1
|
Ling S, Xing J, Li S, Zhang L, Shen C, Hong J, Huang S, Li T, Wei L, Ding R. Enhancing the catalytic performance of xylanase XynASP through semi-rational design in the cord region to promote its application in juice clarification. Int J Biol Macromol 2025; 305:141138. [PMID: 39965700 DOI: 10.1016/j.ijbiomac.2025.141138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/27/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
In the GH11 family of xylanases, the cord region, a dynamic peptide linker connecting the "thumb" and "palm" regions, exhibits remarkable flexibility. To reveal the structure-function relationship in this region, saturation mutagenesis was performed on the cord segment of XynASP, a xylanase derived from Aspergillus saccharolyticus JOP 1030-1 GH11. Among the generated mutants, two variants, D116S and E119V, showed superior enzymatic properties and were subsequently combined to generate XynASP-SV. XynASP-SV exhibited a 3.05-fold increase in specific enzyme activity compared to the wild type, a 6 °C rise in Tm value, and a 4.62-fold extension in half-life at 50 °C. When beechwood xylan was used as the substrate, the kcat/Km of XynASP-SV increased 27.69-fold compared to the wild type. Molecular dynamics simulations revealed that the synergistic effects of the D116S and E119V mutations, along with amino acids in the "thumb" region, significantly enhanced the structural rigidity of XynASP-SV, thereby improving its thermostability. In the clarification experiments with mango and pitaya juices, XynASP-SV demonstrated substantial potential for industrial applications. This study highlights the enhanced catalytic performance of xylanase achieved by controlling its flexibility in the cord region.
Collapse
Affiliation(s)
- Shaohua Ling
- School of Life Science, Anhui Medical University, No.81 Meishan Road, Hefei 230032, Anhui, China
| | - Jiahao Xing
- School of Life Science, Anhui Medical University, No.81 Meishan Road, Hefei 230032, Anhui, China
| | - Siqi Li
- College of Food and Nutrition, Anhui Agricultural University, No. 130, Changjiang West Road Hefei, Anhui 230000, China
| | - Lianmin Zhang
- School of Life Science, Anhui Medical University, No.81 Meishan Road, Hefei 230032, Anhui, China
| | - Chenbin Shen
- School of Life Science, Anhui Medical University, No.81 Meishan Road, Hefei 230032, Anhui, China
| | - Jiong Hong
- School of Life Science, University of Science and Technology of China, No. 96 Jinzhai Road, Hefei 230036, Anhui, China
| | - Shenghai Huang
- School of Life Science, Anhui Medical University, No.81 Meishan Road, Hefei 230032, Anhui, China
| | - Tongbiao Li
- College of Biology and Food Engineering, Huanghuai University, No. 76 kaiyuan Road, Zhumadian, He'nan 463000, China.
| | - Lin Wei
- School of Life Science, Anhui Medical University, No.81 Meishan Road, Hefei 230032, Anhui, China.
| | - Rui Ding
- School of Life Science, Anhui Medical University, No.81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, Anhui Medical University, No.81 Meishan Road Hefei, 230032, Anhui, China.
| |
Collapse
|
2
|
Sardiña-Peña AJ, Mesa-Ramos L, Iglesias-Figueroa BF, Ballinas-Casarrubias L, Siqueiros-Cendón TS, Espinoza-Sánchez EA, Flores-Holguín NR, Arévalo-Gallegos S, Rascón-Cruz Q. Analyzing Current Trends and Possible Strategies to Improve Sucrose Isomerases' Thermostability. Int J Mol Sci 2023; 24:14513. [PMID: 37833959 PMCID: PMC10572972 DOI: 10.3390/ijms241914513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/10/2023] [Accepted: 09/10/2023] [Indexed: 10/15/2023] Open
Abstract
Due to their ability to produce isomaltulose, sucrose isomerases are enzymes that have caught the attention of researchers and entrepreneurs since the 1950s. However, their low activity and stability at temperatures above 40 °C have been a bottleneck for their industrial application. Specifically, the instability of these enzymes has been a challenge when it comes to their use for the synthesis and manufacturing of chemicals on a practical scale. This is because industrial processes often require biocatalysts that can withstand harsh reaction conditions, like high temperatures. Since the 1980s, there have been significant advancements in the thermal stabilization engineering of enzymes. Based on the literature from the past few decades and the latest achievements in protein engineering, this article systematically describes the strategies used to enhance the thermal stability of sucrose isomerases. Additionally, from a theoretical perspective, we discuss other potential mechanisms that could be used for this purpose.
Collapse
Affiliation(s)
- Amado Javier Sardiña-Peña
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Liber Mesa-Ramos
- Laboratorio de Microbiología III, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico;
| | - Blanca Flor Iglesias-Figueroa
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Lourdes Ballinas-Casarrubias
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Tania Samanta Siqueiros-Cendón
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Edward Alexander Espinoza-Sánchez
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Norma Rosario Flores-Holguín
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua 31136, Mexico;
| | - Sigifredo Arévalo-Gallegos
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| | - Quintín Rascón-Cruz
- Laboratorio de Biotecnología I, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitarios s/n Nuevo Campus Universitario, Chihuahua 31125, Mexico; (A.J.S.-P.); (B.F.I.-F.); (L.B.-C.); (T.S.S.-C.); (E.A.E.-S.); (S.A.-G.)
| |
Collapse
|
3
|
Zhu W, Qin L, Xu Y, Lu H, Wu Q, Li W, Zhang C, Li X. Three Molecular Modification Strategies to Improve the Thermostability of Xylanase XynA from Streptomyces rameus L2001. Foods 2023; 12:foods12040879. [PMID: 36832954 PMCID: PMC9957083 DOI: 10.3390/foods12040879] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Glycoside hydrolase family 11 (GH11) xylanases are the preferred candidates for the production of functional oligosaccharides. However, the low thermostability of natural GH11 xylanases limits their industrial applications. In this study, we investigated the following three strategies to modify the thermostability of xylanase XynA from Streptomyces rameus L2001 mutation to reduce surface entropy, intramolecular disulfide bond construction, and molecular cyclization. Changes in the thermostability of XynA mutants were analyzed using molecular simulations. All mutants showed improved thermostability and catalytic efficiency compared with XynA, except for molecular cyclization. The residual activities of high-entropy amino acid-replacement mutants Q24A and K104A increased from 18.70% to more than 41.23% when kept at 65 °C for 30 min. The catalytic efficiencies of Q24A and K143A increased to 129.99 and 92.26 mL/s/mg, respectively, compared with XynA (62.97 mL/s/mg) when using beechwood xylan as the substrate. The mutant enzyme with disulfide bonds formed between Val3 and Thr30 increased the t1/260 °C by 13.33-fold and the catalytic efficiency by 1.80-fold compared with the wild-type XynA. The high thermostabilities and hydrolytic activities of XynA mutants will be useful for enzymatic production of functional xylo-oligosaccharides.
Collapse
Affiliation(s)
- Weijia Zhu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Liqin Qin
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Youqiang Xu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongyun Lu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Qiuhua Wu
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weiwei Li
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Chengnan Zhang
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Xiuting Li
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, China General Chamber of Commerce, Beijing 100048, China
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China
- Correspondence:
| |
Collapse
|
4
|
Tan F, Xu J. Validation of the solution structure of dimerization domain of PRC1. PLoS One 2022; 17:e0270572. [PMID: 35930764 PMCID: PMC9355583 DOI: 10.1371/journal.pone.0270572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Cell-cycle dependent proteins are indispensible for the accurate division of cells, a group of proteins called Microtubule-associated proteins (MAPs) are important to cell division as it bind microtubules and participate with other co-factors to form the spindle midbody, which works as the workhorse of cell-division. PRC1 is a distinguishing member of MAPs, as it is a human MAP and works as the key in mediating daughter cell segregation in ana-phase and telo-phase. The physiological significance of PRC1 calls for a high resolution three-dimensional structure. The crystal structure of PRC1 was published but has low resolution (>3 Å) and incomplete sidechains, placing hurdles to understanding the structure-function relationships of PRC1, therefore, we determined the high-resolution solution structure of PRC1’s dimerization domain using NMR spectroscopy. Significant differences between the crystal structure and the solution structure can be observed, the main differences center around the N terminus and the end of the alpha-Helix H2. Furthermore, detailed structure analyses revealed that the hydrophobic core packing of the solution and crystal structures are also different. To validate the solution structure, we used Hydrogen-deuterium exchange experiments that address the structural discrepancies between the crystal and solution structure; we also generated mutants that are key to the differences in the crystal and solution structures, measuring its structural or thermal stability by NMR spectroscopy and Fluorescence Thermal Shift Assays. These results suggest that N terminal residues are key to the integrity of the whole protein, and the solution structure of the dimerization domain better reflects the conformation PRC1 adopted in solution conditions.
Collapse
Affiliation(s)
- Fei Tan
- Peking University, Beijing, China
- * E-mail:
| | - Jin Xu
- Peking University, Beijing, China
| |
Collapse
|
5
|
N-Terminus-Mediated Solution Structure of Dimerization Domain of PRC1. Curr Issues Mol Biol 2022; 44:1626-1645. [PMID: 35723369 PMCID: PMC9164050 DOI: 10.3390/cimb44040111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Microtubule-associated proteins (MAPs) are essential for the accurate division of a cell into two daughter cells. These proteins target specific microtubules to be incorporated into the spindle midzone, which comprises a special array of microtubules that initiate cytokinesis during anaphase. A representative member of the MAPs is Protein Regulator of Cytokinesis 1 (PRC1), which self-multimerizes to cross-link microtubules, the malfunction of which might result in cancerous cells. The importance of PRC1 multimerization makes it a popular target for structural studies. The available crystal structure of PRC1 has low resolution (>3 Å) and accuracy, limiting a better understanding of the structure-related functions of PRC1. Therefore, we used NMR spectroscopy to better determine the structure of the dimerization domain of PRC1. The NMR structure shows that the PRC1 N terminus is crucial to the overall structure integrity, but the crystal structure bespeaks otherwise. We systematically addressed the role of the N terminus by generating a series of mutants in which N-terminal residues methionine (Met1) and arginine (Arg2) were either deleted, extended or substituted with other rationally selected amino acids. Each mutant was subsequently analyzed by NMR spectroscopy or fluorescence thermal shift assays for its structural or thermal stability; we found that N-terminal perturbations indeed affected the overall protein structure and that the solution structure better reflects the conformation of PRC1 under solution conditions. These results reveal that the structure of PRC1 is governed by its N terminus through hydrophobic interactions with other core residues, such hitherto unidentified N-terminal conformations might shed light on the structure−function relationships of PRC1 or other proteins. Therefore, our study is of major importance in terms of identifying a novel structural feature and can further the progress of protein folding and protein engineering.
Collapse
|
6
|
Kalim B, Ali NM, Iqbal A, Zahid MT, Rehman S, Bashir N, Ali R. Modulating the production of xylanase by Bacillus pumilus BS131 through optimization using waste fiber sludge. BRAZ J BIOL 2021; 83:e243874. [PMID: 34378658 DOI: 10.1590/1519-6984.243874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/01/2021] [Indexed: 11/22/2022] Open
Abstract
In recent days, cheapest alternative carbon source for fermentation purpose is desirable to minimize production cost. Xylanases have become attractive enzymes as their potential in bio-bleaching of pulp and paper industry. The objective of the present study was to identify the potential ability on the xylanase production by locally isolated Bacillus pumilus BS131 by using waste fiber sludge and wheat bran media under submerged fermentation. Culture growth conditions were optimized to obtain significant amount of xylanase. Maximum xylanase production was recorded after 72 hours of incubation at 30 °C and 7 pH with 4.0% substrate concentration. In the nutshell, the production of xylanase using inexpensive waste fiber sludge and wheat-bran as an alternative in place of expensive xylan substrate was more cost effective and environment friendly.
Collapse
Affiliation(s)
- B Kalim
- GC University, Department of Zoology, Microbiology Laboratories, Lahore, Punjab, Pakistan
| | - N M Ali
- GC University, Department of Zoology, Microbiology Laboratories, Lahore, Punjab, Pakistan
| | - A Iqbal
- University of Veterinary and Animal Sciences, Department of Wild Life and Ecology, Developmental Biology Laboratories, Lahore, Punjab, Pakistan
| | - M T Zahid
- GC University, Department of Zoology, Molecular Biology Laboratories, Lahore, Punjab, Pakistan
| | - S Rehman
- GC University, Department of Zoology, Microbiology Laboratories, Lahore, Punjab, Pakistan
| | - N Bashir
- GC University, Department of Chemistry, Organic Chemistry Laboratories, Lahore, Punjab, Pakistan
| | - R Ali
- University of the Punjab, Institute of Biochemistry and Biotechnology, Biochemistry Laboratories, Lahore, Punjab, Pakistan
| |
Collapse
|
7
|
Liu Z, Cao L, Fu X, Liang Q, Sun H, Mou H. A multi-functional genetic manipulation system and its use in high-level expression of a β-mannanase mutant with high specific activity in Pichia pastoris. Microb Biotechnol 2021; 14:1525-1538. [PMID: 33942496 PMCID: PMC8313266 DOI: 10.1111/1751-7915.13812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/29/2022] Open
Abstract
To further extend the practical application of a thermostable and acidic resistance β-mannanase (ManAK) in animal feed additives, an effective strategy that combined directed evolution and metabolic engineering was developed. Four positive mutants (P191M, P194E, S199G and S268Q) with enhanced specific activity (25.5%-60.9%) were obtained. The S199G mutant exhibited 56.7% enhancement of specific activity at 37°C and good thermostability, and this was selected for high-level expression in P. pastoris X33. A multi-functional and scarless genetic manipulation system was proposed and functionally verified (gene deletion, substitution/insertion and point mutation). This was then subjected to Rox1p (an oxygen related transcription regulator) deletion and Vitreoscilla haemoglobin (VHb) co-expression for high enzyme productivity in P. pastoris X33VIIManAKS199G . An excellent strain, named X33VIIManAKS199G ∆rox1::VHb, was achieved by combining these two factors, and then the maximum enzymatic activity was further increased to 3753 U ml-1 , which was nearly twice as much as the maximum production of ManAK in P. pastoris. This work provides a systematic and effective method to improve the enzymatic yield of β-mannanase, promotes the application of ManAK in feed additives, and also demonstrated that a scarless genetic manipulation tool is useful in P. pastoris.
Collapse
Affiliation(s)
- Zhemin Liu
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| | - Linyuan Cao
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| | - Xiaodan Fu
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| | - Qingping Liang
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| | - Han Sun
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| | - Haijin Mou
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| |
Collapse
|
8
|
Zhang C, Ding Y. Probing the Relation Between Community Evolution in Dynamic Residue Interaction Networks and Xylanase Thermostability. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:686-696. [PMID: 31217124 DOI: 10.1109/tcbb.2019.2922906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Residue-residue interactions are the basis of protein thermostability. The molecular conformations of Streptomyces lividans xylanase (xyna_strli) and Thermoascus aurantiacus xylanase (xyna_theau) at 300K, 325K and 350K were obtained by Molecular Dynamics (MD) simulations. Dynamic weighted residue interaction networks were constructed and the rigid-communities were detected using the ESPRA algorithm and the Evolving Graph+Fast-Newman algorithm. The residues in the rigid-communities are primarily located in loop2, short helixes α2', α3', α4' and helixes α3 and α4. Thus, the rigid-community is close to the N-terminus of xylanase, which is usually stabilized to increase thermostability using site-directed mutagenesis. The evolution of the rigid-community with increasing temperature shows a stable synergistic interaction between loop2, α2', α3' and α4' in xyna_theau. In particular, the short helixes α2' and α3' form a "thermo helix" to promote thermostability. In addition, tight global interactions between loop2, α2', α3', α3, α4' and α4 of xyna_theau are identified, consisting mainly of hydrogen bonds, van der Waals forces and π-π stacking. These residue interactions are more resistant to high temperatures than those in xyna_strli. Robust residue interactions within these secondary structures are key factors influencing xyna_strli and xyna_theau thermostability. Analyzing the rigid-community can elucidate the cooperation of secondary structures, which cannot be discovered from sequence and 3D structure alone.
Collapse
|
9
|
Ngenyoung A, Muhammad A, Rattanarojpong T, Sutthibutpong T, Khunrae P. Effect of N-terminal modification on the mode of action between the Xyn11A and Xylotetraose. Int J Biol Macromol 2020; 170:240-247. [PMID: 33359611 DOI: 10.1016/j.ijbiomac.2020.12.154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to gain an insight into the effects of mutation-induced binding pocket tilting of the Xyn11A xylanase from Bacillus firmus K-1 in producing a unique hydrolysis characteristic. In this study, the wildtype Xyn11A and its K40L mutant were compared for their hydrolysis patterns on beechwood xylan and xylooligosaccharides of sizes 2 to 6. According to our thin-layer chromatography experiment, the K40L mutant produced a larger amount of xylotetraose leftover than the wildtype. Kinetic determination of the WT and K40L mutant suggested that the higher X4 leftover on TLC was reflected in the decreasing catalytic efficiency (kcat/Km) between enzyme and X4. The mechanisms underlying this efficiency loss were examined through atomistic molecular dynamics (MD) simulations. The MD trajectory analysis showed that the mutation-induced binding pocket tilting resulted in an additional hydrophobic contact between the reducing end of X4 and Trp128. Meanwhile, the interactions between the non-reducing end and the Arg112 residue near the active site became lost, which could decrease the catalytic efficiency. This work suggested that the protein engineering to fine-tune the hydrolysis pattern for some desired xylooligosaccharide products was possible.
Collapse
Affiliation(s)
- Apichet Ngenyoung
- Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Auwal Muhammad
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand; Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand; Department of Physics, Faculty of Science, Kano University of Science and Technology (KUST), Wudil, Nigeria
| | - Triwit Rattanarojpong
- Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand
| | - Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand; Theoretical and Computational Science Center (TaCS), Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Science Laboratory Building, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, Thailand.
| |
Collapse
|
10
|
Li X, Liu D, Wu Z, Li D, Cai Y, Lu Y, Zhao X, Xue H. Multiple Tolerance and Dye Decolorization Ability of a Novel Laccase Identified from Staphylococcus Haemolyticus. J Microbiol Biotechnol 2020; 30:615-621. [PMID: 31986565 PMCID: PMC9728370 DOI: 10.4014/jmb.1910.10061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Laccases are multicopper oxidases with important industrial value. In the study, a novel laccase gene (mco) in a Staphylococcus haemolyticus isolate is identified and heterologously expressed in Escherichia coli. Mco shares less than 40% of amino acid sequence identities with the other characterized laccases, exhibiting the maximal activity at pH 4.0 and 60°C with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) as a substrate. Additionally, the Mco is tolerant to a wide range of pH, heavy metal ions and many organic solvents, and it has a high decolorization capability toward textile dyes in the absence of redox mediators. The characteristics of the Mco make this laccase potentially useful for industrial applications such as textile finishing. Based on BLASTN results, mco is found to be widely distributed in both the bacterial genome and bacterial plasmids. Its potential role in oxidative defense ability of staphylococci may contribute to the bacterial colonization and survival.
Collapse
Affiliation(s)
- Xingxing Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Dongliang Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhaowei Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Dan Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yifei Cai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Yao Lu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xin Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China,Department of Animal Science, McGill University, Quebec, Canada
| | - Huping Xue
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China,Corresponding author Phone: +86-29-87080899 Fax: +86-29-87080899 E-mail:
| |
Collapse
|
11
|
Leveraging anaerobic fungi for biotechnology. Curr Opin Biotechnol 2019; 59:103-110. [DOI: 10.1016/j.copbio.2019.03.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 12/30/2022]
|
12
|
Improving the thermostability and catalytic efficiency of GH11 xylanase PjxA by adding disulfide bridges. Int J Biol Macromol 2019; 128:354-362. [DOI: 10.1016/j.ijbiomac.2019.01.087] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 11/24/2022]
|
13
|
Liu Y, Mo WJ, Shi TF, Wang MZ, Zhou JG, Yu Y, Yew WS, Lu H. Mutational Mtc6p attenuates autophagy and improves secretory expression of heterologous proteins in Kluyveromyces marxianus. Microb Cell Fact 2018; 17:144. [PMID: 30217195 PMCID: PMC6138896 DOI: 10.1186/s12934-018-0993-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/08/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The yeast Kluyveromyces marxianus is an emerging cell factory for heterologous protein biosynthesis and its use holds tremendous advantages for multiple applications. However, which genes influence the productivity of desired proteins in K. marxianus has so far been investigated by very few studies. RESULTS In this study, we constructed a K. marxianus recombinant (FIM1/Est1E), which expressed the heterologous ruminal feruloyl esterase Est1E as reporter. UV-60Co-γ irradiation mutagenesis was performed on this recombinant, and one mutant (be termed as T1) was screened and reported, in which the productivity of heterologous Est1E was increased by at least tenfold compared to the parental FIM1/Est1E recombinant. Transcriptional perturbance was profiled and presented that the intracellular vesicle trafficking was enhanced while autophagy be weakened in the T1 mutant. Moreover, whole-genome sequencing combined with CRISPR/Cas9 mediated gene-editing identified a novel functional protein Mtc6p, which was prematurely terminated at Tyr251 by deletion of a single cytosine at 755 loci of its ORF in the T1 mutant. We found that deleting C755 of MTC6 in FIM1 led to 4.86-fold increase in the production of Est1E compared to FIM1, while the autophagy level decreased by 47%; on the contrary, when reinstating C755 of MTC6 in the T1 mutant, the production of Est1E decreased by 66% compared to T1, while the autophagy level increased by 124%. Additionally, in the recombinant with attenuated autophagy (i.e., FIM1 mtc6C755Δ and T1) or interdicted autophagy (i.e., FIM1 atg1Δ and T1 atg1Δ), the productivity of three other heterologous proteins was also increased, specifically the heterologous mannase Man330, the β-1,4-endoxylanase XynCDBFV or the conventional EGFP. CONCLUSIONS Our results demonstrated that Mtc6p was involved in regulating autophagy; attenuating or interdicting autophagy would dramatically improve the yields of desired proteins in K. marxianus, and this modulation could be achieved by focusing on the premature mutation of Mtc6p target.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, People's Republic of China
| | - Wen-Juan Mo
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, People's Republic of China
| | - Tian-Fang Shi
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, People's Republic of China
| | - Meng-Zhu Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, People's Republic of China
| | - Jun-Gang Zhou
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, People's Republic of China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China.,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, People's Republic of China
| | - Wen-Shan Yew
- NUS Synthetic Biology for Clinical and Technological Innovation, 28 Medical Drive, Singapore, 117456, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore, 117597, Singapore
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438, People's Republic of China. .,Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
14
|
Li X, Zhang X, Xu S, Zhang H, Xu M, Yang T, Wang L, Qian H, Zhang H, Fang H, Osire T, Rao Z, Yang S. Simultaneous cell disruption and semi-quantitative activity assays for high-throughput screening of thermostable L-asparaginases. Sci Rep 2018; 8:7915. [PMID: 29784948 PMCID: PMC5962637 DOI: 10.1038/s41598-018-26241-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022] Open
Abstract
L-asparaginase, which catalyses the hydrolysis of L-asparagine to L-aspartate, has attracted the attention of researchers due to its expanded applications in medicine and the food industry. In this study, a novel thermostable L-asparaginase from Pyrococcus yayanosii CH1 was cloned and over-expressed in Bacillus subtilis 168. To obtain thermostable L-asparaginase mutants with higher activity, a robust high-throughput screening process was developed specifically for thermophilic enzymes. In this process, cell disruption and enzyme activity assays are simultaneously performed in 96-deep well plates. By combining error-prone PCR and screening, six brilliant positive variants and four key amino acid residue mutations were identified. Combined mutation of the four residues showed relatively high specific activity (3108 U/mg) that was 2.1 times greater than that of the wild-type enzyme. Fermentation with the mutant strain in a 5-L fermenter yielded L-asparaginase activity of 2168 U/mL.
Collapse
Affiliation(s)
- Xu Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Shuqin Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hengwei Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Haifeng Qian
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Huiling Zhang
- School of Agriculture Ningxia University, Yinchuan, 750021, China
| | - Haitian Fang
- School of Agriculture Ningxia University, Yinchuan, 750021, China
| | - Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Shangtian Yang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
15
|
Li C, Li J, Wang R, Li X, Li J, Deng C, Wu M. Substituting Both the N-Terminal and “Cord” Regions of a Xylanase from Aspergillus oryzae to Improve Its Temperature Characteristics. Appl Biochem Biotechnol 2018; 185:1044-1059. [DOI: 10.1007/s12010-017-2681-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 12/19/2017] [Indexed: 10/18/2022]
|
16
|
Ventorim RZ, de Oliveira Mendes TA, Trevizano LM, dos Santos Camargos AM, Guimarães VM. Impact of the removal of N-terminal non-structured amino acids on activity and stability of xylanases from Orpinomyces sp. PC-2. Int J Biol Macromol 2018; 106:312-319. [DOI: 10.1016/j.ijbiomac.2017.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 11/17/2022]
|
17
|
Li XQ, Wu Q, Hu D, Wang R, Liu Y, Wu MC, Li JF. Improving the temperature characteristics and catalytic efficiency of a mesophilic xylanase from Aspergillus oryzae, AoXyn11A, by iterative mutagenesis based on in silico design. AMB Express 2017; 7:97. [PMID: 28508385 PMCID: PMC5432455 DOI: 10.1186/s13568-017-0399-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/02/2017] [Indexed: 11/10/2022] Open
Abstract
To improve the temperature characteristics and catalytic efficiency of a glycoside hydrolase family (GHF) 11 xylanase from Aspergillus oryzae (AoXyn11A), its variants were predicted based on in silico design. Firstly, Gly21 with the maximum B-factor value, which was confirmed by molecular dynamics (MD) simulation on the three-dimensional structure of AoXyn11A, was subjected to site-saturation mutagenesis. Thus, one variant with the highest thermostability, AoXyn11AG21I, was selected from the mutagenesis library, E. coli/Aoxyn11AG21X (X: any one of 20 amino acids). Secondly, based on the primary structure multiple alignment of AoXyn11A with seven thermophilic GHF11 xylanases, AoXyn11AY13F or AoXyn11AG21I–Y13F, was designed by replacing Tyr13 in AoXyn11A or AoXyn11AG21I with Phe. Finally, three variant-encoding genes, Aoxyn11AG21I, Aoxyn11AY13F and Aoxyn11AG21I–Y13F, were constructed by two-stage whole-plasmid PCR method, and expressed in Pichia pastoris GS115, respectively. The temperature optimum (Topt) of recombinant (re) AoXyn11AG21I–Y13F was 60 °C, being 5 °C higher than that of reAoXyn11AG21I or reAoXyn11AY13F, and 10 °C higher than that of reAoXyn11A. The thermal inactivation half-life (t1/2) of reAoXyn11AG21I–Y13F at 50 °C was 240 min, being 40-, 3.4- and 2.5-fold longer than those of reAoXyn11A, reAoXyn11AG21I and reAoXyn11AY13F. The melting temperature (Tm) values of reAoXyn11A, reAoXyn11AG21I, reAoXyn11AY13F and reAoXyn11AG21I–Y13F were 52.3, 56.5, 58.6 and 61.3 °C, respectively. These findings indicated that the iterative mutagenesis of both Gly21Ile and Tyr13Phe improved the temperature characteristics of AoXyn11A in a synergistic mode. Besides those, the catalytic efficiency (kcat/Km) of reAoXyn11AG21I–Y13F was 473.1 mL mg−1 s−1, which was 1.65-fold higher than that of reAoXyn11A.
Collapse
|
18
|
Li Q, Sun B, Jia H, Hou J, Yang R, Xiong K, Xu Y, Li X. Engineering a xylanase from Streptomyce rochei L10904 by mutation to improve its catalytic characteristics. Int J Biol Macromol 2017; 101:366-372. [PMID: 28356235 DOI: 10.1016/j.ijbiomac.2017.03.135] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 11/18/2022]
Abstract
Protein engineering was performed by N-terminal region replacement and site-directed mutagenesis in the cord of a xylanase (Srxyn) from Streptomyce rochei L10904 to improve its catalytic characteristics. Three mutants SrxynF, SrxynM and SrxynFM displayed 2.1-fold, 3.2-fold and 5.3-fold higher specific activities than that of Srxyn, respectively. Moreover, all of the mutants showed greater substrate affinity and kcat/Km than the native Srxyn. In addition, the enzymes showed improved hydrolysis characteristics, of which the most noteworthy is the enhanced ability of producing xylobiose (X2) and xylotriose (X3) from polymeric substrates. The engineered xylanases have greater potential for applications in oligosaccharide preparation industry.
Collapse
Affiliation(s)
- Qin Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Chemical Engineering, Beijing Technology and Business University, No.33, Fucheng Road, Beijing 100048, China
| | - Baoguo Sun
- School of Food and Chemical Engineering, Beijing Technology and Business University, No.33, Fucheng Road, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Huiyong Jia
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Jie Hou
- School of Food and Chemical Engineering, Beijing Technology and Business University, No.33, Fucheng Road, Beijing 100048, China
| | - Ran Yang
- School of Food and Chemical Engineering, Beijing Technology and Business University, No.33, Fucheng Road, Beijing 100048, China
| | - Ke Xiong
- School of Food and Chemical Engineering, Beijing Technology and Business University, No.33, Fucheng Road, Beijing 100048, China
| | - Youqiang Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Chemical Engineering, Beijing Technology and Business University, No.33, Fucheng Road, Beijing 100048, China.
| |
Collapse
|
19
|
Zhou CY, Li TB, Wang YT, Zhu XS, Kang J. Exploration of a N-terminal disulfide bridge to improve the thermostability of a GH11 xylanase from Aspergillus niger. J GEN APPL MICROBIOL 2016; 62:83-9. [DOI: 10.2323/jgam.62.83] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Chen-Yan Zhou
- School of Life Science and Technology, Xinxiang Medical University
| | - Tong-Biao Li
- School of Life Science and Technology, Xinxiang Medical University
| | - Yong-Tao Wang
- The First Affiliated Hospital, Xinxiang Medical University
| | - Xin-Shu Zhu
- School of Life Science and Technology, Xinxiang Medical University
| | - Jing Kang
- School of Life Science and Technology, Xinxiang Medical University
| |
Collapse
|
20
|
Rational Substitution of Surface Acidic Residues for Enhancing the Thermostability of Thermolysin. Appl Biochem Biotechnol 2015; 178:725-38. [DOI: 10.1007/s12010-015-1905-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/21/2015] [Indexed: 11/26/2022]
|
21
|
Bai W, Zhou C, Zhao Y, Wang Q, Ma Y. Structural Insight into and Mutational Analysis of Family 11 Xylanases: Implications for Mechanisms of Higher pH Catalytic Adaptation. PLoS One 2015; 10:e0132834. [PMID: 26161643 PMCID: PMC4498622 DOI: 10.1371/journal.pone.0132834] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/18/2015] [Indexed: 11/25/2022] Open
Abstract
To understand the molecular basis of higher pH catalytic adaptation of family 11 xylanases, we compared the structures of alkaline, neutral, and acidic active xylanases and analyzed mutants of xylanase Xyn11A-LC from alkalophilic Bacillus sp. SN5. It was revealed that alkaline active xylanases have increased charged residue content, an increased ratio of negatively to positively charged residues, and decreased Ser, Thr, and Tyr residue content relative to non-alkaline active counterparts. Between strands β6 and β7, alkaline xylanases substitute an α-helix for a coil or turn found in their non-alkaline counterparts. Compared with non-alkaline xylanases, alkaline active enzymes have an inserted stretch of seven amino acids rich in charged residues, which may be beneficial for xylanase function in alkaline conditions. Positively charged residues on the molecular surface and ionic bonds may play important roles in higher pH catalytic adaptation of family 11 xylanases. By structure comparison, sequence alignment and mutational analysis, six amino acids (Glu16, Trp18, Asn44, Leu46, Arg48, and Ser187, numbering based on Xyn11A-LC) adjacent to the acid/base catalyst were found to be responsible for xylanase function in higher pH conditions. Our results will contribute to understanding the molecular mechanisms of higher pH catalytic adaptation in family 11 xylanases and engineering xylanases to suit industrial applications.
Collapse
Affiliation(s)
- Wenqin Bai
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- School of Life Science, Shanxi Normal University, Linfen, 041004, China
- * E-mail: (YHM); (WQB)
| | - Cheng Zhou
- National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yueju Zhao
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agriculture Sciences, Beijing, 100193, China
| | - Qinhong Wang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Yanhe Ma
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Engineering Laboratory for Industrial Enzymes, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- * E-mail: (YHM); (WQB)
| |
Collapse
|
22
|
Yin X, Yao Y, Wu MC, Zhu TD, Zeng Y, Pang QF. A unique disulfide bridge of the thermophilic xylanase SyXyn11 plays a key role in its thermostability. BIOCHEMISTRY (MOSCOW) 2015; 79:531-7. [PMID: 25100011 DOI: 10.1134/s0006297914060066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Based on the hyperthermostable family 11 xylanase (EvXyn11(TS)) gene sequence (EU591743), the gene Syxyn11 encoding a thermophilic xylanase SyXyn11 was synthesized with synonymous codons biasing towards Pichia pastoris. The homology alignment of primary structures among family 11 xylanases revealed that, at their N-termini, only SyXyn11 contains a disulfide bridge (Cys5-Cys32). This to some extent implied the significance of the disulfide bridge of SyXyn11 to its thermostability. To confirm the correlation between the N-terminal disulfide bridge and thermostability, a SyXyn11(C5T)-encoding gene, Syxyn11(C5T), was constructed by mutating the Cys5 codon of Syxyn11 to Thr5. Then, the genes for the recombinant xylanases, reSyXyn11 and reSyXyn11(C5T), were expressed in P. pastoris GS115, yielding xylanase activity of about 35 U per ml cell culture. Both xylanases were purified to homogeneity with specific activities of 363 and 344 U/mg, respectively. The temperature optimum and stability of reSyXyn11(C5T) decreased to 70 and 50°C from 85 and 80°C of reSyXyn11, respectively. There was no obvious change in pH characteristics.
Collapse
Affiliation(s)
- X Yin
- School of Biotechnology and Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| | | | | | | | | | | |
Collapse
|
23
|
Satyanarayana DVT. Improvement in thermostability of metagenomic GH11 endoxylanase (Mxyl) by site-directed mutagenesis and its applicability in paper pulp bleaching process. J Ind Microbiol Biotechnol 2013; 40:1373-81. [PMID: 24100791 DOI: 10.1007/s10295-013-1347-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022]
Abstract
An attempt has been made for enhancing the thermostability of xylanase (Mxyl) retrieved from a compost-soil-based metagenomic library. The analysis of the structure of xylanase by molecular dynamics simulation revealed more structural fluctuations in β-sheets. When the surface of β-sheets was enriched with arginine residues by substituting serine/threonine by site-directed mutagenesis, the enzyme with four arginine substitutions (MxylM4) exhibited enhanced thermostability at 80 °C. The T 1/2 of MxylM4 at 80 °C, in the presence of birchwood xylan, increased from 130 to 150 min at 80 °C without any alteration in optimum pH and temperature and molecular mass. Improvement in thermostability of MxylM4 was corroborated by increase in T m by 6 °C over that of Mxyl. The K m of MxylM4, however, increased from 8.01 ± 0.56 of Mxyl to 12.5 ± 0.32 mg ml(-1), suggesting a decrease in the affinity as well as specific enzyme activity. The Mxyl as well as MxylM4 liberated chromophores and lignin-derived compounds from kraft pulp, indicating their applicability in pulp bleaching.
Collapse
|