1
|
Jin R, Song J, Liu C, Lin R, Liang D, Aweya JJ, Weng W, Zhu L, Shang J, Yang S. Synthetic microbial communities: Novel strategies to enhance the quality of traditional fermented foods. Compr Rev Food Sci Food Saf 2024; 23:e13388. [PMID: 38865218 DOI: 10.1111/1541-4337.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/27/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024]
Abstract
Consumers are attracted to traditional fermented foods due to their unique flavor and nutritional value. However, the traditional fermentation technique can no longer accommodate the requirements of the food industry. Traditional fermented foods produce hazardous compounds, off-odor, and anti-nutritional factors, reducing product stability. The microbial system complexity of traditional fermented foods resulting from the open fermentation process has made it challenging to regulate these problems by modifying microbial behaviors. Synthetic microbial communities (SynComs) have been shown to simplify complex microbial communities and allow for the targeted design of microbial communities, which has been applied in processing traditional fermented foods. Herein, we describe the theoretical information of SynComs, particularly microbial physiological processes and their interactions. This paper discusses current approaches to creating SynComs, including designing, building, testing, and learning, with typical applications and fundamental techniques. Based on various traditional fermented food innovation demands, the potential and application of SynComs in enhancing the quality of traditional fermented foods are highlighted. SynComs showed superior performance in regulating the quality of traditional fermented foods using the interaction of core microorganisms to reduce the hazardous compounds of traditional fermented foods and improve flavor. Additionally, we presented the current status and future perspectives of SynComs for improving the quality of traditional fermented foods.
Collapse
Affiliation(s)
- Ritian Jin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Jing Song
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Chang Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Rong Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Duo Liang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Jude Juventus Aweya
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Longji Zhu
- Institute of Urban Environment, Chinese Academy of Science, Xiamen, China
| | - Jiaqi Shang
- Key Laboratory of Bionic Engineering, College of Biological and Agricultural Engineering, Jilin University, Changchun, China
| | - Shen Yang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China
| |
Collapse
|
2
|
Torres-Guardado R, Esteve-Zarzoso B, Reguant C, Bordons A. Microbial interactions in alcoholic beverages. Int Microbiol 2021; 25:1-15. [PMID: 34347199 DOI: 10.1007/s10123-021-00200-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
This review examines the different types of interactions between the microorganisms involved in the fermentation processes of alcoholic beverages produced all over the world from cereals or fruit juices. The alcoholic fermentation converting sugars into ethanol is usually carried out by yeasts, mainly Saccharomyces cerevisiae, which can grow directly using fruit sugars, such as those in grapes for wine or apples for cider, or on previously hydrolyzed starch of cereals, such as for beers. Some of these beverages, or the worts obtained from cereals, can be distilled to obtain spirits. Besides S. cerevisiae, all alcoholic beverages can contain other microorganisms and especially in spontaneous fermentation when starter cultures are not used. These other microbes are mostly lactic acid bacteria and other yeasts-the non-Saccharomyces yeasts. The interactions between all these microorganisms are very diverse and complex, as in any natural occurring ecosystem, including food fermentations. To describe them, we have followed a simplified ecological classification of the interactions. The negative ones are amensalism, by which a metabolic product of one species has a negative effect on others, and antagonism, by which one microbe competes directly with others. The positive interactions are commensalism, by which one species has benefits but no apparent effect on others, and synergism, by which there are benefits for all the microbes and also for the final product. The main interactions in alcoholic beverages are between S. cerevisiae and non-Saccharomyces and between yeasts and lactic acid bacteria. These interactions can be related to metabolites produced by fermentation such as ethanol, or to secondary metabolites such as proteinaceous toxins, or are feed-related, either by competition for nutrients or by benefit from released compounds during yeast autolysis. The positive or negative effects of these interactions on the organoleptic qualities of the final product are also revised. Focusing mainly on the alcoholic beverages produced by spontaneous fermentations, this paper reviews the interactions between the different yeasts and lactic acid bacteria in wine, cider, beer, and in spirits such as tequila, mezcal and cachaça.
Collapse
Affiliation(s)
- Rafael Torres-Guardado
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d´Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Braulio Esteve-Zarzoso
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d´Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Cristina Reguant
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d´Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Albert Bordons
- Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d´Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain.
| |
Collapse
|
3
|
QTL mapping: an innovative method for investigating the genetic determinism of yeast-bacteria interactions in wine. Appl Microbiol Biotechnol 2021; 105:5053-5066. [PMID: 34106310 DOI: 10.1007/s00253-021-11376-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/11/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
The two most commonly used wine microorganisms, Saccharomyces cerevisiae yeast and Oenococcus oeni bacteria, are responsible for completion of alcoholic and malolactic fermentation (MLF), respectively. For successful co-inoculation, S. cerevisiae and O. oeni must be able to complete fermentation; however, this relies on compatibility between yeast and bacterial strains. For the first time, quantitative trait loci (QTL) analysis was used to elucidate whether S. cerevisiae genetic makeup can play a role in the ability of O. oeni to complete MLF. Assessment of 67 progeny from a hybrid S. cerevisiae strain (SBxGN), co-inoculated with a single O. oeni strain, SB3, revealed a major QTL linked to MLF completion by O. oeni. This QTL encompassed a well-known translocation, XV-t-XVI, that results in increased SSU1 expression and is functionally linked with numerous phenotypes including lag phase duration and sulphite export and production. A reciprocal hemizygosity assay was performed to elucidate the effect of the gene SSU1 in the SBxGN background. Our results revealed a strong effect of SSU1 haploinsufficiency on O. oeni's ability to complete malolactic fermentation during co-inoculation and pave the way for the implementation of QTL mapping projects for deciphering the genetic bases of microbial interactions. KEY POINTS: • For the first time, QTL analysis has been used to study yeast-bacteria interactions. • A QTL encompassing a translocation, XV-t-XVI, was linked to MLF outcomes. • S. cerevisiae SSU1 haploinsufficiency positively impacted MLF by O. oeni.
Collapse
|
4
|
du Toit SC, Rossouw D, du Toit M, Bauer FF. Enforced Mutualism Leads to Improved Cooperative Behavior between Saccharomyces cerevisiae and Lactobacillus plantarum. Microorganisms 2020; 8:microorganisms8081109. [PMID: 32722047 PMCID: PMC7464542 DOI: 10.3390/microorganisms8081109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 01/15/2023] Open
Abstract
Saccharomyces cerevisiae and Lactobacillus plantarum are responsible for alcoholic and malolactic fermentation, respectively. Successful completion of both fermentations is essential for many styles of wine, and an understanding of how these species interact with each other, as well as the development of compatible pairings of these species, will help to manage the process. However, targeted improvements of species interactions are difficult to perform, in part because of the chemical and biological complexity of natural grape juice. Synthetic ecological systems reduce this complexity and can overcome these difficulties. In such synthetic systems, mutualistic growth of different species can be enforced through the reciprocal exchange of essential nutrients. Here, we implemented a novel approach to evolve mutualistic traits by establishing a co-dependent relationship between S. cerevisiae BY4742Δthi4 and Lb. plantarum IWBT B038 by omitting different combinations of amino acids from a chemically defined synthetic medium simulating standard grape juice. After optimization, the two species were able to support the growth of each other when grown in the absence of appropriate combinations of amino acids. In these obligatory mutualistic conditions, BY4742Δthi4 and IWBT B038 were co-evolved for approximately 100 generations. The selected evolved isolates showed improved mutualistic growth and the growth patterns under non-selective conditions indicate the emergence of mutually beneficial adaptations independent of the synthetic selection pressure. The combined use of synthetic ecology and co-evolution is a promising strategy to better understand and biotechnologically improve microbial interactions.
Collapse
|
5
|
Berbegal C, Borruso L, Fragasso M, Tufariello M, Russo P, Brusetti L, Spano G, Capozzi V. A Metagenomic-Based Approach for the Characterization of Bacterial Diversity Associated with Spontaneous Malolactic Fermentations in Wine. Int J Mol Sci 2019; 20:ijms20163980. [PMID: 31443334 PMCID: PMC6721008 DOI: 10.3390/ijms20163980] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 01/13/2023] Open
Abstract
This study reports the first application of a next generation sequencing (NGS) analysis. The analysis was designed to monitor the effect of the management of microbial resources associated with alcoholic fermentation on spontaneous malolactic consortium. Together with the analysis of 16S rRNA genes from the metagenome, we monitored the principal parameters linked to MLF (e.g., malic and lactic acid concentration, pH). We encompass seven dissimilar concrete practices to manage microorganisms associated with alcoholic fermentation: Un-inoculated must (UM), pied-de-cuve (PdC), Saccharomyces cerevisiae (SC), S. cerevisiae and Torulaspora delbrueckii co-inoculated and sequentially inoculated, as well as S. cerevisiae and Metschnikowia pulcherrima co-inoculated and sequentially inoculated. Surprisingly, each experimental modes led to different taxonomic composition of the bacterial communities of the malolactic consortia, in terms of prokaryotic phyla and genera. Our findings indicated that, uncontrolled AF (UM, PdC) led to heterogeneous consortia associated with MLF (with a relevant presence of the genera Acetobacter and Gluconobacter), when compared with controlled AF (SC) (showing a clear dominance of the genus Oenococcus). Effectively, the SC trial malic acid was completely degraded in about two weeks after the end of AF, while, on the contrary, malic acid decarboxylation remained uncomplete after 7 weeks in the case of UM and PdC. In addition, for the first time, we demonstrated that both (i) the inoculation of different non-Saccharomyces (T. delbrueckii and M. pulcherrima) and, (ii) the inoculation time of the non-Saccharomyces with respect to S. cerevisiae resources (co-inoculated and sequentially inoculated) influence the composition of the connected MLF consortia, modulating MLF performance. Finally, we demonstrated the first findings of delayed and inhibited MLF when M. pulcherrima, and T. delbrueckii were inoculated, respectively. In addition, as a further control test, we also assessed the effect of the inoculation with Oenococcus oeni and Lactobacillus plantarum at the end of alcoholic fermentation, as MLF starter cultures. Our study suggests the potential interest in the application of NGS analysis, to monitor the effect of alcoholic fermentation on the spontaneous malolactic consortium, in relation to wine.
Collapse
Affiliation(s)
- Carmen Berbegal
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
- EnolabERI BioTecMed, Universitat de València, 46100 Valencia, Spain
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy
| | - Mariagiovanna Fragasso
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Maria Tufariello
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Unità Operativa di Supporto di Lecce, 73100 Lecce, Italy
| | - Pasquale Russo
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Lorenzo Brusetti
- Faculty of Science and Technology, Free University of Bozen-Bolzano, 39100 Bozen-Bolzano, Italy
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
6
|
Measures to improve wine malolactic fermentation. Appl Microbiol Biotechnol 2019; 103:2033-2051. [DOI: 10.1007/s00253-018-09608-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/27/2018] [Indexed: 01/06/2023]
|
7
|
Lucio O, Pardo I, Heras JM, Krieger S, Ferrer S. Influence of yeast strains on managing wine acidity using Lactobacillus plantarum. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Rizk Z, Rayess YE, Ghanem C, Mathieu F, Taillandier P, Nehme N. Identification of multiple-derived peptides produced by Saccharomyces cerevisiae involved in malolactic fermentation inhibition. FEMS Yeast Res 2018; 18:5059576. [DOI: 10.1093/femsyr/foy080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 07/22/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ziad Rizk
- Lebanese Agricultural Research Institute (LARI)- Fanar Station- P.O. Box 90–1965, Jdeidet El-Metn Fanar- Lebanon
| | - Youssef El Rayess
- Faculty of Agricultural and Food Sciences- Holy Spirit University of Kaslik- P.O. Box 446, Jounieh- Lebanon
| | - Chantal Ghanem
- Lebanese Agricultural Research Institute (LARI)- Fanar Station- P.O. Box 90–1965, Jdeidet El-Metn Fanar- Lebanon
| | - Florence Mathieu
- Université de Toulouse, Laboratoire de Génie Chimique, CNRS, INPT, UPS, Toulouse, France
| | - Patricia Taillandier
- Université de Toulouse, Laboratoire de Génie Chimique, CNRS, INPT, UPS, Toulouse, France
| | - Nancy Nehme
- Faculty of Agricultural Engineering and Veterinary Medicine, Lebanese University, Dekwaneh- Lebanon
| |
Collapse
|
9
|
Villarreal-Soto SA, Beaufort S, Bouajila J, Souchard JP, Taillandier P. Understanding Kombucha Tea Fermentation: A Review. J Food Sci 2018; 83:580-588. [PMID: 29508944 DOI: 10.1111/1750-3841.14068] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/14/2017] [Accepted: 01/09/2018] [Indexed: 12/01/2022]
Abstract
Kombucha is a beverage of probable Manchurian origins obtained from fermented tea by a microbial consortium composed of several bacteria and yeasts. This mixed consortium forms a powerful symbiosis capable of inhibiting the growth of potentially contaminating bacteria. The fermentation process also leads to the formation of a polymeric cellulose pellicle due to the activity of certain strains of Acetobacter sp. The tea fermentation process by the microbial consortium was able to show an increase in certain biological activities which have been already studied; however, little information is available on the characterization of its active components and their evolution during fermentation. Studies have also reported that the use of infusions from other plants may be a promising alternative. PRACTICAL APPLICATION Kombucha is a traditional fermented tea whose consumption has increased in the recent years due to its multiple functional properties such as anti-inflammatory potential and antioxidant activity. The microbiological composition of this beverage is quite complex and still more research is needed in order to fully understand its behavior. This study comprises the chemical and microbiological composition of the tea and the main factors that may affect its production.
Collapse
Affiliation(s)
| | - Sandra Beaufort
- Laboratoire de Génie Chimique, UMR 5503, Univ. de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jalloul Bouajila
- Laboratoire de Génie Chimique, UMR 5503, Univ. de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Jean-Pierre Souchard
- Laboratoire de Génie Chimique, UMR 5503, Univ. de Toulouse, CNRS, INPT, UPS, Toulouse, France.,Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, UMR 5623, Toulouse, France
| | - Patricia Taillandier
- Laboratoire de Génie Chimique, UMR 5503, Univ. de Toulouse, CNRS, INPT, UPS, Toulouse, France
| |
Collapse
|
10
|
Miranda-Castilleja DE, Martínez-Peniche RÁ, Nadal Roquet-Jalmar M, Aldrete-Tapia JA, Arvizu-Medrano SM. Enological Qualities and Interactions Between Native Yeast and Lactic Acid Bacteria from Queretaro, Mexico. J Food Sci 2018; 83:1904-1912. [PMID: 29905939 DOI: 10.1111/1750-3841.14197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/04/2018] [Accepted: 04/24/2018] [Indexed: 12/01/2022]
Abstract
Despite the importance of strain compatibility, most of the enological strain selection studies are carried out separately on yeasts and lactic acid bacteria (LAB). In this study, the enological traits and interactions between native yeasts and LAB were studied. The H2 S and acetic acid production, growth rates at 8 °C, killer phenotypes, flocculation, and tolerance to must and wine inhibitors were determined for 25 Saccharomyces yeasts. The ability to grow under two wine-like conditions was also determined in 37 LAB (Oenococcus oeni and Lactobacillus plantarum). The yeast-LAB compatibility of selected strains was tested in a sequential scheme. Finally, microvinification trials were performed using two strains from each group to determine the efficiencies and quality parameters. The phenotypic characterization by the K-means and hierarchical clusters indicated a correlation between flocculation and optical density increase in simulated must and wine medium (r = -0.415) and grouped the prominent yeasts SR19, SR26, and N05 as moderately flocculent, killer, acid producing, and highly tolerant strains. Among the LAB, L. plantarum FU39 grew 230% more than the rest. With regard to interactions, LAB growth stimulation (14-fold on average) due to the previous action of yeasts, particularly of SR19, was observed. The final quality of all wines was similar, but yeast SR19 performed a faster and more efficient fermentation than did N05, Also L. plantarum FU39 fermented faster than did O. oeni VC32. The use of quantitative data, and multivariate analyses allowed an integrative approach to the selection of a compatible and efficient pair of enological yeast-LAB strains. PRACTICAL APPLICATION An alternative scheme is proposed for the joint selection of yeast and lactic acid bacteria strains, which allows us to foresee the interactions that may occur between them during winemaking. The kinetic parameters, turbidimetrically measured and analyzed by multivariate methods, simplify the detection of outstanding selectable microorganisms. This methodology can be implemented at any cellar or even any fermentative industry that aims to select compatible yeast and lactic acid bacteria.
Collapse
Affiliation(s)
- Dalia E Miranda-Castilleja
- Cuerpo Académico de Inocuidad Microbiana de los Alimentos. Depto. de Investigación y Posgrado en Alimentos, Facultad de Química, Univ. Autónoma de Querétaro, Centro Univ. S/N, Colonia Las Campanas, 76010, Querétaro, México
| | - Ramón Á Martínez-Peniche
- Cuerpo Académico de Inocuidad Microbiana de los Alimentos. Depto. de Investigación y Posgrado en Alimentos, Facultad de Química, Univ. Autónoma de Querétaro, Centro Univ. S/N, Colonia Las Campanas, 76010, Querétaro, México
| | - Montserrat Nadal Roquet-Jalmar
- Grup Vitivinicultura, Facultat d'Enologia, Dept. Bioquímica i Biotecnologia, Univ. Rovira i Virgili, Campus Sescelades, 43007, Tarragona, España
| | - J Alejandro Aldrete-Tapia
- Cuerpo Académico de Inocuidad Microbiana de los Alimentos. Depto. de Investigación y Posgrado en Alimentos, Facultad de Química, Univ. Autónoma de Querétaro, Centro Univ. S/N, Colonia Las Campanas, 76010, Querétaro, México
| | - Sofía M Arvizu-Medrano
- Cuerpo Académico de Inocuidad Microbiana de los Alimentos. Depto. de Investigación y Posgrado en Alimentos, Facultad de Química, Univ. Autónoma de Querétaro, Centro Univ. S/N, Colonia Las Campanas, 76010, Querétaro, México
| |
Collapse
|
11
|
Balmaseda A, Bordons A, Reguant C, Bautista-Gallego J. Non- Saccharomyces in Wine: Effect Upon Oenococcus oeni and Malolactic Fermentation. Front Microbiol 2018; 9:534. [PMID: 29628914 PMCID: PMC5876288 DOI: 10.3389/fmicb.2018.00534] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/08/2018] [Indexed: 01/01/2023] Open
Abstract
This work is a short review of the interactions between oenological yeasts and lactic acid bacteria (LAB), especially Oenococcus oeni, the main species carrying out the malolactic fermentation (MLF). The emphasis has been placed on non-Saccharomyces effects due to their recent increased interest in winemaking. Those interactions are variable, ranging from inhibitory, to neutral and stimulatory and are mediated by some known compounds, which will be discussed. One phenomena responsible of inhibitory interactions is the media exhaustion by yeasts, and particularly a decrease in L-malic acid by some non-Saccharomyces. Clearly ethanol is the main inhibitory compound of LAB produced by S. cerevisiae, but non-Saccharomyces can be used to decrease it. Sulfur dioxide and medium chain fatty acids (MCFAs) produced by yeasts can exhibit inhibitory effect upon LAB or even result lethal. Interestingly mixed fermentations with non-Saccharomyces present less MCFA concentration. Among organic acids derived as result of yeast metabolism, succinic acid seems to be the most related with MLF inhibition. Several protein factors produced by S. cerevisiae inhibiting O. oeni have been described, but they have not been studied in non-Saccharomyces. According to the stimulatory effects, the use of non-Saccharomyces can increase the concentration of favorable mediators such as citric acid, pyruvic acid, or other compounds derived of yeast autolysis such as peptides, glucans, or mannoproteins. The emergence of non-Saccharomyces in winemaking present a new scenario in which MLF has to take place. For this reason, new tools and approaches should be explored to better understand this new winemaking context.
Collapse
Affiliation(s)
- Aitor Balmaseda
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Catalonia, Spain
| | - Albert Bordons
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Catalonia, Spain
| | - Cristina Reguant
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Catalonia, Spain
| | - Joaquín Bautista-Gallego
- Food Biotechnology Department, Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
12
|
Liu Y, Rousseaux S, Tourdot-Maréchal R, Sadoudi M, Gougeon R, Schmitt-Kopplin P, Alexandre H. Wine microbiome: A dynamic world of microbial interactions. Crit Rev Food Sci Nutr 2017; 57:856-873. [PMID: 26066835 DOI: 10.1080/10408398.2014.983591] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Most fermented products are generated by a mixture of microbes. These microbial consortia perform various biological activities responsible for the nutritional, hygienic, and aromatic qualities of the product. Wine is no exception. Substantial yeast and bacterial biodiversity is observed on grapes, and in both must and wine. The diverse microorganisms present interact throughout the winemaking process. The interactions modulate the hygienic and sensorial properties of the wine. Many studies have been conducted to elucidate the nature of these interactions, with the aim of establishing better control of the two fermentations occurring during wine processing. However, wine is a very complex medium making such studies difficult. In this review, we present the current state of research on microbial interactions in wines. We consider the different kinds of interactions between different microorganisms together with the consequences of these interactions. We underline the major challenges to obtaining a better understanding of how microbes interact. Finally, strategies and methodologies that may help unravel microbe interactions in wine are suggested.
Collapse
Affiliation(s)
- Youzhong Liu
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France.,b Research Unit Analytical BioGeoChemistry , Helmholtz ZentrumMünchen, German Research Center for Environmental Health (GmbH) , Neuherberg , Germany
| | - Sandrine Rousseaux
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France
| | - Raphaëlle Tourdot-Maréchal
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France
| | - Mohand Sadoudi
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France
| | - Régis Gougeon
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France
| | - Philippe Schmitt-Kopplin
- b Research Unit Analytical BioGeoChemistry , Helmholtz ZentrumMünchen, German Research Center for Environmental Health (GmbH) , Neuherberg , Germany.,c Chair of Analytical Food Chemistry , Technische Universität München , Freising-Weihenstephan , Germany
| | - Hervé Alexandre
- a UMR 02102 PAM Université de Bourgogne AgroSup Dijon , Institut Universitaire de la Vigne et du Vin Jules Guyot, Université de Bourgogne , Dijon Cedex , France
| |
Collapse
|
13
|
Lu Y, Chua JY, Huang D, Lee PR, Liu SQ. Chemical consequences of three commercial strains of Oenococcus oeni co-inoculated with Torulaspora delbrueckii in durian wine fermentation. Food Chem 2017; 215:209-18. [DOI: 10.1016/j.foodchem.2016.07.158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/16/2016] [Accepted: 07/28/2016] [Indexed: 11/29/2022]
|
14
|
Induction of simultaneous and sequential malolactic fermentation in durian wine. Int J Food Microbiol 2016; 230:1-9. [DOI: 10.1016/j.ijfoodmicro.2016.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 03/29/2016] [Accepted: 04/03/2016] [Indexed: 11/22/2022]
|
15
|
Biotransformation of chemical constituents of durian wine with simultaneous alcoholic fermentation by Torulaspora delbrueckii and malolactic fermentation by Oenococcus oeni. Appl Microbiol Biotechnol 2016; 100:8877-88. [PMID: 27405438 DOI: 10.1007/s00253-016-7720-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
This work represents the first study on the biotransformation of chemical constituents of durian wine via simultaneous alcoholic fermentation (AF) and malolactic fermentation (MLF) with non-Saccharomyces yeast and lactic acid bacteria (LAB), namely, Torulaspora delbrueckii Biodiva and Oenococcus oeni PN4. The presence of PN4 improved the utilization of sugars but did not affect ethanol production. MLF resulted in the significant degradation of malic acid with corresponding increases in pH and lactic acid. The final concentrations of acetic acid (1.29 g/L) and succinic acid (3.70 g/L) in simultaneous AF and MLF were significantly higher than that in AF (1.05 and 1.31 g/L) only. Compared with AF, simultaneous AF and MLF significantly elevated the levels of aroma compounds with higher levels of higher alcohols (isoamyl alcohol, active amyl alcohol, isobutyl alcohol, and 2-phenylethyl alcohol), acetate esters (ethyl acetate, isoamyl acetate), and ethyl esters (ethyl octanoate, ethyl dodecanoate). All the endogenous volatile sulfur compounds decreased to trace or undetectable levels at the end of fermentation. MLF accentuated the reduction of acetaldehyde and sulfides. The initially absent dipropyl disulfide was formed, then catabolized, especially in simultaneous AF and MLF. This study suggested that the simultaneous AF and MLF of non-Saccharomyces and LAB could modify the volatile compositions and potentially modulate the organoleptic properties of durian wine.
Collapse
|
16
|
Rizk Z, El Rayess Y, Ghanem C, Mathieu F, Taillandier P, Nehme N. Impact of inhibitory peptides released by Saccharomyces cerevisiae BDX on the malolactic fermentation performed by Oenococcus oeni Vitilactic F. Int J Food Microbiol 2016; 233:90-96. [PMID: 27348346 DOI: 10.1016/j.ijfoodmicro.2016.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/16/2016] [Accepted: 06/16/2016] [Indexed: 11/30/2022]
Abstract
A previous study has shown that the malolactic fermentation (MLF) was inhibited during sequential fermentations performed with the pair Saccharomyces cerevisiae BDX/Oenococcus oeni Vitilactic F in synthetic grape juices. A yeast peptidic fraction with an apparent MW of 5-10kDa was involved in the inhibition. In the present study, the MLF was also inhibited in Cabernet Sauvignon and Syrah wines. The inhibition due to the peptidic fraction was maintained despite high phenolic contents. Kinetic studies showed that the peptidic fraction was gradually released during the alcoholic fermentation (AF). Its highest anti-MLF effect was reached when isolated from late stages of the AF stationary phase. The peptidic fraction was tested in vitro on cell-free bacterial cytosolic extracts containing the malolactic enzyme in a pH range between 3.5 and 6.7. Results showed that it was able to directly inhibit the malolactic enzyme activity with an increasing inhibitory kinetic correlated to the AF time at which it was collected.
Collapse
Affiliation(s)
- Ziad Rizk
- Lebanese Agricultural Research Institute (LARI), Fanar Station, P.O. Box 90-1965, Jdeidet El-Metn, Fanar, Lebanon; Faculty of Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon; Laboratoire de Génie Chimique, UMR CNRS 5503, INPT-ENSAT, UPS, Université de Toulouse, 1 Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France.
| | - Youssef El Rayess
- Faculty of Agricultural and Food Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon.
| | - Chantal Ghanem
- Lebanese Agricultural Research Institute (LARI), Fanar Station, P.O. Box 90-1965, Jdeidet El-Metn, Fanar, Lebanon; Faculty of Agricultural and Food Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon
| | - Florence Mathieu
- Laboratoire de Génie Chimique, UMR CNRS 5503, INPT-ENSAT, UPS, Université de Toulouse, 1 Avenue de l'Agrobiopôle, F-31326 Castanet-Tolosan, France.
| | - Patricia Taillandier
- Laboratoire de Génie Chimique, UMR CNRS 5503, INPT-ENSIACET, UPS, Université de Toulouse, 4 Allée Emile Monso, F-31432 Toulouse, France.
| | - Nancy Nehme
- Faculty of Sciences, Holy Spirit University of Kaslik, P.O. Box 446, Jounieh, Lebanon; Faculty of Agricultural Engineering and Veterinary Medicine, Lebanese University, Dekwaneh, Lebanon.
| |
Collapse
|
17
|
Tristezza M, di Feo L, Tufariello M, Grieco F, Capozzi V, Spano G, Mita G, Grieco F. Simultaneous inoculation of yeasts and lactic acid bacteria: Effects on fermentation dynamics and chemical composition of Negroamaro wine. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.10.064] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Garofalo C, El Khoury M, Lucas P, Bely M, Russo P, Spano G, Capozzi V. Autochthonous starter cultures and indigenous grape variety for regional wine production. J Appl Microbiol 2015; 118:1395-408. [DOI: 10.1111/jam.12789] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 11/30/2022]
Affiliation(s)
- C. Garofalo
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente; Università di Foggia; Foggia Italy
| | - M. El Khoury
- University of Bordeaux; ISVV; Villenave d'Ornon France
| | - P. Lucas
- University of Bordeaux; ISVV; Villenave d'Ornon France
| | - M. Bely
- University of Bordeaux; ISVV; Villenave d'Ornon France
| | - P. Russo
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente; Università di Foggia; Foggia Italy
| | - G. Spano
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente; Università di Foggia; Foggia Italy
| | - V. Capozzi
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente; Università di Foggia; Foggia Italy
| |
Collapse
|
19
|
Development of a SCAR (sequence-characterised amplified region) marker for acid resistance-related gene in Lactobacillus plantarum. Extremophiles 2014; 19:355-61. [PMID: 25515368 DOI: 10.1007/s00792-014-0721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
A sequence characterised amplified region marker was developed to determine an acid resistance-related gene in Lactobacillus plantarum. A random amplified polymorphic DNA marker named S116-680 was reported to be closely related to the acid resistance of the strains. The DNA band corresponding to this marker was cloned and sequenced with the induction of specific designed PCR primers. The results of PCR test helped to amplify a clear specific band of 680 bp in the tested acid-resistant strains. S116-680 marker would be useful to explore the acid-resistant mechanism of L. plantarum and to screen desirable malolactic fermentation strains.
Collapse
|
20
|
Monitoring peroxides generation during model wine fermentation by FOX-1 assay. Food Chem 2014; 175:25-8. [PMID: 25577046 DOI: 10.1016/j.foodchem.2014.11.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 11/22/2022]
Abstract
The quality of wine is mainly determined during the alcoholic fermentation that gradually transforms the grape juice into wine. Along this process the yeast goes through several stressful stages which can affect its fermentative ability and industrial performance, affecting wine quality. Based on their actual application on industrial winemaking, commercial Saccharomyces cerevisiae strains (EC1118, QA23, VIN7 and VL3) were used. They were inoculated in batch laboratory fermentations in a model wine solution for evaluating the production of reactive oxygen species (ROS) during the yeast's alcoholic fermentation. For first time total hydroperoxides were determined by FOX-1 assay to follow ROS generation. The total hydroperoxides accumulated along the 10 days of fermentation peaked up to 10.0 μM in yeast EC1118, of which 1.3 μM was hydrogen peroxide (H2O2). The FOX-1 based analytical approach herein presented is a valuable tool for the quantification of ROS oxidative damage during winemaking.
Collapse
|
21
|
Fahimi N, Brandam C, Taillandier P. A mathematical model of the link between growth and L-malic acid consumption for five strains of Oenococcus oeni. World J Microbiol Biotechnol 2014; 30:3163-72. [PMID: 25248866 DOI: 10.1007/s11274-014-1743-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/15/2014] [Indexed: 11/24/2022]
Abstract
In winemaking, after the alcoholic fermentation of red wines and some white wines, L-malic acid must be converted into L-lactic acid to reduce the acidity. This malolactic fermentation (MLF) is usually carried out by the lactic acid bacteria Oenococcus oeni. Depending on the level of process control, selected O. oeni is inoculated or the natural microbiota of the cellar is used. This study considers the link between growth and MLF for five strains of O. oeni species. The kinetics of growth and L-malic acid consumption were followed in modified MRS medium (20 °C, pH 3.5, and 10 % ethanol) in anaerobic conditions. A large variability was found among the strains for both their growth and their consumption of L-malic acid. There was no direct link between biomass productivities and consumption of L-malic acid among strains but there was a link of proportionality between the specific growth of a strain and its specific consumption of L-malic acid. Experiments with and without malic acid clearly demonstrated that malic acid consumption improved the growth of strains. This link was quantified by a mathematical model comparing the intrinsic malic acid consumption capacity of the strains.
Collapse
Affiliation(s)
- N Fahimi
- Laboratoire de Génie Chimique, Université de Toulouse, INPT, UPS, 4, Allée Emile Monso, BP 83234, 31432, Toulouse Cedex 4, France,
| | | | | |
Collapse
|
22
|
Muñoz V, Beccaria B, Abreo E. Simultaneous and successive inoculations of yeasts and lactic acid bacteria on the fermentation of an unsulfited Tannat grape must. Braz J Microbiol 2014; 45:59-66. [PMID: 24948914 PMCID: PMC4059326 DOI: 10.1590/s1517-83822014000100009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 09/09/2013] [Indexed: 11/22/2022] Open
Abstract
Interactions between yeasts and lactic acid bacteria are strain specific, and their outcome is expected to change in simultaneous alcoholic--malolactic fermentations from the pattern observed in successive fermentations. One Oenococcus oeni strain Lalvin VP41™ was inoculated with two Saccharomyces cerevisiae strains either simultaneously, three days after the yeast inoculation, or when alcoholic fermentation was close to finish. Early bacterial inoculations with each yeast strain allowed for the growth of the bacterial populations, and the length of malolactic fermentation was reduced to six days. Alcoholic fermentation by Lalvin ICV D80® yeast strain left the highest residual sugar, suggesting a negative effect of the bacterial growth and malolactic activity on its performance. In sequential inoculations the bacterial populations did not show actual growth with either yeast strain. In this strategy, both yeast strains finished the alcoholic fermentations, and malolactic fermentations took longer to finish. Lalvin ICV D80® allowed for higher viability and activity of the bacterial strain than Fermicru UY4® under the three inoculation strategies. This was beneficial for the sequential completion of both fermentations, but negatively affected the completion of alcoholic fermentation by Lalvin ICV D80® in the early bacteria additions. Conversely, Fermicru UY4®, which was rather inhibitory towards the bacteria, favored the timely completion of both fermentations simultaneously. As bacteria in early inoculations with low or no SO2 addition can be expected to multiply and interact with fermenting yeasts, not only are the yeast-bacterium strains combination and time point of the inoculation to be considered, but also the amount of bacteria inoculated.
Collapse
Affiliation(s)
- Viviana Muñoz
- Laboratorio de Microbiología Enológica Escuela Superior de Vitivinicultura Canelones Uruguay
| | - Bruno Beccaria
- Laboratorio de Microbiología Enológica Escuela Superior de Vitivinicultura Canelones Uruguay
| | - Eduardo Abreo
- Laboratorio de Microbiología Enológica Escuela Superior de Vitivinicultura Canelones Uruguay
| |
Collapse
|
23
|
Baroň M. Effectiveness of Higher Fatty Acids C<sub>8</sub>, C<sub>10</sub> and C<sub>12</sub>, Dimethyl Dicarbonate and Sulphur Dioxide for Inhibition of Re-fermentation and Malolactic Activities in Wine. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2014. [DOI: 10.11118/actaun201462010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
The application of malolactic fermentation process to create good-quality grape wine produced in cool-climate countries: a review. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2083-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Affiliation(s)
- Melissa Ivey
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Mara Massel
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27695
| | - Trevor G. Phister
- Division of Food Science, Brewing Science Program, School of Biological Sciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom;
| |
Collapse
|
26
|
Rossouw D, Du Toit M, Bauer FF. The impact of co-inoculation with Oenococcus oeni on the trancriptome of Saccharomyces cerevisiae and on the flavour-active metabolite profiles during fermentation in synthetic must. Food Microbiol 2011; 29:121-31. [PMID: 22029926 DOI: 10.1016/j.fm.2011.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/12/2011] [Accepted: 09/10/2011] [Indexed: 11/17/2022]
Abstract
Co-inoculation of commercial yeast strains with a bacterial starter culture at the beginning of fermentation of certain varietal grape juices is rapidly becoming a preferred option in the global wine industry, and frequently replaces the previously dominant sequential inoculation strategy where bacterial strains, responsible for malolactic fermentation, are inoculated after alcoholic fermentation has been completed. However, while several studies have highlighted potential advantages of co-inoculation, such studies have mainly focused on broad fermentation properties of the mixed cultures, and no data exist regarding the impact of this strategy on many oenologically relevant attributes of specific wine yeast strains such as aroma production. Here we investigate the impact of co-inoculation on a commercial yeast strain during alcoholic fermentation by comparing the transcriptome of this strain in yeast-only and in co-inoculated fermentations of synthetic must. The data show that a significant number of genes are differentially expressed in this strain in these two conditions. Some of the differentially expressed genes appear to respond to chemical changes in the fermenting must that are linked to bacterial metabolic activities, whereas others might represent a direct response of the yeast to the presence of a competing organism.
Collapse
Affiliation(s)
- Debra Rossouw
- Institute for Wine Biotechnology, University of Stellenbosch, Stellenbosch, South Africa.
| | | | | |
Collapse
|
27
|
Mendoza LM, de Nadra MCM, Farías ME. Antagonistic interaction between yeasts and lactic acid bacteria of oenological relevance. Food Res Int 2010. [DOI: 10.1016/j.foodres.2010.05.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Andújar-Ortiz I, Pozo-Bayón MA, García-Ruiz A, Moreno-Arribas MV. Role of specific components from commercial inactive dry yeast winemaking preparations on the growth of wine lactic acid bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:8392-8399. [PMID: 20578762 DOI: 10.1021/jf101132t] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The role of specific components from inactive dry yeast preparations widely used in winemaking on the growth of three representative wine lactic acid bacteria (Oenococcus oeni, Lactobacillus hilgardii and Pediococcus pentosaceus) has been studied. A pressure liquid extraction technique using solvents of different polarity was employed to obtain extracts with different chemical composition from the inactive dry yeast preparations. Each of the extracts was assayed against the three lactic acid bacteria. Important differences in the effect of the extracts on the growth of the bacteria were observed, which depended on the solvent employed during the extraction, on the type of commercial preparations and on the lactic acid bacteria species. The extracts that exhibited the most different activity were chemically characterized in amino acids, free monosaccharides, monosaccharides from polysaccharides, fatty acids and volatile compounds. In general, specific amino acids and monosaccharides were related to a stimulating effect whereas fatty acid composition and likely some volatile compounds seemed to show an inhibitory effect on the growth of the lactic acid bacteria. These results may provide novel and useful information in trying to obtain better and more specific formulations of winemaking inactive dry yeast preparations.
Collapse
Affiliation(s)
- Inmaculada Andújar-Ortiz
- Instituto de Investigacion en Ciencias de la Alimentacion, Campus de la Universidad Autonoma de Madrid, Madrid, Spain
| | | | | | | |
Collapse
|
29
|
Impact of the co-culture of Saccharomyces cerevisiae–Oenococcus oeni on malolactic fermentation and partial characterization of a yeast-derived inhibitory peptidic fraction. Food Microbiol 2010; 27:150-7. [DOI: 10.1016/j.fm.2009.09.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 09/04/2009] [Accepted: 09/15/2009] [Indexed: 11/22/2022]
|
30
|
John Wiley & Sons, Ltd.. Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|