1
|
Qiu Y, Wu M, Bao H, Liu W, Shen Y. Engineering of Saccharomyces cerevisiae for co-fermentation of glucose and xylose: Current state and perspectives. ENGINEERING MICROBIOLOGY 2023; 3:100084. [PMID: 39628931 PMCID: PMC11611035 DOI: 10.1016/j.engmic.2023.100084] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 12/06/2024]
Abstract
The use of non-food lignocellulosic biomass to produce ethanol fits into the strategy of a global circular economy with low dependence on fossil energy resources. Xylose is the second most abundant sugar in lignocellulosic hydrolysate, and its utilization in fermentation is a key issue in making the full use of raw plant materials for ethanol production and reduce production costs. Saccharomyces cerevisiae is the best ethanol producer but the organism is not a native xylose user. In recent years, great efforts have been made in the construction of xylose utilizing S. cerevisiae strains by metabolic and evolutionary engineering approaches. In addition, managing global transcriptional regulation works provides an effective means to increase the xylose utilization capacity of recombinant strains. Here we review the common strategies and research advances in the research field in order to facilitate the researches in xylose metabolism and xylose-based fermentation.
Collapse
Affiliation(s)
- Yali Qiu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Meiling Wu
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| | - Haodong Bao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Chen S, Xu Z, Ding B, Zhang Y, Liu S, Cai C, Li M, Dale BE, Jin M. Big data mining, rational modification, and ancestral sequence reconstruction inferred multiple xylose isomerases for biorefinery. SCIENCE ADVANCES 2023; 9:eadd8835. [PMID: 36724227 PMCID: PMC9891696 DOI: 10.1126/sciadv.add8835] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/30/2022] [Indexed: 05/28/2023]
Abstract
The isomerization of xylose to xylulose is considered the most promising approach to initiate xylose bioconversion. Here, phylogeny-guided big data mining, rational modification, and ancestral sequence reconstruction strategies were implemented to explore new active xylose isomerases (XIs) for Saccharomyces cerevisiae. Significantly, 13 new active XIs for S. cerevisiae were mined or artificially created. Moreover, the importance of the amino-terminal fragment for maintaining basic XI activity was demonstrated. With the mined XIs, four efficient xylose-utilizing S. cerevisiae were constructed and evolved, among which the strain S. cerevisiae CRD5HS contributed to ethanol titers as high as 85.95 and 94.76 g/liter from pretreated corn stover and corn cob, respectively, without detoxifying or washing pretreated biomass. Potential genetic targets obtained from adaptive laboratory evolution were further analyzed by sequencing the high-performance strains. The combined XI mining methods described here provide practical references for mining other scarce and valuable enzymes.
Collapse
Affiliation(s)
- Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Boning Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuangmei Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chenggu Cai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Muzi Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bruce E. Dale
- Biomass Conversion Research Laboratory, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
- Great Lakes Bioenergy Research Centre (GLBRC), Michigan State University, East Lansing, MI, 48824 USA
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
3
|
Ylinen A, de Ruijter JC, Jouhten P, Penttilä M. PHB production from cellobiose with Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:124. [PMID: 35729556 PMCID: PMC9210708 DOI: 10.1186/s12934-022-01845-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Replacement of petrochemical-based materials with microbially produced biodegradable alternatives calls for industrially attractive fermentation processes. Lignocellulosic materials offer non-edible alternatives for cultivated sugars, but require often use of expensive sugar releasing enzymes, such as β-glucosidases. These cellulose treatment costs could be reduced if microbial production hosts could use short cellodextrins such as cellobiose directly as their substrates. In this study, we demonstrate production of poly(hydroxybutyrate) (PHB) in yeast Saccharomyces cerevisiae using cellobiose as a sole carbon source. Yeast strains expressing PHB pathway genes from Cupriavidus necator and cellodextrin transporter gene CDT-1 from Neurospora crassa were complemented either with β-glucosidase gene GH1-1 from N. crassa or with cellobiose phosphorylase gene cbp from Ruminococcus flavefaciens. These cellobiose utilization routes either with Gh1-1 or Cbp enzymes differ in energetics and dynamics. However, both routes enabled higher PHB production per consumed sugar and higher PHB accumulation % of cell dry weight (CDW) than use of glucose as a carbon source. As expected, the strains with Gh1-1 consumed cellobiose faster than the strains with Cbp, both in flask and bioreactor batch cultures. In shake flasks, higher final PHB accumulation % of CDW was reached with Cbp route (10.0 ± 0.3%) than with Gh1-1 route (8.1 ± 0.2%). However, a higher PHB accumulation was achieved in better aerated and pH-controlled bioreactors, in comparison to shake flasks, and the relative performance of strains switched. In bioreactors, notable PHB accumulation levels per CDW of 13.4 ± 0.9% and 18.5 ± 3.9% were achieved with Cbp and Gh1-1 routes, respectively. The average molecular weights of accumulated PHB were similar using both routes; approximately 500 kDa and 450 kDa for strains expressing either cbp or GH1-1 genes, respectively. The formation of PHB with high molecular weights, combined with efficient cellobiose conversion, demonstrates a highly potential solution for improving attractiveness of sustainable polymer production using microbial cells.
Collapse
Affiliation(s)
- Anna Ylinen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, Espoo, Finland.
| | - Jorg C de Ruijter
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, Espoo, Finland
| | - Paula Jouhten
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, Espoo, Finland.,Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 00076, Espoo, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044, Espoo, Finland.,Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 00076, Espoo, Finland
| |
Collapse
|
4
|
Abstract
Glucose isomerase (GI, also known as xylose isomerase) reversibly isomerizes D-glucose and D-xylose to D-fructose and D-xylulose, respectively. GI plays an important role in sugar metabolism, fulfilling nutritional requirements in bacteria. In addition, GI is an important industrial enzyme for the production of high-fructose corn syrup and bioethanol. This review introduces the functions, structure, and applications of GI, in addition to presenting updated information on the characteristics of newly discovered GIs and structural information regarding the metal-binding active site of GI and its interaction with the inhibitor xylitol. This review provides an overview of recent advancements in the characterization and engineering of GI, as well as its industrial applications, and will help to guide future research in this field.
Collapse
|
5
|
Oh EJ, Jin YS. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose. FEMS Yeast Res 2021; 20:5698803. [PMID: 31917414 DOI: 10.1093/femsyr/foz089] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Abstract
Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The critical challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed.
Collapse
Affiliation(s)
- Eun Joong Oh
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, 4001 Discovery Dr., CO 80303, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, 905 S. Goodwin Ave., IL 61801, USA.,1105 Carl R. Woese Institute for Genomic Biology, 1206 W. Gregory Dr. Urbana, IL 61801. USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr. Urbana, IL 61801, USA
| |
Collapse
|
6
|
A novel D-xylose isomerase from the gut of the wood feeding beetle Odontotaenius disjunctus efficiently expressed in Saccharomyces cerevisiae. Sci Rep 2021; 11:4766. [PMID: 33637780 PMCID: PMC7910561 DOI: 10.1038/s41598-021-83937-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/09/2021] [Indexed: 11/25/2022] Open
Abstract
Carbohydrate rich substrates such as lignocellulosic hydrolysates remain one of the primary sources of potentially renewable fuel and bulk chemicals. The pentose sugar d-xylose is often present in significant amounts along with hexoses. Saccharomyces cerevisiae can acquire the ability to metabolize d-xylose through expression of heterologous d-xylose isomerase (XI). This enzyme is notoriously difficult to express in S. cerevisiae and only fourteen XIs have been reported to be active so far. We cloned a new d-xylose isomerase derived from microorganisms in the gut of the wood-feeding beetle Odontotaenius disjunctus. Although somewhat homologous to the XI from Piromyces sp. E2, the new gene was identified as bacterial in origin and the host as a Parabacteroides sp. Expression of the new XI in S. cerevisiae resulted in faster aerobic growth than the XI from Piromyces on d-xylose media. The d-xylose isomerization rate conferred by the new XI was also 72% higher, while absolute xylitol production was identical in both strains. Interestingly, increasing concentrations of xylitol (up to 8 g L−1) appeared not to inhibit d-xylose consumption. The newly described XI displayed 2.6 times higher specific activity, 37% lower KM for d-xylose, and exhibited higher activity over a broader temperature range, retaining 51% of maximal activity at 30 °C compared with only 29% activity for the Piromyces XI.
Collapse
|
7
|
Sun L, Jin YS. Xylose Assimilation for the Efficient Production of Biofuels and Chemicals by Engineered Saccharomyces cerevisiae. Biotechnol J 2020; 16:e2000142. [PMID: 33135317 DOI: 10.1002/biot.202000142] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 10/15/2020] [Indexed: 11/09/2022]
Abstract
Microbial conversion of plant biomass into fuels and chemicals offers a practical solution to global concerns over limited natural resources, environmental pollution, and climate change. Pursuant to these goals, researchers have put tremendous efforts and resources toward engineering the yeast Saccharomyces cerevisiae to efficiently convert xylose, the second most abundant sugar in lignocellulosic biomass, into various fuels and chemicals. Here, recent advances in metabolic engineering of yeast is summarized to address bottlenecks on xylose assimilation and to enable simultaneous co-utilization of xylose and other substrates in lignocellulosic hydrolysates. Distinct characteristics of xylose metabolism that can be harnessed to produce advanced biofuels and chemicals are also highlighted. Although many challenges remain, recent research investments have facilitated the efficient fermentation of xylose and simultaneous co-consumption of xylose and glucose. In particular, understanding xylose-induced metabolic rewiring in engineered yeast has encouraged the use of xylose as a carbon source for producing various non-ethanol bioproducts. To boost the lignocellulosic biomass-based bioeconomy, much attention is expected to promote xylose-utilizing efficiency via reprogramming cellular regulatory networks, to attain robust co-fermentation of xylose and other cellulosic carbon sources under industrial conditions, and to exploit the advantageous traits of yeast xylose metabolism for producing diverse fuels and chemicals.
Collapse
Affiliation(s)
- Liang Sun
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
8
|
Bueno JGR, Borelli G, Corrêa TLR, Fiamenghi MB, José J, de Carvalho M, de Oliveira LC, Pereira GAG, dos Santos LV. Novel xylose transporter Cs4130 expands the sugar uptake repertoire in recombinant Saccharomyces cerevisiae strains at high xylose concentrations. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:145. [PMID: 32818042 PMCID: PMC7427733 DOI: 10.1186/s13068-020-01782-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/04/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND The need to restructure the world's energy matrix based on fossil fuels and mitigate greenhouse gas emissions stimulated the development of new biobased technologies for renewable energy. One promising and cleaner alternative is the use of second-generation (2G) fuels, produced from lignocellulosic biomass sugars. A major challenge on 2G technologies establishment is the inefficient assimilation of the five-carbon sugar xylose by engineered Saccharomyces cerevisiae strains, increasing fermentation time. The uptake of xylose across the plasma membrane is a critical limiting step and the budding yeast S. cerevisiae is not designed with a broad transport system and regulatory mechanisms to assimilate xylose in a wide range of concentrations present in 2G processes. RESULTS Assessing diverse microbiomes such as the digestive tract of plague insects and several decayed lignocellulosic biomasses, we isolated several yeast species capable of using xylose. Comparative fermentations selected the yeast Candida sojae as a potential source of high-affinity transporters. Comparative genomic analysis elects four potential xylose transporters whose properties were evaluated in the transporter null EBY.VW4000 strain carrying the xylose-utilizing pathway integrated into the genome. While the traditional xylose transporter Gxf1 allows an improved growth at lower concentrations (10 g/L), strains containing Cs3894 and Cs4130 show opposite responses with superior xylose uptake at higher concentrations (up to 50 g/L). Docking and normal mode analysis of Cs4130 and Gxf1 variants pointed out important residues related to xylose transport, identifying key differences regarding substrate translocation comparing both transporters. CONCLUSIONS Considering that xylose concentrations in second-generation hydrolysates can reach high values in several designed processes, Cs4130 is a promising novel candidate for xylose uptake. Here, we demonstrate a novel eukaryotic molecular transporter protein that improves growth at high xylose concentrations and can be used as a promising target towards engineering efficient pentose utilization in yeast.
Collapse
Affiliation(s)
- João Gabriel Ribeiro Bueno
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100 Brazil
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Borelli
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Thamy Lívia Ribeiro Corrêa
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100 Brazil
| | - Mateus Bernabe Fiamenghi
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Juliana José
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Murilo de Carvalho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Sao Paulo 13083-970 Brazil
| | - Leandro Cristante de Oliveira
- Department of Physics-Institute of Biosciences, Humanities and Exact Sciences, UNESP, São Paulo State University, São José do Rio Preto, São Paulo 15054-000 Brazil
| | - Gonçalo A. G. Pereira
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Leandro Vieira dos Santos
- Brazilian Biorenewable National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-100 Brazil
- Genetics and Molecular Biology Graduate Program, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
9
|
Tang R, Ye P, Alper HS, Liu Z, Zhao X, Bai F. Identification and characterization of novel xylose isomerases from a Bos taurus fecal metagenome. Appl Microbiol Biotechnol 2019; 103:9465-9477. [PMID: 31701197 DOI: 10.1007/s00253-019-10161-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/08/2019] [Accepted: 09/28/2019] [Indexed: 12/31/2022]
Abstract
Discovering sugar metabolism genes is of great interest for lignocellulosic biorefinery. Xylose isomerases (XIs) were commonly screened from metagenomes derived from bovine rumen, soil, and other sources. However, so far, XIs and other sugar-utilizing enzymes have not been discovered from fecal metagenomes. In this study, environmental DNA from the fecal samples collected from yellow cattle (Bos taurus) was sequenced and analyzed. In the whole 14.26 Gbp clean data, 92 putative XIs were annotated. After sequence analysis, seven putative XIs were heterologously expressed in Escherichia coli and characterized in vitro. The XIs 58444 and 58960 purified from E. coli exhibited 22% higher enzyme activity when compared with that of the native E. coli XI. The XI 58444, similar to the XI from Lachnospira multipara, exhibited a relatively stable activity profile across different pH conditions. Four XIs were further investigated in budding yeast Saccharomyces cerevisiae after codon optimization. Overexpression of the codon-optimized 58444 enabled S. cerevisiae to utilize 6.4 g/L xylose after 96 h without any other genetic manipulations, which is 56% higher than the control yeast strain overexpressing an optimized XI gene xylA*3 selected by three rounds of mutation. Our results provide evidence that a bovine fecal metagenome is a novel and valuable source of XIs and other industrial enzymes for biotechnology applications.
Collapse
Affiliation(s)
- Ruiqi Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peiliang Ye
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zhanying Liu
- School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China.,Center for Conservation and Emission Reductioin in Fermentation Industry, Inner Mongolia, Hohhot, 010051, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Fengwu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Seike T, Kobayashi Y, Sahara T, Ohgiya S, Kamagata Y, Fujimori KE. Molecular evolutionary engineering of xylose isomerase to improve its catalytic activity and performance of micro-aerobic glucose/xylose co-fermentation in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:139. [PMID: 31178927 PMCID: PMC6551904 DOI: 10.1186/s13068-019-1474-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Expression of d-xylose isomerase having high catalytic activity in Saccharomyces cerevisiae (S. cerevisiae) is a prerequisite for efficient and economical production of bioethanol from cellulosic biomass. Although previous studies demonstrated functional expression of several xylose isomerases (XI) in S. cerevisiae, identification of XIs having higher catalytic activity is needed. Here, we report a new strategy to improve xylose fermentation in the S. cerevisiae strain IR-2 that involves an evolutionary engineering to select top-performing XIs from eight previously reported XIs derived from various species. RESULTS Eight XI genes shown to have good expression in S. cerevisiae were introduced into the strain IR-2 having a deletion of GRE3 and XKS1 overexpression that allows use of d-xylose as a carbon source. Each transformant was evaluated under aerobic and micro-aerobic culture conditions. The strain expressing XI from Lachnoclostridium phytofermentans ISDg (LpXI) had the highest d-xylose consumption rate after 72 h of micro-aerobic fermentation on d-glucose and d-xylose mixed medium. To enhance LpXI catalytic activity, we performed random mutagenesis using error-prone polymerase chain reaction (PCR), which yielded two LpXI candidates, SS82 and SS92, that showed markedly improved fermentation performance. The LpXI genes in these clones carried either T63I or V162A/N303T point mutations. The SS120 strain expressing LpXI with the double mutation of T63I/V162A assimilated nearly 85 g/L d-glucose and 35 g/L d-xylose to produce 53.3 g/L ethanol in 72 h with an ethanol yield of approximately 0.44 (g/g-input sugars). An in vitro enzyme assay showed that, compared to wild-type, the LpXI double mutant in SS120 had a considerably higher V max (0.107 µmol/mg protein/min) and lower K m (37.1 mM). CONCLUSIONS This study demonstrated that LpXI has the highest d-xylose consumption rate among the XIs expressed in IR-2 under micro-aerobic co-fermentation conditions. A combination of novel mutations (T63I and V162A) significantly improved the enzymatic activity of LpXI, indicating that LpXI-T63I/V162A would be a potential construct for highly efficient production of cellulosic ethanol.
Collapse
Affiliation(s)
- Taisuke Seike
- Bioproduction Research Institute (BPRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 Japan
- Present Address: Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka 565-0874 Japan
| | - Yosuke Kobayashi
- Bioproduction Research Institute (BPRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 Japan
- Present Address: Biomaterial in Tokyo Company Limited, 4-7 Kashiwa-Inter-Minami, Kashiwa, Chiba 277-0872 Japan
| | - Takehiko Sahara
- Bioproduction Research Institute (BPRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 Japan
| | - Satoru Ohgiya
- Bioproduction Research Institute (BPRI), National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-higashi, Toyohira, Sapporo, Hokkaido 062-8517 Japan
| | - Yoichi Kamagata
- Bioproduction Research Institute (BPRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 Japan
| | - Kazuhiro E. Fujimori
- Bioproduction Research Institute (BPRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566 Japan
| |
Collapse
|
11
|
Gao M, Ploessl D, Shao Z. Enhancing the Co-utilization of Biomass-Derived Mixed Sugars by Yeasts. Front Microbiol 2019; 9:3264. [PMID: 30723464 PMCID: PMC6349770 DOI: 10.3389/fmicb.2018.03264] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022] Open
Abstract
Plant biomass is a promising carbon source for producing value-added chemicals, including transportation biofuels, polymer precursors, and various additives. Most engineered microbial hosts and a select group of wild-type species can metabolize mixed sugars including oligosaccharides, hexoses, and pentoses that are hydrolyzed from plant biomass. However, most of these microorganisms consume glucose preferentially to non-glucose sugars through mechanisms generally defined as carbon catabolite repression. The current lack of simultaneous mixed-sugar utilization limits achievable titers, yields, and productivities. Therefore, the development of microbial platforms capable of fermenting mixed sugars simultaneously from biomass hydrolysates is essential for economical industry-scale production, particularly for compounds with marginal profits. This review aims to summarize recent discoveries and breakthroughs in the engineering of yeast cell factories for improved mixed-sugar co-utilization based on various metabolic engineering approaches. Emphasis is placed on enhanced non-glucose utilization, discovery of novel sugar transporters free from glucose repression, native xylose-utilizing microbes, consolidated bioprocessing (CBP), improved cellulase secretion, and creation of microbial consortia for improving mixed-sugar utilization. Perspectives on the future development of biorenewables industry are provided in the end.
Collapse
Affiliation(s)
- Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States
| | - Deon Ploessl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States.,NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, Ames, IA, United States.,The Ames Laboratory, Iowa State University, Ames, IA, United States.,The Interdisciplinary Microbiology Program, Biorenewables Research Laboratory, Iowa State University, Ames, IA, United States
| |
Collapse
|
12
|
Parisutham V, Chandran SP, Mukhopadhyay A, Lee SK, Keasling JD. Intracellular cellobiose metabolism and its applications in lignocellulose-based biorefineries. BIORESOURCE TECHNOLOGY 2017; 239:496-506. [PMID: 28535986 DOI: 10.1016/j.biortech.2017.05.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 05/28/2023]
Abstract
Complete hydrolysis of cellulose has been a key characteristic of biomass technology because of the limitation of industrial production hosts to use cellodextrin, the partial hydrolysis product of cellulose. Cellobiose, a β-1,4-linked glucose dimer, is a major cellodextrin of the enzymatic hydrolysis (via endoglucanase and exoglucanase) of cellulose. Conversion of cellobiose to glucose is executed by β-glucosidase. The complete extracellular hydrolysis of celluloses has several critical barriers in biomass technology. An alternative bioengineering strategy to make the bioprocessing less challenging is to engineer microbes with the abilities to hydrolyze and assimilate the cellulosic-hydrolysate cellodextrin. Microorganisms engineered to metabolize cellobiose rather than the monomeric glucose can provide several advantages for lignocellulose-based biorefineries. This review describes the recent advances and challenges in engineering efficient intracellular cellobiose metabolism in industrial hosts. This review also describes the limitations of and future prospectives in engineering intracellular cellobiose metabolism.
Collapse
Affiliation(s)
- Vinuselvi Parisutham
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sathesh-Prabu Chandran
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Sung Kuk Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Jay D Keasling
- Joint BioEnergy Institute, Emeryville, CA 94608, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering & Department of Bioengineering, UC Berkeley, Berkeley, CA 94720, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, KogleAllé, DK2970 Hørsholm, Denmark; Synthetic Biology Engineering Research Center (Synberc), Berkeley, CA 94720, USA
| |
Collapse
|
13
|
Katahira S, Muramoto N, Moriya S, Nagura R, Tada N, Yasutani N, Ohkuma M, Onishi T, Tokuhiro K. Screening and evolution of a novel protist xylose isomerase from the termite Reticulitermes speratus for efficient xylose fermentation in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:203. [PMID: 28852424 PMCID: PMC5569483 DOI: 10.1186/s13068-017-0890-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/16/2017] [Indexed: 05/12/2023]
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae, a promising host for lignocellulosic bioethanol production, is unable to metabolize xylose. In attempts to confer xylose utilization ability in S. cerevisiae, a number of xylose isomerase (XI) genes have been expressed heterologously in this yeast. Although several of these XI encoding genes were functionally expressed in S. cerevisiae, the need still exists for a S. cerevisiae strain with improved xylose utilization ability for use in the commercial production of bioethanol. Although currently much effort has been devoted to achieve the objective, one of the solutions is to search for a new XI gene that would confer superior xylose utilization in S. cerevisiae. Here, we searched for novel XI genes from the protists residing in the hindgut of the termite Reticulitermes speratus. RESULTS Eight novel XI genes were obtained from a cDNA library, prepared from the protists of the R. speratus hindgut, by PCR amplification using degenerated primers based on highly conserved regions of amino acid sequences of different XIs. Phylogenetic analysis classified these cloned XIs into two groups, one showed relatively high similarities to Bacteroidetes and the other was comparatively similar to Firmicutes. The growth rate and the xylose consumption rate of the S. cerevisiae strain expressing the novel XI, which exhibited highest XI activity among the eight XIs, were superior to those exhibited by the strain expressing the XI gene from Piromyces sp. E2. Substitution of the asparagine residue at position 337 of the novel XI with a cysteine further improved the xylose utilization ability of the yeast strain. Interestingly, introducing point mutations in the corresponding asparagine residues in XIs originated from other organisms, such as Piromyces sp. E2 or Clostridium phytofermentans, similarly improved xylose utilization in S. cerevisiae. CONCLUSIONS A novel XI gene conferring superior xylose utilization in S. cerevisiae was successfully isolated from the protists in the termite hindgut. Isolation of this XI gene and identification of the point mutation described in this study might contribute to improving the productivity of industrial bioethanol.
Collapse
Affiliation(s)
- Satoshi Katahira
- Bioinspired Systems Research-Domain, Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 Japan
| | - Nobuhiko Muramoto
- Bioinspired Systems Research-Domain, Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 Japan
| | - Shigeharu Moriya
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Risa Nagura
- Bioinspired Systems Research-Domain, Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 Japan
| | - Nobuki Tada
- Biotechnology and Afforestation Laboratory, New Business Planning Div, Toyota Motor Corporation, 1099 Marune, Kurozasa-cho, Miyoshi, Aichi 470-0201 Japan
| | - Noriko Yasutani
- Biotechnology and Afforestation Laboratory, New Business Planning Div, Toyota Motor Corporation, 1099 Marune, Kurozasa-cho, Miyoshi, Aichi 470-0201 Japan
| | - Moriya Ohkuma
- RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074 Japan
- Japan Collection of Microorganisms, RIKEN BioResource Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074 Japan
| | - Toru Onishi
- Biotechnology and Afforestation Laboratory, New Business Planning Div, Toyota Motor Corporation, 1099 Marune, Kurozasa-cho, Miyoshi, Aichi 470-0201 Japan
| | - Kenro Tokuhiro
- Bioinspired Systems Research-Domain, Toyota Central R&D Labs., Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 Japan
| |
Collapse
|
14
|
Hou J, Jiao C, Peng B, Shen Y, Bao X. Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae. Metab Eng 2016; 38:241-250. [DOI: 10.1016/j.ymben.2016.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/05/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
|
15
|
Moysés DN, Reis VCB, de Almeida JRM, de Moraes LMP, Torres FAG. Xylose Fermentation by Saccharomyces cerevisiae: Challenges and Prospects. Int J Mol Sci 2016; 17:207. [PMID: 26927067 PMCID: PMC4813126 DOI: 10.3390/ijms17030207] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/23/2016] [Accepted: 01/27/2016] [Indexed: 12/17/2022] Open
Abstract
Many years have passed since the first genetically modified Saccharomyces cerevisiae strains capable of fermenting xylose were obtained with the promise of an environmentally sustainable solution for the conversion of the abundant lignocellulosic biomass to ethanol. Several challenges emerged from these first experiences, most of them related to solving redox imbalances, discovering new pathways for xylose utilization, modulation of the expression of genes of the non-oxidative pentose phosphate pathway, and reduction of xylitol formation. Strategies on evolutionary engineering were used to improve fermentation kinetics, but the resulting strains were still far from industrial application. Lignocellulosic hydrolysates proved to have different inhibitors derived from lignin and sugar degradation, along with significant amounts of acetic acid, intrinsically related with biomass deconstruction. This, associated with pH, temperature, high ethanol, and other stress fluctuations presented on large scale fermentations led the search for yeasts with more robust backgrounds, like industrial strains, as engineering targets. Some promising yeasts were obtained both from studies of stress tolerance genes and adaptation on hydrolysates. Since fermentation times on mixed-substrate hydrolysates were still not cost-effective, the more selective search for new or engineered sugar transporters for xylose are still the focus of many recent studies. These challenges, as well as under-appreciated process strategies, will be discussed in this review.
Collapse
Affiliation(s)
- Danuza Nogueira Moysés
- Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
- Petrobras Research and Development Center, Biotechnology Management, Rio de Janeiro, RJ 21941-915, Brazil.
| | | | - João Ricardo Moreira de Almeida
- Embrapa Agroenergia, Laboratório de Genética e Biotecnologia, Parque Estação Biológica s/n, Av. W3 Norte, Brasília, DF 70770-901, Brazil.
| | | | | |
Collapse
|
16
|
Characterization and evolution of xylose isomerase screened from the bovine rumen metagenome in Saccharomyces cerevisiae. J Biosci Bioeng 2016; 121:160-5. [DOI: 10.1016/j.jbiosc.2015.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/16/2015] [Accepted: 05/22/2015] [Indexed: 11/20/2022]
|
17
|
Kitaoka M. Diversity of phosphorylases in glycoside hydrolase families. Appl Microbiol Biotechnol 2015; 99:8377-90. [PMID: 26293338 DOI: 10.1007/s00253-015-6927-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/05/2015] [Indexed: 01/02/2023]
Abstract
Phosphorylases are useful catalysts for the practical preparation of various sugars. The number of known specificities was 13 in 2002 and is now 30. The drastic increase in available genome sequences has facilitated the discovery of novel activities. Most of these novel phosphorylase activities have been identified through the investigations of glycoside hydrolase families containing known phosphorylases. Here, the diversity of phosphorylases in each family is described in detail.
Collapse
Affiliation(s)
- Motomitsu Kitaoka
- National Food Research Institute, National Agriculture and Food Research Organization, 2-1-12 Kannondai, Tsukuba, Ibaraki, 305-8642, Japan.
| |
Collapse
|
18
|
Park JB, Kim JS, Jang SW, Hong E, Ha SJ. The Application of Thermotolerant Yeast Kluyveromyces marxianus as a Potential Industrial Workhorse for Biofuel Production. ACTA ACUST UNITED AC 2015. [DOI: 10.7841/ksbbj.2015.30.3.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Peng B, Huang S, Liu T, Geng A. Bacterial xylose isomerases from the mammal gut Bacteroidetes cluster function in Saccharomyces cerevisiae for effective xylose fermentation. Microb Cell Fact 2015; 14:70. [PMID: 25981595 PMCID: PMC4436767 DOI: 10.1186/s12934-015-0253-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 05/06/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Xylose isomerase (XI) catalyzes the conversion of xylose to xylulose, which is the key step for anaerobic ethanolic fermentation of xylose. Very few bacterial XIs can function actively in Saccharomyces cerevisiae. Here, we illustrate a group of XIs that would function for xylose fermentation in S. cerevisiae through phylogenetic analysis, recombinant yeast strain construction, and xylose fermentation. RESULTS Phylogenetic analysis of deposited XI sequences showed that XI evolutionary relationship was highly consistent with the bacterial taxonomic orders and quite a few functional XIs in S. cerevisiae were clustered with XIs from mammal gut Bacteroidetes group. An XI from Bacteroides valgutus in this cluster was actively expressed in S. cerevisiae with an activity comparable to the fungal XI from Piromyces sp. Two XI genes were isolated from the environmental metagenome and they were clustered with XIs from environmental Bacteroidetes group. These two XIs could not be expressed in yeast with activity. With the XI from B. valgutus expressed in S. cerevisiae, background yeast strains were optimized by pentose metabolizing pathway enhancement and adaptive evolution in xylose medium. Afterwards, more XIs from the mammal gut Bacteroidetes group, including those from B. vulgatus, Tannerella sp. 6_1_58FAA_CT1, Paraprevotella xylaniphila and Alistipes sp. HGB5, were individually transformed into S. cerevisiae. The known functional XI from Orpinomyces sp. ukk1, a mammal gut fungus, was used as the control. All the resulting recombinant yeast strains were able to ferment xylose. The respiration-deficient strains harboring B. vulgatus and Alistipes sp. HGB5 XI genes respectively obtained specific xylose consumption rate of 0.662 and 0.704 g xylose gcdw(-1) h(-1), and ethanol specific productivity of 0.277 and 0.283 g ethanol gcdw(-1) h(-1), much comparable to those obtained by the control strain carrying Orpinomyces sp. ukk1 XI gene. CONCLUSIONS This study demonstrated that XIs clustered in the mammal gut Bacteroidetes group were able to be expressed functionally in S. cerevisiae and background strain anaerobic adaptive evolution in xylose medium is essential for the screening of functional XIs. The methods outlined in this paper are instructive for the identification of novel XIs that are functional in S. cerevisiae.
Collapse
Affiliation(s)
- Bingyin Peng
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore.
| | - Shuangcheng Huang
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore. .,School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430073, Peoples Republic of China.
| | - Tingting Liu
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore. .,School of Chemical Engineering and Pharmacy, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430073, Peoples Republic of China.
| | - Anli Geng
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore.
| |
Collapse
|
20
|
Lee SM, Jellison T, Alper HS. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:122. [PMID: 25170344 PMCID: PMC4147937 DOI: 10.1186/s13068-014-0122-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 08/04/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Efficient xylose fermentation by yeast would improve the economical and sustainable nature of biofuels production from lignocellulosic biomass. However, the efficiency of xylose fermentation by the yeast Saccharomyces cerevisiae is suboptimal, especially in conversion yield, despite decades of research. Here, we present an improved performance of S. cerevisiae in xylose fermentation through systematic and evolutionary engineering approaches. RESULTS The engineering of S. cerevisiae harboring xylose isomerase-based pathway significantly improved the xylose fermentation performance without the need for intensive downstream pathway engineering. This strain contained two integrated copies of a mutant xylose isomerase, gre3 and pho13 deletion and XKS1 and S. stipitis tal1 overexpression. This strain was subjected to rapid adaptive evolution to yield the final, evolved strain (SXA-R2P-E) which could efficiently convert xylose to ethanol with a yield of 0.45 g ethanol/g xylose, the highest yield reported to date. The xylose consumption and ethanol production rates, 0.98 g xylose g cell(-1) h(-1) and 0.44 g ethanol g cell(-1) h(-1), respectively, were also among the highest reported. During this process, the positive effect of a pho13 deletion was identified for a xylose isomerase-containing strain and resulted in up to an 8.2-fold increase in aerobic growth rate on xylose. Moreover, these results demonstrated that low inoculum size and the cell transfer at exponential phase was found to be the most effective adaptation strategy during a batch culture adaptation process. CONCLUSIONS These results suggest that the xylose isomerase pathway should be the pathway of choice for efficient xylose fermentation in S. cerevisiae as it can outperform strains with the oxidoreductase pathway in terms of yield and ethanol production and xylose consumption rates. Consequently, the strain developed in this study could significantly improve the prospect of biofuels production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Sun-Mi Lee
- />McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street, Stop C0400, Austin, TX 78712 USA
- />Clean Energy Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul, 136-791 Seongbuk-gu Korea
| | - Taylor Jellison
- />McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street, Stop C0400, Austin, TX 78712 USA
| | - Hal S Alper
- />McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street, Stop C0400, Austin, TX 78712 USA
- />Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712 USA
| |
Collapse
|
21
|
Tanaka T, Hirata Y, Nakano M, Kawabata H, Kondo A. Creation of cellobiose and xylooligosaccharides-coutilizing Escherichia coli displaying both β-glucosidase and β-xylosidase on its cell surface. ACS Synth Biol 2014; 3:446-53. [PMID: 24156762 DOI: 10.1021/sb400070q] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We demonstrated direct utilization of xylooligosaccharides using β-xylosidase-displaying Escherichia coli. After screening active β-xylosidases, BSU17580 from Bacillus subtilis or Tfu1616 from Thermobifida fusca YX, were successfully displayed on the E. coli cell surface using Blc or HdeD as anchor proteins, and these transformants directly assimilated xylooligosaccharides as a carbon source. The final OD 600 in minimal medium containing 2% xylooligosaccharides was 1.09 (after 12 h of cultivation) and 1.30 (after 40 h of cultivation). We then constructed an E. coli strain displaying both β-glucosidase and β-xylosidase. β-glucosidase- and β-xylosidase-displaying E. coli was successfully grown on a 1% cellobiose and 1% xylooligosaccharides mixture, and the OD 600 was 1.76 after 10 h of cultivation, which was higher and reached faster than that grown on a glucose/xylose mixture (1.20 after 30 h of cultivation).
Collapse
Affiliation(s)
- Tsutomu Tanaka
- Department
of Chemical Science
and Engineering, Graduate School of Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuuki Hirata
- Department
of Chemical Science
and Engineering, Graduate School of Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| | - Mariko Nakano
- Department
of Chemical Science
and Engineering, Graduate School of Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hitomi Kawabata
- Department
of Chemical Science
and Engineering, Graduate School of Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Department
of Chemical Science
and Engineering, Graduate School of Engineering, Kobe University, 1-1
Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
22
|
Kricka W, Fitzpatrick J, Bond U. Metabolic engineering of yeasts by heterologous enzyme production for degradation of cellulose and hemicellulose from biomass: a perspective. Front Microbiol 2014; 5:174. [PMID: 24795706 PMCID: PMC4001029 DOI: 10.3389/fmicb.2014.00174] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/31/2014] [Indexed: 11/13/2022] Open
Abstract
This review focuses on current approaches to metabolic engineering of ethanologenic yeast species for the production of bioethanol from complex lignocellulose biomass sources. The experimental strategies for the degradation of the cellulose and xylose-components of lignocellulose are reviewed. Limitations to the current approaches are discussed and novel solutions proposed.
Collapse
Affiliation(s)
- William Kricka
- School of Genetics and Microbiology, Department of Microbiology, Trinity College Dublin Dublin, Ireland
| | - James Fitzpatrick
- School of Genetics and Microbiology, Department of Microbiology, Trinity College Dublin Dublin, Ireland
| | - Ursula Bond
- School of Genetics and Microbiology, Department of Microbiology, Trinity College Dublin Dublin, Ireland
| |
Collapse
|
23
|
Chomvong K, Kordić V, Li X, Bauer S, Gillespie AE, Ha SJ, Oh EJ, Galazka JM, Jin YS, Cate JHD. Overcoming inefficient cellobiose fermentation by cellobiose phosphorylase in the presence of xylose. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:85. [PMID: 24944578 PMCID: PMC4061319 DOI: 10.1186/1754-6834-7-85] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/21/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Cellobiose and xylose co-fermentation holds promise for efficiently producing biofuels from plant biomass. Cellobiose phosphorylase (CBP), an intracellular enzyme generally found in anaerobic bacteria, cleaves cellobiose to glucose and glucose-1-phosphate, providing energetic advantages under the anaerobic conditions required for large-scale biofuel production. However, the efficiency of CBP to cleave cellobiose in the presence of xylose is unknown. This study investigated the effect of xylose on anaerobic CBP-mediated cellobiose fermentation by Saccharomyces cerevisiae. RESULTS Yeast capable of fermenting cellobiose by the CBP pathway consumed cellobiose and produced ethanol at rates 61% and 42% slower, respectively, in the presence of xylose than in its absence. The system generated significant amounts of the byproduct 4-O-β-d-glucopyranosyl-d-xylose (GX), produced by CBP from glucose-1-phosphate and xylose. In vitro competition assays identified xylose as a mixed-inhibitor for cellobiose phosphorylase activity. The negative effects of xylose were effectively relieved by efficient cellobiose and xylose co-utilization. GX was also shown to be a substrate for cleavage by an intracellular β-glucosidase. CONCLUSIONS Xylose exerted negative impacts on CBP-mediated cellobiose fermentation by acting as a substrate for GX byproduct formation and a mixed-inhibitor for cellobiose phosphorylase activity. Future efforts will require efficient xylose utilization, GX cleavage by a β-glucosidase, and/or a CBP with improved substrate specificity to overcome the negative impacts of xylose on CBP in cellobiose and xylose co-fermentation.
Collapse
Affiliation(s)
- Kulika Chomvong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Vesna Kordić
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Xin Li
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Stefan Bauer
- Energy Biosciences Institute, University of California, Berkeley, CA, USA
| | - Abigail E Gillespie
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Suk-Jin Ha
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
- Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun Joong Oh
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Jonathan M Galazka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
- Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Jamie H D Cate
- Department of Chemistry, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
24
|
Lin Y, Chomvong K, Acosta-Sampson L, Estrela R, Galazka JM, Kim SR, Jin YS, Cate JHD. Leveraging transcription factors to speed cellobiose fermentation by Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:126. [PMID: 25435910 PMCID: PMC4243952 DOI: 10.1186/s13068-014-0126-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/06/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae, a key organism used for the manufacture of renewable fuels and chemicals, has been engineered to utilize non-native sugars derived from plant cell walls, such as cellobiose and xylose. However, the rates and efficiencies of these non-native sugar fermentations pale in comparison with those of glucose. Systems biology methods, used to understand biological networks, hold promise for rational microbial strain development in metabolic engineering. Here, we present a systematic strategy for optimizing non-native sugar fermentation by recombinant S. cerevisiae, using cellobiose as a model. RESULTS Differences in gene expression between cellobiose and glucose metabolism revealed by RNA deep sequencing indicated that cellobiose metabolism induces mitochondrial activation and reduces amino acid biosynthesis under fermentation conditions. Furthermore, glucose-sensing and signaling pathways and their target genes, including the cAMP-dependent protein kinase A pathway controlling the majority of glucose-induced changes, the Snf3-Rgt2-Rgt1 pathway regulating hexose transport, and the Snf1-Mig1 glucose repression pathway, were at most only partially activated under cellobiose conditions. To separate correlations from causative effects, the expression levels of 19 transcription factors perturbed under cellobiose conditions were modulated, and the three strongest promoters under cellobiose conditions were applied to fine-tune expression of the heterologous cellobiose-utilizing pathway. Of the changes in these 19 transcription factors, only overexpression of SUT1 or deletion of HAP4 consistently improved cellobiose fermentation. SUT1 overexpression and HAP4 deletion were not synergistic, suggesting that SUT1 and HAP4 may regulate overlapping genes important for improved cellobiose fermentation. Transcription factor modulation coupled with rational tuning of the cellobiose consumption pathway significantly improved cellobiose fermentation. CONCLUSIONS We used systems-level input to reveal the regulatory mechanisms underlying suboptimal metabolism of the non-glucose sugar cellobiose. By identifying key transcription factors that cause suboptimal cellobiose fermentation in engineered S. cerevisiae, and by fine-tuning the expression of a heterologous cellobiose consumption pathway, we were able to greatly improve cellobiose fermentation by engineered S. cerevisiae. Our results demonstrate a powerful strategy for applying systems biology methods to rapidly identify metabolic engineering targets and overcome bottlenecks in performance of engineered strains.
Collapse
Affiliation(s)
- Yuping Lin
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Kulika Chomvong
- />Plant and Microbial Biology, University of California, Berkeley, CA 94720 USA
| | - Ligia Acosta-Sampson
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Raíssa Estrela
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Jonathan M Galazka
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
| | - Soo Rin Kim
- />Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- />Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Yong-Su Jin
- />Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
- />Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA
| | - Jamie HD Cate
- />Departments of Molecular and Cell Biology, University of California, Berkeley, CA 94720 USA
- />Chemistry, University of California, Berkeley, CA 94720 USA
- />Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
| |
Collapse
|
25
|
Ha SJ, Kim SR, Kim H, Du J, Cate JHD, Jin YS. Continuous co-fermentation of cellobiose and xylose by engineered Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2013; 149:525-31. [PMID: 24140899 DOI: 10.1016/j.biortech.2013.09.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/13/2013] [Accepted: 09/18/2013] [Indexed: 05/18/2023]
Abstract
Simultaneous fermentation of cellobiose and xylose by an engineered Saccharomyces cerevisiae has been demonstrated in batch fermentation, suggesting the feasibility of continuous co-fermentation of cellulosic sugars. As industrial S. cerevisiae strains have known to possess higher ethanol productivity and robustness compared to laboratory S. cerevisiae strains, xylose and cellobiose metabolic pathways were introduced into a haploid strain derived from an industrial S. cerevisiae. The resulting strain (JX123-BTT) was able to ferment a mixture of cellobiose and xylose simultaneously in batch fermentation with a high ethanol yield (0.38 g/g) and productivity (2.00 g/L · h). Additionally, the JX123-BTT strain co-consumed glucose, cellobiose, and xylose under continuous culture conditions at a dilution rate of 0.05 h(-1) and produced ethanol resulting in 0.38 g/g of ethanol yield and 0.96 g/L · h of productivity. This is the first demonstration of co-fermentation of cellobiose and xylose by an engineered S. cerevisiae under continuous culture conditions.
Collapse
Affiliation(s)
- Suk-Jin Ha
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering and Technology, Kangwon National University, Chuncheon, Republic of Korea
| | | | | | | | | | | |
Collapse
|
26
|
Kim SR, Park YC, Jin YS, Seo JH. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 2013; 31:851-61. [DOI: 10.1016/j.biotechadv.2013.03.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 02/23/2013] [Accepted: 03/04/2013] [Indexed: 12/27/2022]
|
27
|
Eriksen DT, Hsieh PCH, Lynn P, Zhao H. Directed evolution of a cellobiose utilization pathway in Saccharomyces cerevisiae by simultaneously engineering multiple proteins. Microb Cell Fact 2013; 12:61. [PMID: 23802545 PMCID: PMC3702475 DOI: 10.1186/1475-2859-12-61] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 06/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The optimization of metabolic pathways is critical for efficient and economical production of biofuels and specialty chemicals. One such significant pathway is the cellobiose utilization pathway, identified as a promising route in biomass utilization. Here we describe the optimization of cellobiose consumption and ethanol productivity by simultaneously engineering both proteins of the pathway, the β-glucosidase (gh1-1) and the cellodextrin transporter (cdt-1), in an example of pathway engineering through directed evolution. RESULTS The improved pathway was assessed based on the strain specific growth rate on cellobiose, with the final mutant exhibiting a 47% increase over the wild-type pathway. Metabolite analysis of the engineered pathway identified a 49% increase in cellobiose consumption (1.78 to 2.65 g cellobiose/(L · h)) and a 64% increase in ethanol productivity (0.611 to 1.00 g ethanol/(L · h)). CONCLUSIONS By simultaneously engineering multiple proteins in the pathway, cellobiose utilization in S. cerevisiae was improved. This optimization can be generally applied to other metabolic pathways, provided a selection/screening method is available for the desired phenotype. The improved in vivo cellobiose utilization demonstrated here could help to decrease the in vitro enzyme load in biomass pretreatment, ultimately contributing to a reduction in the high cost of biofuel production.
Collapse
|
28
|
Hector RE, Dien BS, Cotta MA, Mertens JA. Growth and fermentation of D-xylose by Saccharomyces cerevisiae expressing a novel D-xylose isomerase originating from the bacterium Prevotella ruminicola TC2-24. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:84. [PMID: 23721368 PMCID: PMC3673840 DOI: 10.1186/1754-6834-6-84] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 05/22/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Saccharomyces cerevisiae strains expressing D-xylose isomerase (XI) produce some of the highest reported ethanol yields from D-xylose. Unfortunately, most bacterial XIs that have been expressed in S. cerevisiae are either not functional, require additional strain modification, or have low affinity for D-xylose. This study analyzed several XIs from rumen and intestinal microorganisms to identify enzymes with improved properties for engineering S. cerevisiae for D-xylose fermentation. RESULTS Four XIs originating from rumen and intestinal bacteria were isolated and expressed in a S. cerevisiae CEN.PK2-1C parental strain primed for D-xylose metabolism by over expression of its native D-xylulokinase. Three of the XIs were functional in S. cerevisiae, based on the strain's ability to grow in D-xylose medium. The most promising strain, expressing the XI mined from Prevotella ruminicola TC2-24, was further adapted for aerobic and fermentative growth by serial transfers of D-xylose cultures under aerobic, and followed by microaerobic conditions. The evolved strain had a specific growth rate of 0.23 h-1 on D-xylose medium, which is comparable to the best reported results for analogous S. cerevisiae strains including those expressing the Piromyces sp. E2 XI. When used to ferment D-xylose, the adapted strain produced 13.6 g/L ethanol in 91 h with a metabolic yield of 83% of theoretical. From analysis of the P. ruminicola XI, it was determined the enzyme possessed a Vmax of 0.81 μmole/min/mg protein and a Km of 34 mM. CONCLUSION This study identifies a new xylose isomerase from the rumen bacterium Prevotella ruminicola TC2-24 that has one of the highest affinities and specific activities compared to other bacterial and fungal D-xylose isomerases expressed in yeast. When expressed in S. cerevisiae and used to ferment D-xylose, very high ethanol yield was obtained. This new XI should be a promising resource for constructing other D-xylose fermenting strains, including industrial yeast genetic backgrounds.
Collapse
Affiliation(s)
- Ronald E Hector
- Bioenergy Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - Bruce S Dien
- Bioenergy Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - Michael A Cotta
- Bioenergy Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - Jeffrey A Mertens
- Bioenergy Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| |
Collapse
|