, S88 capsular polysaccharide, salecan, succinoglycan, and xanthan were identified and linked to individual MAGs, providing a comprehensive overview of the genome-resolved potential for these exopolysaccharides in AS bacteria. The approach and results provide a starting point for a more comprehensive understanding of EPS composition in wastewater treatment systems, which may facilitate a more refined regulation of the activated sludge process for improved stability.
Collapse
Affiliation(s)
- Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| | - Maaike Besteman
- Department of Agrotechnology and Food Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Emil Juel Zeuner
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marie Riisgaard-Jensen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten Eneberg Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Sofie Zacho Vestergaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Søren Heidelbach
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Nicolai Sundgaard Bekker
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Vandana, Das S. Genetic regulation, biosynthesis and applications of extracellular polysaccharides of the biofilm matrix of bacteria. Carbohydr Polym 2022; 291:119536. [DOI: 10.1016/j.carbpol.2022.119536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
|
4
|
Li H, Zhang Z, Liu J, Guo Z, Chen M, Li B, Xue H, Ji S, Li H, Qin L, Zhu L, Wang J, Zhu H. Identification of the Key Enzymes in WL Gum Biosynthesis and Critical Composition in Viscosity Control. Front Bioeng Biotechnol 2022; 10:918687. [PMID: 35711643 PMCID: PMC9197254 DOI: 10.3389/fbioe.2022.918687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
As an important microbial exopolysaccharide, the sphingan WL gum could be widely used in petroleum, food, and many other fields. However, its lower production is still limiting its wider application. Therefore, to gain insights into the bottlenecks of WL gum production by identifying the key enzymes in the WL gum biosynthesis pathway, more than 20 genes were over-expressed in Sphingomonas sp. WG and their effects on WL gum production and structure were investigated. Compared to the control strain, the WL gum production of welB over-expression strain was increased by 19.0 and 21.0% at 36 and 84 h, respectively. The WL gum production of both atrB and atrD over-expression strains reached 47 g/L, which was approximately 34.5% higher than that of the control strain at 36 h. Therefore, WelB, AtrB, and AtrD may be the key enzymes in WL production. Interestingly, the broth viscosity of most over-expression strains decreased, especially the welJ over-expression strain whose viscosity decreased by 99.3% at 84 h. Polysaccharides' structural features were investigated to find the critical components in viscosity control. The uronic acid content and total sugar content was affected by only a few genes, therefore, uronic acid and total sugar content may be not the key composition. In comparison, the acetyl degrees were enhanced by over-expression of most genes, which meant that acetyl content may be the critical factor and negatively correlated with the apparent viscosity of WL gum. This work provides useful information on the understanding of the bottlenecks of WL gum biosynthesis and will be helpful for the construction of high WL gum-yielding strains and rheological property controlling in different industries.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Zaimei Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Jianlin Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Zhongrui Guo
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Mengqi Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Benchao Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Han Xue
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Sixue Ji
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Hang Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Lijian Qin
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Ling Zhu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Hu Zhu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China.,Engineering Research Center of Industrial Biocatalysis, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China.,College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, China
| |
Collapse
|
5
|
Li H, Chen M, Zhang Z, Li B, Liu J, Xue H, Ji S, Guo Z, Wang J, Zhu H. Hybrid Histidine Kinase WelA of Sphingomonas sp. WG Contributes to WL Gum Biosynthesis and Motility. Front Microbiol 2022; 13:792315. [PMID: 35300474 PMCID: PMC8921679 DOI: 10.3389/fmicb.2022.792315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Sphingomonas sp. WG produced WL gum with commercial utility potential in many industries. A hybrid sensor histidine kinase/response regulator WelA was identified to regulate the WL gum biosynthesis, and its function was evaluated by gene deletion strategy. The WL gum production and broth viscosity of mutant ΔwelA was only 44% and 0.6% of wild type strain at 72 h. The transcriptomic analysis of differentially expressed genes showed that WelA was mapped to CckA; ChpT, and CtrA in the CckA-ChpT-CtrA pathway was up-regulated. One phosphodiesterase was up-regulated by CtrA, and the intracellular c-di-GMP was decreased. Most genes involved in WL gum biosynthesis pathway was not significantly changed in ΔwelA except the up-regulated atrB and atrD and the down-regulated pmm. Furthermore, the up-regulated regulators ctrA, flaEY, flbD, and flaF may participate in the regulation of flagellar biogenesis and influenced motility. These results suggested that CckA-ChpT-CtrA pathway and c-di-GMP were involved in WL gum biosynthesis regulation. This work provides useful information on the understanding of molecular mechanisms underlying WL gum biosynthesis regulation.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Mengqi Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Zaimei Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Benchao Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Jianlin Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Han Xue
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Sixue Ji
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Zhongrui Guo
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China
| | - Hu Zhu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao, China.,Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
6
|
Wu M, Shen Y, Ming Y, Shi Z, Shi Z, Liu D, Li G, Ma T. Characterization of a polysaccharide hydrogel with high elasticity produced by a mutant strain Sphingomonas sanxanigenens NX03. Carbohydr Polym 2022; 280:119030. [PMID: 35027132 DOI: 10.1016/j.carbpol.2021.119030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/02/2022]
Abstract
Microbial polysaccharides as renewable bioproducts have attracted lots of attention in various industries. Hesan (Highly elastic Sanxan), an exopolysaccharide produced by a plasma mutagenic strain Sphingomonas sanxanigenens NX03, was characterized. It possessed the same monosaccharide composition as the original polysaccharide Sanxan produced from wild-type strain NX02, but significantly reduced acetyl and glyceryl contents. Textural analysis showed the springiness and cohesiveness of Hesan gel was much higher than Sanxan gel, and rheological behaviors indicated it possessed a lower loss factor, and its conformational transition temperatures at different concentrations were obviously lower than Sanxan gel and high-acyl gellan gel, which suggested that Hesan gel was highly elastic and temperature-sensitive. Additionally, Hesan gel could be efficiently produced through micro-aerobic static culture in shallow (10.46 ± 0.30 g/L) and deep liquids (3.21 ± 0.32 g/L), which was significantly different from the fermentation of other water-soluble polysaccharides. In short, this study characterizes a new mutant strain and its polysaccharide products.
Collapse
Affiliation(s)
- Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yaqi Shen
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Yue Ming
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Zhuangzhuang Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Zhong Shi
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Dakun Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
7
|
Kajla S, Kumari R, Nagi GK. Microbial CO2 fixation and biotechnology in reducing industrial CO2 emissions. Arch Microbiol 2022; 204:149. [DOI: 10.1007/s00203-021-02677-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
|
8
|
Santos J, Trujillo-Cayado LA, Alcaide MDÁ, Alfaro MDC. Impact of Microfluidization on the Emulsifying Properties of Zein-Based Emulsions: Influence of Diutan Gum Concentration. MATERIALS 2021; 14:ma14133695. [PMID: 34279265 PMCID: PMC8269792 DOI: 10.3390/ma14133695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/18/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022]
Abstract
Microfluidization is a preparation method that can be used to obtain emulsions with submicron droplet sizes. The first objective of this study was to evaluate the influence of homogenization pressure and cycles on droplet sizes using response surface methodology. Secondly, the influence of the diutan gum concentration incorporated in the optimized emulsion on rheological properties, microstructure, and physical stability was investigated. Taking the response surface analysis into account, the emulsion processed at 20,000 psi after four cycles seemed to show the smallest Sauter diameter values. Hence, this emulsion was the starting point to incorporate diutan gum. Interestingly, the formation of a 3D network in the emulsion, observed by FESEM, was provoked by diutan gum. The emulsion formulated with 0.4 wt.% of diutan gum presented rheological gel properties and enhanced physical stability. This work highlights the importance of selecting optimized processing variables using the microfluidization technique and extends the knowledge of using diutan gum in combination with zein.
Collapse
Affiliation(s)
- Jenifer Santos
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, c/Virgen de África, 7, E41011 Sevilla, Spain;
- Correspondence: (J.S.); (M.d.C.A.)
| | - Luis A. Trujillo-Cayado
- Departamento de Ingeniería Química, Escuela Politécnica Superior, Universidad de Sevilla, c/Virgen de África, 7, E41011 Sevilla, Spain;
| | - María del Águila Alcaide
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, c/Profesor García González, 1, E41012 Sevilla, Spain;
| | - María del Carmen Alfaro
- Departamento de Ingeniería Química, Facultad de Química, Universidad de Sevilla, c/Profesor García González, 1, E41012 Sevilla, Spain;
- Correspondence: (J.S.); (M.d.C.A.)
| |
Collapse
|
9
|
Cho SH, Jeong Y, Lee E, Ko SR, Ahn CY, Oh HM, Cho BK, Cho S. Assessment of Erythrobacter Species Diversity through Pan-Genome Analysis with Newly Isolated Erythrobacter sp. 3-20A1M. J Microbiol Biotechnol 2021; 31:601-609. [PMID: 33526758 PMCID: PMC9723273 DOI: 10.4014/jmb.2012.12054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/15/2022]
Abstract
Erythrobacter species are extensively studied marine bacteria that produce various carotenoids. Due to their photoheterotrophic ability, it has been suggested that they play a crucial role in marine ecosystems. It is essential to identify the genome sequence and the genes of the species to predict their role in the marine ecosystem. In this study, we report the complete genome sequence of the marine bacterium Erythrobacter sp. 3-20A1M. The genome size was 3.1 Mbp and its GC content was 64.8%. In total, 2998 genetic features were annotated, of which 2882 were annotated as functional coding genes. Using the genetic information of Erythrobacter sp. 3-20A1M, we performed pangenome analysis with other Erythrobacter species. This revealed highly conserved secondary metabolite biosynthesis-related COG functions across Erythrobacter species. Through subsequent secondary metabolite biosynthetic gene cluster prediction and KEGG analysis, the carotenoid biosynthetic pathway was proven conserved in all Erythrobacter species, except for the spheroidene and spirilloxanthin pathways, which are only found in photosynthetic Erythrobacter species. The presence of virulence genes, especially the plant-algae cell wall degrading genes, revealed that Erythrobacter sp. 3-20A1M is a potential marine plant-algae scavenger.
Collapse
Affiliation(s)
- Sang-Hyeok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yujin Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Eunju Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - So-Ra Ko
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Chi-Yong Ahn
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Hee-Mock Oh
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,
B.-K. Cho E-mail:
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,Corresponding authors S. Cho Phone: +82-42-350-2660 Fax: +82-42-350-5620 E-mail:
| |
Collapse
|
10
|
Li H, Li K, Guo Z, Xue H, Li J, Ji S, Wang J, Zhu H. The Function of β-1,4-Glucuronosyltransferase WelK in the Sphingan WL Gum Biosynthesis Process in Marine Sphingomonas sp. WG. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:39-50. [PMID: 32979138 DOI: 10.1007/s10126-020-09998-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The marine-derived polysaccharide WL gum produced by Sphingomonas sp. WG showed commercial utility potential in ink, food, and oil industries. A β-1,4-glucuronosyltransferase WelK was predicted to catalyze the transfer of glucuronic acid from UDP-glucuronic acid to glucosyl-α-pyrophosphorylpolyprenol intermediate in the WL gum biosynthesis process. Its function was evaluated by bioinformatical analysis, gene knocking out, and overexpressing strategies. Compared to the wild strain, the WL gum production and broth viscosity of the mutant ∆welK were decreased by 71.5% and 99.2% when cultured for 48 h. The gene disruption led to the failure of product preparation. Homologous expression of welK in the native organism can effectively improve WL gum production. When glucose concentration was 6.7%, the WL gum production by the welK-overexpressing strain cultured for 60 h and 84 h reached 32.65 and 43.13 g/L, 134.1%, and 114% of the wild strain. The polysaccharide composition and qRT-PCR analysis showed that the glucuronic acid content was closely related to the expression level of welK. Thus, WelK was proved to play a critical role in the WL gum synthesis and will be an attractive target for metabolic engineering. Our experiment provided a genetic manipulation method for the functional characterization of genes in Sphingomonas sp. WG.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
| | - Kehui Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
| | - Zhongrui Guo
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
| | - Han Xue
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
| | - Jing Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
| | - Sixue Ji
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, People's Republic of China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, People's Republic of China.
| | - Hu Zhu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao, 266580, People's Republic of China.
- Engineering Research Center of Industrial Biocatalysis, Fujian Province Higher Education Institutes, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, People's Republic of China.
| |
Collapse
|
11
|
Bacterial Exopolysaccharides as Reducing and/or Stabilizing Agents during Synthesis of Metal Nanoparticles with Biomedical Applications. INT J POLYM SCI 2018. [DOI: 10.1155/2018/7045852] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacterial exopolysaccharides (EPSs) are biomolecules secreted in the extracellular space and have diverse biological functionalities, such as environmental protection, surface adherence, and cellular interactions. EPSs have been found to be biocompatible and eco-friendly, therefore making them suitable for applications in many areas of study and various industrial products. Recently, synthesis and stabilization of metal nanoparticles have been of interest because their usefulness for many biomedical applications, such as antimicrobials, anticancer drugs, antioxidants, drug delivery systems, chemical sensors, contrast agents, and as catalysts. In this context, bacterial EPSs have been explored as agents to aid in a greener production of a myriad of metal nanoparticles, since they have the ability to reduce metal ions to form nanoparticles and stabilize them acting as capping agents. In addition, by incorporating EPS to the metal nanoparticles, the EPS confers them biocompatibility. Thus, the present review describes the main bacterial EPS utilized in the synthesis and stabilization of metal nanoparticles, the mechanisms involved in this process, and the different applications of these nanoparticles, emphasizing in their biomedical applications.
Collapse
|
12
|
Xia W, Dong X, Zhang Y, Ma T. Biopolymer from marine Athelia and its application on heavy oil recovery in heterogeneous reservoir. Carbohydr Polym 2018; 195:53-62. [PMID: 29805008 DOI: 10.1016/j.carbpol.2018.04.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/22/2018] [Accepted: 04/16/2018] [Indexed: 11/27/2022]
Abstract
Biopolymer produced from marine Athelia strain presented unique Pseudoplastic behaviors under extremely-high temperature and salinity conditions. Characteristic analysis with FT-IR spectroscopy, high performance liquid chromatography, 1H and 13C NMR and two-dimensional COSY and HMQC spectra showed the structure of β-(1-6) glucans. Single-factor and orthogonal experiment design were used to optimize the yield, the maximum yield of the biopolymer was 28.32 g/L with 56.64% carbon conversion rate under optimized conditions. Economic investigation demonstrated that this novel biopolymer has great potential of commercialization with the competitive cost of $2896.04-5228.94 per ton for powder. Resistance factor and residual resistance factor were evaluated with core flooding experiments showed that this biopolymer had excellent performance of plugging capacity and profile modification, and indicating the great potential of application on heavy oil recovery.
Collapse
Affiliation(s)
- Wenjie Xia
- Power Environmental Energy Research Institute, 738 Arrow Grand circle, Covina, CA, 91722, USA; Shandong Province Key Laboratory of Food Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Jiefang Road 41, Jinan, 250013, PR China.
| | - Xueqian Dong
- Shandong Province Key Laboratory of Food Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Jiefang Road 41, Jinan, 250013, PR China.
| | - Yonggang Zhang
- Shandong Province Key Laboratory of Food Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Jiefang Road 41, Jinan, 250013, PR China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
13
|
Sengupta D, Datta S, Biswas D. Towards a better production of bacterial exopolysaccharides by controlling genetic as well as physico-chemical parameters. Appl Microbiol Biotechnol 2018; 102:1587-1598. [DOI: 10.1007/s00253-018-8745-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/22/2017] [Accepted: 12/27/2017] [Indexed: 11/28/2022]
|
14
|
The evolutionary life cycle of the polysaccharide biosynthetic gene cluster based on the Sphingomonadaceae. Sci Rep 2017; 7:46484. [PMID: 28429731 PMCID: PMC5399355 DOI: 10.1038/srep46484] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/21/2017] [Indexed: 11/08/2022] Open
Abstract
Although clustering of genes from the same metabolic pathway is a widespread phenomenon, the evolution of the polysaccharide biosynthetic gene cluster remains poorly understood. To determine the evolution of this pathway, we identified a scattered production pathway of the polysaccharide sanxan by Sphingomonas sanxanigenens NX02, and compared the distribution of genes between sphingan-producing and other Sphingomonadaceae strains. This allowed us to determine how the scattered sanxan pathway developed, and how the polysaccharide gene cluster evolved. Our findings suggested that the evolution of microbial polysaccharide biosynthesis gene clusters is a lengthy cyclic process comprising cluster 1 → scatter → cluster 2. The sanxan biosynthetic pathway proved the existence of a dispersive process. We also report the complete genome sequence of NX02, in which we identified many unstable genetic elements and powerful secretion systems. Furthermore, nine enzymes for the formation of activated precursors, four glycosyltransferases, four acyltransferases, and four polymerization and export proteins were identified. These genes were scattered in the NX02 genome, and the positive regulator SpnA of sphingans synthesis could not regulate sanxan production. Finally, we concluded that the evolution of the sanxan pathway was independent. NX02 evolved naturally as a polysaccharide producing strain over a long-time evolution involving gene acquisitions and adaptive mutations.
Collapse
|
15
|
Different nitrogen sources change the transcriptome of welan gum-producing strain Sphingomonas sp. ATCC 31555. Arch Microbiol 2017; 199:1055-1064. [DOI: 10.1007/s00203-017-1372-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
|
16
|
Gupta P, Diwan B. Bacterial Exopolysaccharide mediated heavy metal removal: A Review on biosynthesis, mechanism and remediation strategies. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2017; 13:58-71. [PMID: 28352564 PMCID: PMC5361134 DOI: 10.1016/j.btre.2016.12.006] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/29/2016] [Accepted: 12/21/2016] [Indexed: 11/28/2022]
Abstract
Heavy metal contamination has been recognized as a major public health risk, particularly in developing countries and their toxicological manifestations are well known. Conventional remediation strategies are either expensive or they generate toxic by-products, which adversely affect the environment. Therefore, necessity for an environmentally safe strategy motivates interest towards biological techniques. One of such most profoundly driven approach in recent times is biosorption through microbial biomass and their products. Extracellular polymeric substances are such complex blend of high molecular weight microbial (prokaryotic and eukaryotic) biopolymers. They are mainly composed of proteins, polysaccharides, uronic acids, humic substances, lipids etc. One of its essential constituent is the exopolysaccharide (EPS) released out of self defense against harsh conditions of starvation, pH and temperature, hence it displays exemplary physiological, rheological and physio-chemical properties. Its net anionic makeup allows the biopolymer to effectively sequester positively charged heavy metal ions. The polysaccharide has been expounded deeply in this article with reference to its biosynthesis and emphasizes heavy metal sorption abilities of polymer in terms of mechanism of action and remediation. It reports current investigation and strategic advancements in dealing bacterial cells and their EPS in diverse forms - mixed culture EPS, single cell EPS, live, dead or immobilized EPS. A significant scrutiny is also involved highlighting the existing challenges that still lie in the path of commercialization. The article enlightens the potential of EPS to bring about bio-detoxification of heavy metal contaminated terrestrial and aquatic systems in highly sustainable, economic and eco-friendly manner.
Collapse
|
17
|
Xu X, Nie Z, Zheng Z, Zhu L, Zhan X. Production and Rheological Properties of Welan Gum Produced by Sphingomonas sp. ATCC 31555 with Different Nitrogen Sources. J Mol Microbiol Biotechnol 2017; 27:55-63. [PMID: 28092912 DOI: 10.1159/000452835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/23/2016] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the effect of nitrogen sources on the production and rheological properties of welan gum produced by Sphingomonas sp. ATCC 31555. Six different nitrogen sources were used for ATCC 31555 fermentation, and 2 of these were further analyzed due to their more positive influence on welan gum production and bacterial biomass. Bacterial biomass, welan gum yield, welan viscosity, molecular weight, monosaccharide composition, acyl content, and welan structure were analyzed. Welan gum production and the biomass concentration of ATCC 31555 were higher in media containing NaNO3 and beef extract. Welan viscosity decreased at higher temperatures of 30-90°C, and it increased with a higher welan concentration. In the media containing NaNO3 (3 g·L-1), welan viscosity was higher at 30-70°C and a welan solution concentration of 6-10 g·L-1. With a reduced NaNO3 concentration, the molecular weight of welan gum and the molar ratio of mannose decreased, but the molar ratio of glucuronic acid increased. With different nitrogen sources, the acetyl content of welan gum differed but its structure was similar. NaNO3 and beef extract facilitated welan production. A reduced NaNO3 concentration promoted welan viscosity.
Collapse
Affiliation(s)
- Xiaopeng Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | | | | | | | | |
Collapse
|
18
|
|
19
|
Larsen FH, Engelsen SB. Insight into the Functionality of Microbial Exopolysaccharides by NMR Spectroscopy and Molecular Modeling. Front Microbiol 2015; 6:1374. [PMID: 26696983 PMCID: PMC4672062 DOI: 10.3389/fmicb.2015.01374] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/19/2015] [Indexed: 11/29/2022] Open
Abstract
Microbial polysaccharides represent an important class of microbial polymers with diverse functions such as biofilm formation, thickening, and gelling properties as well as health-promoting properties. The broad range of exopolysaccharide (EPS) functionalities has sparked a renewed interest in this class of molecules. Chemical, enzymatic as well as genetic modifications by metabolic engineering can be used to create large numbers of analogous EPS variants with respect to EPS functionality. While this top–down approach is effective in finding new candidates for desired functionality, there seems to be a lack of the corresponding bottom–up approach. The molecular mechanisms of the desired functionalities can be established from Nuclear Magnetic Resonance (NMR) and molecular models and it is proposed that these models can be fed back into the biotechnology by using a quantitative structure–property approach. In this way it will be possible to tailor specific functionality within a given design space. This perspective will include two well-known commercial microbial EPS examples namely gellan and diutan and show how even a limited use of multiphase NMR and molecular modeling can increase the insight into their different properties, which are based on only minor structural differences.
Collapse
Affiliation(s)
- Flemming H Larsen
- Spectroscopy and Chemometrics, Department of Food Science, University of Copenhagen Frederiksberg, Denmark
| | - Søren B Engelsen
- Spectroscopy and Chemometrics, Department of Food Science, University of Copenhagen Frederiksberg, Denmark
| |
Collapse
|
20
|
Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 2015; 6:496. [PMID: 26074894 PMCID: PMC4443731 DOI: 10.3389/fmicb.2015.00496] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the natural design space for production of a variety of biopolymer will open up a range of new applications. Here, we summarize the key aspects of microbial exopolysaccharide biosynthesis and highlight the latest engineering approaches toward the production of tailor-made variants with the potential to be used as valuable renewable and high-performance products for medical and industrial applications.
Collapse
Affiliation(s)
- Jochen Schmid
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Bernd Rehm
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyPalmerston North, New Zealand
| |
Collapse
|
21
|
Schmid J, Sieber V. Enzymatic Transformations Involved in the Biosynthesis of Microbial Exo-polysaccharides Based on the Assembly of Repeat Units. Chembiochem 2015; 16:1141-7. [DOI: 10.1002/cbic.201500035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Indexed: 12/12/2022]
|
22
|
|
23
|
Delbarre-Ladrat C, Sinquin C, Lebellenger L, Zykwinska A, Colliec-Jouault S. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front Chem 2014; 2:85. [PMID: 25340049 PMCID: PMC4189415 DOI: 10.3389/fchem.2014.00085] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/20/2014] [Indexed: 11/13/2022] Open
Abstract
Although polysaccharides are ubiquitous and the most abundant renewable bio-components, their studies, covered by the glycochemistry and glycobiology fields, remain a challenge due to their high molecular diversity and complexity. Polysaccharides are industrially used in food products; human therapeutics fall into a more recent research field and pharmaceutical industry is looking for more and more molecules with enhanced activities. Glycosaminoglycans (GAGs) found in animal tissues play a critical role in cellular physiological and pathological processes as they bind many cellular components. Therefore, they present a great potential for the design and preparation of therapeutic drugs. On the other hand, microorganisms producing exopolysaccharides (EPS) are renewable resources meeting well the actual industrial demand. In particular, the diversity of marine microorganisms is still largely unexplored offering great opportunities to discover high value products such as new molecules and biocatalysts. EPS-producing bacteria from the marine environment will be reviewed with a focus on marine-derived EPS from bacteria isolated from deep-sea hydrothermal vents. Information on chemical and structural features, putative pathways of biosynthesis, novel strategies for chemical and enzymatic modifications and potentialities in the biomedical field will be provided. An integrated approach should be used to increase the basic knowledge on these compounds and their applications; new clean environmentally friendly processes for the production of carbohydrate bioactive compounds should also be proposed for a sustainable industry.
Collapse
Affiliation(s)
| | - Corinne Sinquin
- EM3B Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer Nantes, France
| | - Lou Lebellenger
- EM3B Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer Nantes, France
| | - Agata Zykwinska
- EM3B Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer Nantes, France
| | - Sylvia Colliec-Jouault
- EM3B Laboratory, Institut Français de Recherche pour l'Exploitation de la Mer Nantes, France
| |
Collapse
|
24
|
Li O, Liu A, Lu C, Zheng DQ, Qian CD, Wang PM, Jiang XH, Wu XC. Increasing viscosity and yields of bacterial exopolysaccharides by repeatedly exposing strains to ampicillin. Carbohydr Polym 2014; 110:203-8. [DOI: 10.1016/j.carbpol.2014.03.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 03/03/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
|
25
|
A comparison of genes involved in sphingan biosynthesis brought up to date. Appl Microbiol Biotechnol 2014; 98:7719-33. [DOI: 10.1007/s00253-014-5940-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
|
26
|
Freitas F, Alves VD, Reis MAM. Bacterial Polysaccharides: Production and Applications in Cosmetic Industry. POLYSACCHARIDES 2014. [DOI: 10.1007/978-3-319-03751-6_63-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
27
|
Freitas F, Alves V, Coelhoso I, Reis M. Production and Food Applications of Microbial Biopolymers. CONTEMPORARY FOOD ENGINEERING 2013. [DOI: 10.1201/b15426-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Galván EM, Ielmini MV, Patel YN, Bianco MI, Franceschini EA, Schneider JC, Ielpi L. Xanthan chain length is modulated by increasing the availability of the polysaccharide copolymerase protein GumC and the outer membrane polysaccharide export protein GumB. Glycobiology 2012; 23:259-72. [DOI: 10.1093/glycob/cws146] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Freitas F, Alves VD, Reis MA. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 2011; 29:388-98. [DOI: 10.1016/j.tibtech.2011.03.008] [Citation(s) in RCA: 431] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 01/27/2023]
|
30
|
Xiao G, Zhu Y, Wang L, You Q, Huo P, You Y. Production and Storage of Edible Film Using Gellan Gum. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.proenv.2011.10.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Occurrence, production, and applications of gellan: current state and perspectives. Appl Microbiol Biotechnol 2008; 79:889-900. [DOI: 10.1007/s00253-008-1496-0] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 04/03/2008] [Accepted: 04/05/2008] [Indexed: 10/22/2022]
|