1
|
Jia Q, Zheng YC, Li HP, Qian XL, Zhang ZJ, Xu JH. Engineering Isopropanol Dehydrogenase for Efficient Regeneration of Nicotinamide Cofactors. Appl Environ Microbiol 2022; 88:e0034122. [PMID: 35442081 PMCID: PMC9088361 DOI: 10.1128/aem.00341-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/03/2022] [Indexed: 12/18/2022] Open
Abstract
Isopropanol dehydrogenase (IPADH) is one of the most attractive options for nicotinamide cofactor regeneration due to its low cost and simple downstream processing. However, poor thermostability and strict cofactor dependency hinder its practical application for bioconversions. In this study, we simultaneously improved the thermostability (433-fold) and catalytic activity (3.3-fold) of IPADH from Brucella suis via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H) by 1.23 × 106-fold. When these variants were employed in three typical bioredox reactions to drive the synthesis of important chiral pharmaceutical building blocks, they outperformed the commonly used cofactor regeneration systems (glucose dehydrogenase [GDH], formate dehydrogenase [FDH], and lactate dehydrogenase [LDH]) with respect to efficiency of cofactor regeneration. Overall, our study provides two promising IPADH variants with complementary cofactor specificities that have great potential for wide applications. IMPORTANCE Oxidoreductases represent one group of the most important biocatalysts for synthesis of various chiral synthons. However, their practical application was hindered by the expensive nicotinamide cofactors used. Isopropanol dehydrogenase (IPADH) is one of the most attractive biocatalysts for nicotinamide cofactor regeneration. However, poor thermostability and strict cofactor dependency hinder its practical application. In this work, the thermostability and catalytic activity of an IPADH were simultaneously improved via a flexible segment engineering strategy. Meanwhile, the cofactor preference of IPADH was successfully switched from NAD(H) to NADP(H). The resultant variants show great potential for regeneration of nicotinamide cofactors, and the engineering strategy might serve as a useful approach for future engineering of other oxidoreductases.
Collapse
Affiliation(s)
- Qiao Jia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hai-Peng Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao-Long Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Suzhou Bioforany EnzyTech Co., Ltd., Changshu, Jiangsu, China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Petukhova NI, Zorin VV, Sakaeva AR, Mityagina AV, Nurieva ER, Vydrina VA, Yakovleva MP, Ishmuratov GY. Enantioselective Bioreduction of 5-Hexen-2-one in Directional Synthesis of Insect Pheromones. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222030156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Mei Z, Zhang K, Qu G, Li JK, Liu B, Ma JA, Tu R, Sun Z. High-Throughput Fluorescence Assay for Ketone Detection and Its Applications in Enzyme Mining and Protein Engineering. ACS OMEGA 2020; 5:13588-13594. [PMID: 32566823 PMCID: PMC7301380 DOI: 10.1021/acsomega.0c00245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Ketones are of great importance as building blocks in synthetic organic chemistry and biocatalysis. Most ketones cannot easily be quantitatively assayed due to the lack of visible photometric properties. Effective high-throughput assay (HTA) development is therefore necessary for ketone determination. Inspired by previous works of an aldehyde assay based on 2-amino benzamidoxime derivatives, we developed a colorimetric method for rapid a HTA of structurally diverse ketones by using para-methoxy-2-amino benzamidoxime (PMA). This PMA-based method is characterized by high sensitivity manner (μM) with low background, as checked by gas chromatography (GC). It can be used for quantitatively monitoring ketones by fluorescence screening in microtiter plates. Furthermore, this HTA method was employed in mining alcohol dehydrogenases (ADHs), and in directed evolution aimed at enhancing ADH activity in the catalytic transformation of alcohols to ketones. This work provides a general tool for ketone detection in biocatalyst development.
Collapse
Affiliation(s)
- Zelong Mei
- College
of Biotechnology, Tianjin University of
Science and Technology, Tianjin 300457, China
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Kun Zhang
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Ge Qu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Jun-Kuan Li
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
- Department
of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences,
and Tianjin Collaborative Innovation Center of Chemical Science and
Engineering, Tianjin University, Tianjin 300072, China
| | - Baoyan Liu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Jun-An Ma
- Department
of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences,
and Tianjin Collaborative Innovation Center of Chemical Science and
Engineering, Tianjin University, Tianjin 300072, China
| | - Ran Tu
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| | - Zhoutong Sun
- Tianjin
Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport
Economic Area, Tianjin 300308, China
| |
Collapse
|
4
|
Ying X, Zhang J, Wang C, Huang M, Ji Y, Cheng F, Yu M, Wang Z, Ying M. Characterization of a Carbonyl Reductase from Rhodococcus erythropolis WZ010 and Its Variant Y54F for Asymmetric Synthesis of ( S)- N-Boc-3-Hydroxypiperidine. Molecules 2018; 23:molecules23123117. [PMID: 30487432 PMCID: PMC6321125 DOI: 10.3390/molecules23123117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 11/16/2022] Open
Abstract
The recombinant carbonyl reductase from Rhodococcus erythropolis WZ010 (ReCR) demonstrated strict (S)-stereoselectivity and catalyzed the irreversible reduction of N-Boc-3-piperidone (NBPO) to (S)-N-Boc-3-hydroxypiperidine [(S)-NBHP], a key chiral intermediate in the synthesis of ibrutinib. The NAD(H)-specific enzyme was active within broad ranges of pH and temperature and had remarkable activity in the presence of higher concentration of organic solvents. The amino acid residue at position 54 was critical for the activity and the substitution of Tyr54 to Phe significantly enhanced the catalytic efficiency of ReCR. The kcat/Km values of ReCR Y54F for NBPO, (R/S)-2-octanol, and 2-propanol were 49.17 s−1 mM−1, 56.56 s−1 mM−1, and 20.69 s−1 mM−1, respectively. In addition, the (S)-NBHP yield was as high as 95.92% when whole cells of E. coli overexpressing ReCR variant Y54F catalyzed the asymmetric reduction of 1.5 M NBPO for 12 h in the aqueous/(R/S)-2-octanol biphasic system, demonstrating the great potential of ReCR variant Y54F for practical applications.
Collapse
Affiliation(s)
- Xiangxian Ying
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jie Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Can Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Meijuan Huang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yuting Ji
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Meilan Yu
- College of Life Sciences, Zhejiang Sci-Tech Univeristy, Hangzhou 310018, China.
| | - Zhao Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Meirong Ying
- Grain and Oil Products Quality Inspection Center of Zhejiang Province, Hangzhou 310012, China.
| |
Collapse
|
5
|
Enantioselective synthesis of (R)-phenylephrine by Serratia marcescens BCRC10948 cells that homologously express SM_SDR. Enzyme Microb Technol 2018; 110:14-19. [PMID: 29310851 DOI: 10.1016/j.enzmictec.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/14/2017] [Accepted: 12/06/2017] [Indexed: 11/23/2022]
Abstract
A short-chain dehydrogenase/reductase from Serratia marcescens BCRC10948, SM_SDR, has been cloned and expressed in Escherichia coli for the bioconversion of 1-(3-hydroxyphenyl)-2-(methylamino) ethanone (HPMAE) to (R)-phenylephrine[(R)-PE]. However, only 5.11mM (R)-PE was obtained from 10mM HPMAE after a 9h conversion in the previous report. To improve the biocatalytic efficiency, the homologous expression of the SM_SDR in S. marcescens BCRC10948 was achieved using the T5 promoter for expression. By using 2% glycerol as carbon source, we found that 8.00±0.15mM of (R)-PE with more than 99% enantiomeric excess was produced from 10mM HPMAE after 12h conversion at 30°C and pH 7.0. More importantly, by using 50mM HPMAE as the substrate, 23.78±0.84mM of (R)-PE was produced after a 12h conversion with the productivity and the conversion yield of 1.98mmol (R)-PE/lh and 47.50%, respectively. The recombinant S. marcescens cells could be recycled 6 times for the production of (R)-PE, and the bioconversion efficiency remained at 85% when compared to that at the first cycle. Our data indicated that a high conversion efficiency of HPMAE to (R)-PE could be achieved using S. marcescens BCRC10948 cells that homologously express the SM_SDR.
Collapse
|
6
|
Ranjan P, Pandey A, Binod P. Resolution of enantiopure (S)-1-(1-napthyl) ethanol from racemic mixture by a novel Bacillus cereus isolate. J Basic Microbiol 2017; 57:762-769. [PMID: 28671310 DOI: 10.1002/jobm.201700207] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/29/2017] [Accepted: 06/06/2017] [Indexed: 11/11/2022]
Abstract
Chiral intermediates have wide application and high demand in pharmaceutical, agricultural, and other biotechnological industries for the preparation of bulk drug substances or fine chemicals. (S)-1-(1-napthyl) ethanol is an important synthetic intermediate of mevinic acid analog and a potential inhibitor of 3-hydroxy methyl glutaryl coenzyme A reductase enzymes which is rate limiting for cholesterol synthesis. The present study focuses on the resolution of (RS)-1-(1-napthyl) ethanol using whole cell biotransformation approach. The screening of microbial strains for the specific conversion were performed by the enrichment techniques using (RS)-1-(1-napthyl) ethanol. Evaluation of resolution, i.e., the enantioselective conversion of (R)-1-(1-napthyl) ethanol into 1-acetonapthone and production of (S)-1-(1-napthyl) ethanol with high purity were carried out. Among the isolates, a novel strain Bacillus cereus WG3 was found to be potent for the resolution and conversion of (S)-1-(1-napthyl) ethanol. This strain showed 86% conversion of (R)-1-(1-napthyl) ethanol and 95% yield of S-1-(1-napthyl) ethanol with 80% ee after 24 h. Further, the optimization of biotransformation reactions was carried out and the optimal parameters were found to be pH 7.0 and temperature 30 °C.
Collapse
Affiliation(s)
- Preeti Ranjan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, Kerala, India
| | - Ashok Pandey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, Kerala, India.,Center of Innovative & Applied Bioprocessing, Mohali, Punjab, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science & Technology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
7
|
Wang D, Yang Z, Zhang J, Han Y, Hao J, He L. The Asymmetric Reduction of Acetophenone and Its Derivatives to (S)-Aromatic Secondary Alcohols by Rhodotorula mucilaginosa CCTCC M2014255 Resting Cells. Catal Letters 2016. [DOI: 10.1007/s10562-016-1730-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Stankevičiūtė J, Kutanovas S, Rutkienė R, Tauraitė D, Striela R, Meškys R. Ketoreductase TpdE from Rhodococcus jostii TMP1: characterization and application in the synthesis of chiral alcohols. PeerJ 2015; 3:e1387. [PMID: 26587349 PMCID: PMC4647570 DOI: 10.7717/peerj.1387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/15/2015] [Indexed: 11/20/2022] Open
Abstract
Background. Production of highly pure enantiomers of vicinal diols is desirable, but difficult to achieve. Enantiomerically pure diols and acyloins are valuable bulk chemicals, promising synthones and potential building blocks for chiral polymers. Enzymatic reduction of ketones is a useful technique for the synthesis of the desired enantiomeric alcohols. Here, we report on the characterization of a ketoreductase TpdE from Rhodococcus jostii TMP1 that is a prospective tool for the synthesis of such compounds. Results. In this study, NADPH-dependent short-chain dehydrogenase/reductase TpdE from Rhodococcus jostii TMP1 was characterized. The enzyme exhibited broad substrate specificity towards aliphatic 2,3-diketones, butan-3-one-2-yl alkanoates, as well as acetoin and its acylated derivatives. TpdE stereospecifically reduced α-diketones to the corresponding diols. The GC-MS analysis of the reduction products of 2,3- and 3,4-diketones indicated that TpdE is capable of reducing both keto groups in its substrate leading to the formation of two new chiral atoms in the product molecule. Bioconversions of diketones to corresponding diols occurred using either purified enzyme or a whole-cell Escherichia coli BL21 (DE3) biocatalyst harbouring recombinant TpdE. The optimum temperature and pH were determined to be 30–35 °C and 7.5, respectively. Conclusions. The broad substrate specificity and stereoselectivity of TpdE from Rhodococcus jostii TMP1 make it a promising biocatalyst for the production of enantiomerically pure diols that are difficult to obtain by chemical routes.
Collapse
Affiliation(s)
- Jonita Stankevičiūtė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University , Vilnius , Lithuania
| | - Simonas Kutanovas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University , Vilnius , Lithuania
| | - Rasa Rutkienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University , Vilnius , Lithuania
| | - Daiva Tauraitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University , Vilnius , Lithuania
| | - Romualdas Striela
- Department of Organic Chemistry, Institute of Chemistry of Center for Physical Sciences and Technology , Vilnius , Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University , Vilnius , Lithuania
| |
Collapse
|
9
|
Characterization of a (2R,3R)-2,3-Butanediol Dehydrogenase from Rhodococcus erythropolis WZ010. Molecules 2015; 20:7156-73. [PMID: 25903366 PMCID: PMC6272300 DOI: 10.3390/molecules20047156] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 11/17/2022] Open
Abstract
The gene encoding a (2R,3R)-2,3-butanediol dehydrogenase from Rhodococcus erythropolis WZ010 (ReBDH) was over-expressed in Escherichia coli and the resulting recombinant ReBDH was successfully purified by Ni-affinity chromatography. The purified ReBDH in the native form was found to exist as a monomer with a calculated subunit size of 37180, belonging to the family of the zinc-containing alcohol dehydrogenases. The enzyme was NAD(H)-specific and its optimal activity for acetoin reduction was observed at pH 6.5 and 55 °C. The optimal pH and temperature for 2,3-butanediol oxidation were pH 10 and 45 °C, respectively. The enzyme activity was inhibited by ethylenediaminetetraacetic acid (EDTA) or metal ions Al3+, Zn2+, Fe2+, Cu2+ and Ag+, while the addition of 10% (v/v) dimethyl sulfoxide (DMSO) in the reaction mixture increased the activity by 161.2%. Kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for diacetyl and NADH in comparison to those for (2R,3R)-2,3-butanediol and NAD+. The activity of acetoin reduction was 7.7 times higher than that of (2R,3R)-2,3-butanediol oxidation when ReBDH was assayed at pH 7.0, suggesting that ReBDH-catalyzed reaction in vivo might favor (2R,3R)-2,3-butanediol formation rather than (2R,3R)-2,3-butanediol oxidation. The enzyme displayed absolute stereospecificity in the reduction of diacetyl to (2R,3R)-2,3-butanediol via (R)-acetoin, demonstrating its potential application on the synthesis of (R)-chiral alcohols.
Collapse
|
10
|
Characterization of an allylic/benzyl alcohol dehydrogenase from Yokenella sp. strain WZY002, an organism potentially useful for the synthesis of α,β-unsaturated alcohols from allylic aldehydes and ketones. Appl Environ Microbiol 2014; 80:2399-409. [PMID: 24509923 DOI: 10.1128/aem.03980-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel whole-cell biocatalyst with high allylic alcohol-oxidizing activities was screened and identified as Yokenella sp. WZY002, which chemoselectively reduced the C=O bond of allylic aldehydes/ketones to the corresponding α,β-unsaturated alcohols at 30°C and pH 8.0. The strain also had the capacity of stereoselectively reducing aromatic ketones to (S)-enantioselective alcohols. The enzyme responsible for the predominant allylic/benzyl alcohol dehydrogenase activity was purified to homogeneity and designated YsADH (alcohol dehydrogenase from Yokenella sp.), which had a calculated subunit molecular mass of 36,411 Da. The gene encoding YsADH was subsequently expressed in Escherichia coli, and the purified recombinant YsADH protein was characterized. The enzyme strictly required NADP(H) as a coenzyme and was putatively zinc dependent. The optimal pH and temperature for crotonaldehyde reduction were pH 6.5 and 65°C, whereas those for crotyl alcohol oxidation were pH 8.0 and 55°C. The enzyme showed moderate thermostability, with a half-life of 6.2 h at 55°C. It was robust in the presence of organic solvents and retained 87.5% of the initial activity after 24 h of incubation with 20% (vol/vol) dimethyl sulfoxide. The enzyme preferentially catalyzed allylic/benzyl aldehydes as the substrate in the reduction of aldehydes/ketones and yielded the highest activity of 427 U mg(-1) for benzaldehyde reduction, while the alcohol oxidation reaction demonstrated the maximum activity of 79.9 U mg(-1) using crotyl alcohol as the substrate. Moreover, kinetic parameters of the enzyme showed lower Km values and higher catalytic efficiency for crotonaldehyde/benzaldehyde and NADPH than for crotyl alcohol/benzyl alcohol and NADP(+), suggesting the nature of being an aldehyde reductase.
Collapse
|
11
|
Efficient biocatalytic synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol by a newly isolated Trichoderma asperellum ZJPH0810 using dual cosubstrate: ethanol and glycerol. Appl Microbiol Biotechnol 2013; 97:6685-92. [PMID: 23700239 DOI: 10.1007/s00253-013-4973-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/09/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
(R)-[3,5-bis(trifluoromethyl)phenyl] ethanol is a crucial intermediate for the synthesis of Aprepitant. An efficient biocatalytic process for (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol was developed via the asymmetric reduction of 3,5-bis(trifluoromethyl) acetophenone, catalyzed by whole cells of newly isolated Trichoderma asperellum ZJPH0810 using ethanol and glycerol as dual cosubstrate for cofactor recycling. A fungal strain ZJPH0810, showing asymmetric biocatalytic activity of 3,5-bis(trifluoromethyl) acetophenone to its corresponding (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol, was isolated from a soil sample. Based on its morphological and physiological characteristics and internal transcribed spacer sequence, this isolate was identified as T. asperellum ZJPH0810, which afforded an NADH-dependent (R)-stereospecific carbonyl reductase and was a promising biocatalyst for the synthesis of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol. Some key reaction parameters involved in the bioreduction catalyzed by T. asperellum ZJPH0810 were subsequently optimized. The effectiveness of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol production was significantly enhanced by employing a novel dual cosubstrate-coupled system for cofactor recycling. The established efficient bioreduction system contained 50 mM of 3,5-bis(trifluoromethyl) acetophenone and 60 g l(-1) of resting cells, employing ethanol (6.0 %, v/v) and glycerol (0.5 %, v/v) as dual cosubstrate. The bioreduction was performed in distilled water medium, at 30 °C and 200 rpm. Under the above conditions, a best yield of 93.4 % was obtained, which is nearly a 3.5-fold increase in contrast to no addition of cosubstrate. The ee value of the product reached above 98 %. This biocatalytic process shows great potential in the production of (R)-[3,5-bis(trifluoromethyl)phenyl] ethanol, a valuable chiral building block in the pharmaceutical industry.
Collapse
|
12
|
Wang Z, Song Q, Yu M, Wang Y, Xiong B, Zhang Y, Zheng J, Ying X. Characterization of a stereospecific acetoin(diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol. Appl Microbiol Biotechnol 2013; 98:641-50. [PMID: 23568047 DOI: 10.1007/s00253-013-4870-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/12/2013] [Accepted: 03/19/2013] [Indexed: 10/27/2022]
Abstract
Rhodococcus erythropolis WZ010 was capable of producing optically pure (2S,3S)-2,3-butanediol in alcoholic fermentation. The gene encoding an acetoin(diacetyl) reductase from R. erythropolis WZ010 (ReADR) was cloned, overexpressed in Escherichia coli, and subsequently purified by Ni-affinity chromatography. ReADR in the native form appeared to be a homodimer with a calculated subunit size of 26,864, belonging to the family of the short-chain dehydrogenase/reductases. The enzyme accepted a broad range of substrates including aliphatic and aryl alcohols, aldehydes, and ketones. It exhibited remarkable tolerance to dimethyl sulfoxide (DMSO) and retained 53.6 % of the initial activity after 4 h incubation with 30 % (v/v) DMSO. The enzyme displayed absolute stereospecificity in the reduction of diacetyl to (2S,3S)-2,3-butanediol via (S)-acetoin. The optimal pH and temperature for diacetyl reduction were pH 7.0 and 30 °C, whereas those for (2S,3S)-2,3-butanediol oxidation were pH 9.5 and 25 °C. Under the optimized conditions, the activity of diacetyl reduction was 11.9-fold higher than that of (2S,3S)-2,3-butanediol oxidation. Kinetic parameters of the enzyme showed lower K(m) values and higher catalytic efficiency for diacetyl and NADH in comparison to those for (2S,3S)-2,3-butanediol and NAD⁺, suggesting its physiological role in favor of (2S,3S)-2,3-butanediol formation. Interestingly, the enzyme showed higher catalytic efficiency for (S)-1-phenylethanol oxidation than that for acetophenone reduction. ReADR-catalyzed asymmetric reduction of diacetyl was coupled with stereoselective oxidation of 1-phenylethanol, which simultaneously formed both (2S,3S)-2,3-butanediol and (R)-1-phenylethanol in great conversions and enantiomeric excess values.
Collapse
Affiliation(s)
- Zhao Wang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, Zhejiang, 310014, China
| | | | | | | | | | | | | | | |
Collapse
|