1
|
Chen Y, Guo G, Li YY. Kinetic and elemental characterization of HAP-based high-rate partial nitritation/anammox system orienting stability and inorganic elemental requirements. WATER RESEARCH 2024; 251:121169. [PMID: 38281335 DOI: 10.1016/j.watres.2024.121169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/29/2023] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Anammox-based processes are attractive for biological nitrogen removal, and the combination of anammox and hydroxyapatite (HAP) is promising for the simultaneous removal of nitrogen and phosphorus from wastewater. However, the kinetics of one-stage partial nitritation/anammox (PNA) in which ammonia-oxidizing bacteria (AOB) and anammox bacteria (AnAOB) exist in a reactor are poorly understood. Moreover, inorganic elements are required to promote microbial cell synthesis and growth; therefore, monitoring of elements to prevent the limitation and inhibition of the process is critical. The minimum amounts of inorganic elements required for a one-stage PNA process and the elemental flow remain unknown. Therefore, in this study, kinetics, stoichiometry, and element flow in the long-term, high-rate, continuous, one-stage HAP-PNA process with microaerobic granular sludge at 25 °C were determined using process modeling, parameter estimation, and mass balance. The biomass elemental composition was determined to be CH2.2O0.89N0.18S0.0091, and the biomass yield (Yobs) was calculated to be 0.0805 g/g NH4+-N. Therefore, a stoichiometric reaction equation for the one-stage HAP-PNA system was also proposed. The maximum specific growth rate (μm) of AnAOB and AOB were 0.0360 and 0.0982 d-1 with doubling times of 19 and 7.1 d, respectively. Finally, the elemental requirements for stable and high-rate performance were determined using element flow analysis. These findings are essential for developing the anammox-based process in a stable and resource-efficient manner and determining engineering applicability.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Guangze Guo
- Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Sciences for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
2
|
Li Y, Zhao J, Krooneman J, Euverink GJW. Strategies to boost anaerobic digestion performance of cow manure: Laboratory achievements and their full-scale application potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142940. [PMID: 33348487 DOI: 10.1016/j.scitotenv.2020.142940] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 06/12/2023]
Abstract
Cow manure represents a surplus manure waste in agricultural food sectors, which requires proper disposal. Anaerobic digestion, in this regard, has raised global interest owing to its apparent environmental benefits, including simultaneous waste diminishment and renewable energy generation. However, dedicated intensifications are necessary to promote the degradation of recalcitrant lignocellulosic components of cow manure. Hence, this manuscript presents a review of how to exploit cow manure in anaerobic digestion through different incentives extensively at lab-scale and full-scale. These strategies comprise 1) co-digestion; 2) pretreatment; 3) introduction of additives (trace metals, carbon-based materials, low-cost composites, nanomaterials, and microbial cultures); 4) innovative systems (bio-electrochemical fields and laser irradiation). Results imply that co-digestion and pretreatment approaches gain the predominance on promoting the digestion performance of cow manure. Particularly, for the co-digestion scenario, the selection of lignin-poor co-substrate is highlighted to produce maximum synergy and pronounced removal of lignocellulosic compounds of cow manure. Mechanical, thermal, and biological (composting) pretreatments generate mild improvement at laboratory-scale and are proved applicable in full-scale facilities. It is noteworthy that the introduction of additives (Fe-based nanomaterials, carbon-based materials, and composites) is acquiring more attention and shows promising full-scale application potential. Finally, bio-electrochemical fields stand out in laboratory trials and may serve as future reactor modules in agricultural anaerobic digestion installations treating cow manure.
Collapse
Affiliation(s)
- Yu Li
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Jing Zhao
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Janneke Krooneman
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Gert Jan Willem Euverink
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
3
|
Dehhaghi M, Tabatabaei M, Aghbashlo M, Kazemi Shariat Panahi H, Nizami AS. A state-of-the-art review on the application of nanomaterials for enhancing biogas production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109597. [PMID: 31563049 DOI: 10.1016/j.jenvman.2019.109597] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 09/06/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) of organic wastes is among the most promising approaches used for the simultaneous treatment of various waste streams, environment conservation, and renewable bioenergy generation (biomethane). Among the latest innovations investigated to enhance the overall performance of this process both qualitatively and quantitatively, the application of some nanoparticles (NPs) has attracted a great deal of attention. Typically, the NPs of potential benefit to the AD process could be divided into three groups: (i) zero-valent iron (ZVI) NPs, (ii) metallic and metal oxides NPs, and (iii) carbon-based NPs. The present review focuses on the latest findings reported on the application of these NPs in AD process and presents their various mechanisms of action leading to higher or lower biogas production rates. Among the NPs studies, ZVI NPs could be regarded as the most promising nanomaterials for enhancing biogas production through stabilizing the AD process as well as by stimulating the growth of beneficial microorganisms to the AD process and the enzymes involved. Future research should focus on various attributes of NPs when used as additives in biogas production, including facilitating mixing and pumping operations, enriching the population and diversity of beneficial microorganisms for AD, improving biogas release, and inducing the production and activity of AD-related enzymes. The higher volume of methane-enriched biogas would be translated into higher returns on investment and could therefore, result in further growth of the biogas production industry. Nevertheless, efforts should be devoted to decreasing the price of NPs so that the enhanced biogas and methane production (by over 90%, compared to control) would be more economically justified, facilitating the large-scale application of these compounds. In addition to economic considerations, environmental issues are also regarded as major constraints which should be addressed prior to widespread implementation of NP-augmented AD processes. More specifically, the fate of NPs augmented in AD process should be scrutinized to ensure maximal beneficial impacts while adverse environmental/health consequences are minimized.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran; Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Meisam Tabatabaei
- Faculty of Plantation and Agrotechnology, Universiti Teknologi MARA (UiTM), 40450, Shah Alam, Selangor, Malaysia; Microbial Biotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran; Biofuel Research Team (BRTeam), Karaj, Iran.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Hamed Kazemi Shariat Panahi
- Department of Microbial Biotechnology, School of Biology and Centre of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran; Faculty of Medicine and Health Sciences, Macquarie University, NSW, Australia
| | - Abdul-Sattar Nizami
- Center of Excellence in Environmental Studies, King Abdulaziz University, Saudi Arabia
| |
Collapse
|
4
|
Thanh PM, Ketheesan B, Stuckey DC, Zhou Y. Effects of trace metal deficiency and supplementation on a submerged anaerobic membrane bioreactor. BIORESOURCE TECHNOLOGY 2017; 241:161-170. [PMID: 28554102 DOI: 10.1016/j.biortech.2017.05.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/13/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
This study examined the effects of a deficiency in trace metals (TMs) on the performance of a submerged anaerobic membrane bioreactor (SAMBR). When trace metals were excluded from the feed to the SAMBR, COD removal and methane yield reduced while VFAs in the effluent increased. A reduction of up to 37.48% in the total metal content in the reactor was observed, while the less bioavailable fractions increased up to 13.29%. Pulse addition of trace metals for 7 days at 5-times the daily metal loading was effective in improving the performance of the SAMBR by increasing the amount of trace metals in the bioavailable fractions from 2.12% to 11.92%, with up to 87.7% of added metals retained in the reactor within 24h. However, the second and third pulse at 5 and 10-times daily metal loading did not result in similar changes in metal speciation and might have inhibited the methanogens.
Collapse
Affiliation(s)
- Pham Minh Thanh
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment & Water Research Institute, Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore 637141, Singapore
| | - Balachandran Ketheesan
- Nanyang Environment & Water Research Institute, Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore 637141, Singapore
| | - David C Stuckey
- Nanyang Environment & Water Research Institute, Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore 637141, Singapore; Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Yan Zhou
- Nanyang Environment & Water Research Institute, Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore 637141, Singapore; School of Civil & Environmental Engineering, College of Engineering, Nanyang Technological University, Singapore 637141, Singapore.
| |
Collapse
|
5
|
Braga AFM, Zaiat M, Silva GHR, Fermoso FG. Metal fractionation in sludge from sewage UASB treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 193:98-107. [PMID: 28192741 DOI: 10.1016/j.jenvman.2017.01.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/23/2017] [Accepted: 01/28/2017] [Indexed: 06/06/2023]
Abstract
This study evaluates the trace metal composition and fractionation in sludge samples from anaerobic sewage treatment plants from six cities in Brazil. Ten metals were evaluated: Ni, Mn, Se, Co, Fe, Zn, K, Cu, Pb and Cr. Specific methanogenic activity of the sludge was also evaluated using acetic acid as the substrate. Among the essential trace metals for anaerobic digestion, Se, Zn, Ni and Fe were found at a high percentage in the organic matter/sulfide fraction in all sludge samples analyzed. These metals are less available for microorganisms than other metals, i.e., Co and K, which were present in significant amounts in the exchangeable and carbonate fractions. Cu is not typically reported as an essential metal but as a possible inhibitor. One of the samples showed a total Cu concentration close to the maximal amount allowed for reuse as fertilizer. Among the non-essential trace metals, Pb was present in all sludge samples at similar low concentrations and was primarily present in the residual fraction, demonstrating very low availability. Cr was found at low concentrations in all sludge samples, except for the sludge from STP5; interestingly, this sludge presented the lowest specific methanogenic activity, indicating possible Cr toxicity.
Collapse
Affiliation(s)
- A F M Braga
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, 13.563-120, São Carlos, SP, Brazil.
| | - M Zaiat
- Biological Processes Laboratory, Center for Research, Development and Innovation in Environmental Engineering, São Carlos School of Engineering (EESC), University of São Paulo (USP), Engenharia Ambiental - Bloco 4-F, Av. João Dagnone, 1100 - Santa Angelina, 13.563-120, São Carlos, SP, Brazil
| | - G H R Silva
- Department of Civil and Environmental Engineering, University, São Paulo State University (UNESP), Av. Engenheiro Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, 17033-360, Bauru, SP, Brazil
| | - F G Fermoso
- Instituto de la Grasa (C.S.I.C.), Campus Universitario Pablo de Olavide, Edificio 46, Ctra. de Utrera, Km. 1, 41013, Sevilla, Spain
| |
Collapse
|
6
|
Thanh PM, Ketheesan B, Yan Z, Stuckey D. Trace metal speciation and bioavailability in anaerobic digestion: A review. Biotechnol Adv 2016; 34:122-36. [DOI: 10.1016/j.biotechadv.2015.12.006] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/10/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022]
|
7
|
Fermoso FG, van Hullebusch ED, Guibaud G, Collins G, Svensson BH, Carliell-Marquet C, Vink JPM, Esposito G, Frunzo L. Fate of Trace Metals in Anaerobic Digestion. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 151:171-95. [PMID: 26337848 DOI: 10.1007/978-3-319-21993-6_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A challenging, and largely uncharted, area of research in the field of anaerobic digestion science and technology is in understanding the roles of trace metals in enabling biogas production. This is a major knowledge gap and a multifaceted problem involving metal chemistry; physical interactions of metal and solids; microbiology; and technology optimization. Moreover, the fate of trace metals, and the chemical speciation and transport of trace metals in environments--often agricultural lands receiving discharge waters from anaerobic digestion processes--simultaneously represents challenges for environmental protection and opportunities to close process loops in anaerobic digestion.
Collapse
Affiliation(s)
- F G Fermoso
- Instituto de La Grasa, C.S.I.C., Campus Pablo de Olavide, Ctra. de Utrera Km.1, 41013, Seville, Spain,
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kobayashi T, Yan F, Takahashi S, Li YY. Effect of starch addition on the biological conversion and microbial community in a methanol-fed UASB reactor during long-term continuous operation. BIORESOURCE TECHNOLOGY 2011; 102:7713-7719. [PMID: 21700450 DOI: 10.1016/j.biortech.2011.05.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 05/27/2011] [Accepted: 05/30/2011] [Indexed: 05/31/2023]
Abstract
The effect of starch addition on the microbial composition and the biological conversion was investigated using two upflow anaerobic sludge bracket (UASB) reactors treating methanolic wastewater: one reactor was operated with starch addition, and another reactor was operated without starch addition. Approximately 300 days of operation were performed at 30 kg COD/m(3)/d, and then, the organic load of the reactors was gradually increased to 120 kg COD/m(3)/d. Successful operation was achieved at 30 kg COD/m(3)/d in both reactors; however, the methanol-fed reactor did not perform well at 120 kg COD/m(3)/d while the methanol-starch-fed reactor did. The granule analysis revealed the granule developed further only in the methanol-starch-fed reactor. The results of the microbial community analysis revealed more Methanosaeta cells were present in the methanol-starch-fed reactor, suggesting the degradation of starch produced acetate as an intermediate, which stimulated the growth of Methanosaeta cells responsible for the extension of granules.
Collapse
Affiliation(s)
- Takuro Kobayashi
- National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-0053, Japan
| | | | | | | |
Collapse
|
9
|
Fermoso FG, Bartacek J, Jansen S, Lens PNL. Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:3652-3667. [PMID: 19091385 DOI: 10.1016/j.scitotenv.2008.10.043] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 10/16/2008] [Accepted: 10/16/2008] [Indexed: 05/27/2023]
Abstract
Upflow anaerobic sludge bed (UASB) bioreactors are commonly used for anaerobic wastewater treatment. Trace metals need to be dosed to these bioreactors to maintain microbial metabolism and growth. The dosing needs to balance the supply of a minimum amount of micronutrients to support a desired microbial activity or growth rate with a maximum level of micronutrient supply above which the trace metals become inhibitory or toxic. In studies on granular sludge reactors, the required micronutrients are undefined and different metal formulations with differences in composition, concentration and species are used. Moreover, an appropriate quantification of the required nutrient dosing and suitable ranges during the entire operational period has been given little attention. This review summarizes the state-of-the-art knowledge of the interactions between trace metals and cells growing in anaerobic granules, which is the main type of biomass retention in anaerobic wastewater treatment reactors. The impact of trace metal limitation as well as overdosing (toxicity) on the biomass is overviewed and the consequences for reactor performance are detailed. Special attention is given to the influence of metal speciation in the liquid and solid phase on bioavailability. The currently used methods for trace metal dosing into wastewater treatment reactors are overviewed and ways of optimization are suggested.
Collapse
Affiliation(s)
- Fernando G Fermoso
- Sub-department of Environmental Technology, Wageningen University, "Biotechnion"-Bomenweg 2, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | | | | | | |
Collapse
|
10
|
Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation. J Ind Microbiol Biotechnol 2008; 35:1465-74. [DOI: 10.1007/s10295-008-0448-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
|