1
|
Fan B, Liang X, Li Y, Li M, Yu T, Qin Y, Li B, An T, Wang G. Biosynthesis and metabolic engineering of natural sweeteners. AMB Express 2025; 15:50. [PMID: 40100508 PMCID: PMC11920521 DOI: 10.1186/s13568-025-01864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Natural sweeteners have attracted widespread attention because they are eco-friendly, healthy, low in calories, and tasty. The demand for natural sweeteners is increasing together with the popularity of green, low-carbon, sustainable development. With the development of synthetic biology, microbial cell factories have emerged as an effective method to produce large amounts of natural sweeteners. This technology has significantly progressed in recent years. This review summarizes the pathways and the enzymes related to the biosynthesis of natural sweeteners, such as mogrosides, steviol glycosides, glycyrrhizin, glycyrrhetinic acid, phlorizin, trilobatin, erythritol, sorbitol, mannitol, thaumatin, monellin, and brazzein. Moreover, it focuses on the research about the microbial production of these natural sweeteners using synthetic biology methods, aiming to provide a reference for future research on the production of natural sweeteners.
Collapse
Affiliation(s)
- Bengui Fan
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Yichi Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tongle Yu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Yuan Qin
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Bohan Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
2
|
Steimann T, Heite Z, Germer A, Blank LM, Büchs J, Mann M, Magnus JB. Understanding exopolysaccharide byproduct formation in Komagataella phaffii fermentation processes for recombinant protein production. Microb Cell Fact 2024; 23:131. [PMID: 38711081 DOI: 10.1186/s12934-024-02403-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Komagataella phaffii (Pichia pastoris) has emerged as a common and robust biotechnological platform organism, to produce recombinant proteins and other bioproducts of commercial interest. Key advantage of K. phaffii is the secretion of recombinant proteins, coupled with a low host protein secretion. This facilitates downstream processing, resulting in high purity of the target protein. However, a significant but often overlooked aspect is the presence of an unknown polysaccharide impurity in the supernatant. Surprisingly, this impurity has received limited attention in the literature, and its presence and quantification are rarely addressed. RESULTS This study aims to quantify this exopolysaccharide in high cell density recombinant protein production processes and identify its origin. In stirred tank fed-batch fermentations with a maximal cell dry weight of 155 g/L, the polysaccharide concentration in the supernatant can reach up to 8.7 g/L. This level is similar to the achievable target protein concentration. Importantly, the results demonstrate that exopolysaccharide production is independent of the substrate and the protein production process itself. Instead, it is directly correlated with biomass formation and proportional to cell dry weight. Cell lysis can confidently be ruled out as the source of this exopolysaccharide in the culture medium. Furthermore, the polysaccharide secretion can be linked to a mutation in the HOC1 gene, featured by all derivatives of strain NRRL Y-11430, leading to a characteristic thinner cell wall. CONCLUSIONS This research sheds light on a previously disregarded aspect of K. phaffii fermentations, emphasizing the importance of monitoring and addressing the exopolysaccharide impurity in biotechnological applications, independent of the recombinant protein produced.
Collapse
Affiliation(s)
- Thomas Steimann
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Zoe Heite
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Andrea Germer
- iAMB-Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| | - Lars Mathias Blank
- iAMB-Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Marcel Mann
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Jørgen Barsett Magnus
- AVT-Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
3
|
Wu P, Mo W, Tian T, Song K, Lyu Y, Ren H, Zhou J, Yu Y, Lu H. Transfer of disulfide bond formation modules via yeast artificial chromosomes promotes the expression of heterologous proteins in Kluyveromyces marxianus. MLIFE 2024; 3:129-142. [PMID: 38827505 PMCID: PMC11139206 DOI: 10.1002/mlf2.12115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/23/2023] [Indexed: 06/04/2024]
Abstract
Kluyveromyces marxianus is a food-safe yeast with great potential for producing heterologous proteins. Improving the yield in K. marxianus remains a challenge and incorporating large-scale functional modules poses a technical obstacle in engineering. To address these issues, linear and circular yeast artificial chromosomes of K. marxianus (KmYACs) were constructed and loaded with disulfide bond formation modules from Pichia pastoris or K. marxianus. These modules contained up to seven genes with a maximum size of 15 kb. KmYACs carried telomeres either from K. marxianus or Tetrahymena. KmYACs were transferred successfully into K. marxianus and stably propagated without affecting the normal growth of the host, regardless of the type of telomeres and configurations of KmYACs. KmYACs increased the overall expression levels of disulfide bond formation genes and significantly enhanced the yield of various heterologous proteins. In high-density fermentation, the use of KmYACs resulted in a glucoamylase yield of 16.8 g/l, the highest reported level to date in K. marxianus. Transcriptomic and metabolomic analysis of cells containing KmYACs suggested increased flavin adenine dinucleotide biosynthesis, enhanced flux entering the tricarboxylic acid cycle, and a preferred demand for lysine and arginine as features of cells overexpressing heterologous proteins. Consistently, supplementing lysine or arginine further improved the yield. Therefore, KmYAC provides a powerful platform for manipulating large modules with enormous potential for industrial applications and fundamental research. Transferring the disulfide bond formation module via YACs proves to be an efficient strategy for improving the yield of heterologous proteins, and this strategy may be applied to optimize other microbial cell factories.
Collapse
Affiliation(s)
- Pingping Wu
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| | - Wenjuan Mo
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| | - Tian Tian
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| | - Kunfeng Song
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| | - Yilin Lyu
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| | - Haiyan Ren
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| | - Jungang Zhou
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiChina
- Shanghai Engineering Research Center of Industrial MicroorganismsShanghaiChina
| |
Collapse
|
4
|
Raschmanová H, Weninger A, Knejzlík Z, Melzoch K, Kovar K. Engineering of the unfolded protein response pathway in Pichia pastoris: enhancing production of secreted recombinant proteins. Appl Microbiol Biotechnol 2021; 105:4397-4414. [PMID: 34037840 PMCID: PMC8195892 DOI: 10.1007/s00253-021-11336-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/30/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Folding and processing of proteins in the endoplasmic reticulum (ER) are major impediments in the production and secretion of proteins from Pichia pastoris (Komagataella sp.). Overexpression of recombinant genes can overwhelm the innate secretory machinery of the P. pastoris cell, and incorrectly folded proteins may accumulate inside the ER. To restore proper protein folding, the cell naturally triggers an unfolded protein response (UPR) pathway, which upregulates the expression of genes coding for chaperones and other folding-assisting proteins (e.g., Kar2p, Pdi1, Ero1p) via the transcription activator Hac1p. Unfolded/misfolded proteins that cannot be repaired are degraded via the ER-associated degradation (ERAD) pathway, which decreases productivity. Co-expression of selected UPR genes, along with the recombinant gene of interest, is a common approach to enhance the production of properly folded, secreted proteins. Such an approach, however, is not always successful and sometimes, protein productivity decreases because of an unbalanced UPR. This review summarizes successful chaperone co-expression strategies in P. pastoris that are specifically related to overproduction of foreign proteins and the UPR. In addition, it illustrates possible negative effects on the cell's physiology and productivity resulting from genetic engineering of the UPR pathway. We have focused on Pichia's potential for commercial production of valuable proteins and we aim to optimize molecular designs so that production strains can be tailored to suit a specific heterologous product. KEY POINTS: • Chaperones co-expressed with recombinant genes affect productivity in P. pastoris. • Enhanced UPR may impair strain physiology and promote protein degradation. • Gene copy number of the target gene and the chaperone determine the secretion rate.
Collapse
Affiliation(s)
- Hana Raschmanová
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic.
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland.
| | - Astrid Weninger
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Zdeněk Knejzlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karel Melzoch
- Department of Biotechnology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Karin Kovar
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
- daspool Association, Wädenswil, Switzerland
| |
Collapse
|
5
|
Zhu W, Xu R, Gong G, Xu L, Hu Y, Xie L. Medium optimization for high yield production of human serum albumin in Pichia pastoris and its efficient purification. Protein Expr Purif 2021; 181:105831. [PMID: 33508474 DOI: 10.1016/j.pep.2021.105831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To improve the yield of recombinant human serum albumin (HSA) in Pichia pastoris by medium optimization and establish the related purification scheme. RESULTS A simplified version of the generally used buffered glycerol complex medium (BMGY), which contained yeast extract, glycerol and potassium salts, was found to be applicable. By decreasing the salt concentration of basal salt medium (BSM) to half of the original formula further, we achieved a high yield of 17.47 g/L HSA in the supernatant within a 192 h induction, which is the highest rHSA yield ever reported as far as we know. Accompanied with a three-step purification procedure which recovered two thirds of the desired protein at high purity, our work lays a solid foundation for large-scale industrial production of HSA. CONCLUSION Medium optimization plays a significant role in improving the yield of desired protein, lowering the production cost and helping to explore the producing strain's character.
Collapse
Affiliation(s)
- Wen Zhu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China
| | - Renren Xu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China
| | - Guihua Gong
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China
| | - Lei Xu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China
| | - Youjia Hu
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China
| | - Liping Xie
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, PR China.
| |
Collapse
|
6
|
Navone L, Vogl T, Luangthongkam P, Blinco JA, Luna-Flores C, Chen X, von Hellens J, Speight R. Synergistic optimisation of expression, folding, and secretion improves E. coli AppA phytase production in Pichia pastoris. Microb Cell Fact 2021; 20:8. [PMID: 33494776 PMCID: PMC7836175 DOI: 10.1186/s12934-020-01499-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/18/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Pichia pastoris (Komagataella phaffii) is an important platform for heterologous protein production due to its growth to high cell density and outstanding secretory capabilities. Recent developments in synthetic biology have extended the toolbox for genetic engineering of P. pastoris to improve production strains. Yet, overloading the folding and secretion capacity of the cell by over-expression of recombinant proteins is still an issue and rational design of strains is critical to achieve cost-effective industrial manufacture. Several enzymes are commercially produced in P. pastoris, with phytases being one of the biggest on the global market. Phytases are ubiquitously used as a dietary supplement for swine and poultry to increase digestibility of phytic acid, the main form of phosphorous storage in grains. RESULTS Potential bottlenecks for expression of E. coli AppA phytase in P. pastoris were explored by applying bidirectional promoters (BDPs) to express AppA together with folding chaperones, disulfide bond isomerases, trafficking proteins and a cytosolic redox metabolism protein. Additionally, transcriptional studies were used to provide insights into the expression profile of BDPs. A flavoprotein encoded by ERV2 that has not been characterised in P. pastoris was used to improve the expression of the phytase, indicating its role as an alternative pathway to ERO1. Subsequent AppA production increased by 2.90-fold compared to the expression from the state of the AOX1 promoter. DISCUSSION The microbial production of important industrial enzymes in recombinant systems can be improved by applying newly available molecular tools. Overall, the work presented here on the optimisation of phytase production in P. pastoris contributes to the improved understanding of recombinant protein folding and secretion in this important yeast microbial production host.
Collapse
Affiliation(s)
- Laura Navone
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia.
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Pawarisa Luangthongkam
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
| | - Jo-Anne Blinco
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
| | - Carlos Luna-Flores
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
- Bioproton Pty Ltd, Acacia Ridge, QLD, Australia
| | | | | | - Robert Speight
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
7
|
Rhizopus oryzae Lipase, a Promising Industrial Enzyme: Biochemical Characteristics, Production and Biocatalytic Applications. Catalysts 2020. [DOI: 10.3390/catal10111277] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lipases are biocatalysts with a significant potential to enable a shift from current pollutant manufacturing processes to environmentally sustainable approaches. The main reason of this prospect is their catalytic versatility as they carry out several industrially relevant reactions as hydrolysis of fats in water/lipid interface and synthesis reactions in solvent-free or non-aqueous media such as transesterification, interesterification and esterification. Because of the outstanding traits of Rhizopus oryzae lipase (ROL), 1,3-specificity, high enantioselectivity and stability in organic media, its application in energy, food and pharmaceutical industrial sector has been widely studied. Significant advances have been made in the biochemical characterisation of ROL particularly in how its activity and stability are affected by the presence of its prosequence. In addition, native and heterologous production of ROL, the latter in cell factories like Escherichia coli, Saccharomyces cerevisiae and Komagataella phaffii (Pichia pastoris), have been thoroughly described. Therefore, in this review, we summarise the current knowledge about R. oryzae lipase (i) biochemical characteristics, (ii) production strategies and (iii) potential industrial applications.
Collapse
|
8
|
Co-expression of Pseudomonas alcaligenes lipase and its specific foldase in Pichia pastoris by a dual expression cassette strategy. Protein Expr Purif 2020; 175:105721. [PMID: 32763465 DOI: 10.1016/j.pep.2020.105721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
Lipomax is a commercialized foldase-dependent Pseudomonas lipase that was previously expressed only in Pseudomonas strains. Here, using Pichia pastoris as the host, we report a new co-expression method that leads to the successful production of Lipomax. The active Lipomax is extracellularly co-expressed with its cognate foldase (LIM); and the purified enzyme mix has the optimum pH at pH 8.0 and an optimal temperature around 40 °C. N-glycosylation was observed for Pichia produced Lipomax, and its reduction was shown to increase the lipolytic activity. With different p-nitrophenyl esters as the substrates, the substrate profiling analyses further indicate that Lipomax prefers esters with middle-long chain fatty acids, showing the highest specific activity to p-nitrophenyl caprylate (C8). The extracellular co-expression of Lipomax and LIM in Pichia will not only increase our ability to investigate additional eukaryotic hosts for lipase expression, but also be of considerable value in analyzing other foldase-dependent lipases.
Collapse
|
9
|
Borčinová M, Raschmanová H, Zamora I, Looser V, Marešová H, Hirsch S, Kyslík P, Kovar K. Production and secretion dynamics of prokaryotic Penicillin G acylase in Pichia pastoris. Appl Microbiol Biotechnol 2020; 104:5787-5800. [PMID: 32424437 PMCID: PMC7306039 DOI: 10.1007/s00253-020-10669-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
To take full advantage of recombinant Pichia pastoris (Komagataella phaffii) as a production system for heterologous proteins, the complex protein secretory process should be understood and optimised by circumventing bottlenecks. Typically, little or no attention has been paid to the fate of newly synthesised protein inside the cell, or its passage through the secretory pathway, and only the secreted product is measured. However, the system’s productivity (i.e. specific production rate qp), includes productivity of secreted (qp,extra) plus intracellularly accumulated (qp,intra) protein. In bioreactor cultivations with P. pastoris producing penicillin G acylase, we studied the dynamics of product formation, i.e. both the specific product secretion (qp,extra) and product retention (qp,intra) as functions of time, as well as the kinetics, i.e. productivity in relation to specific growth rate (μ). Within the time course, we distinguished (I) an initial phase with constant productivities, where the majority of product accumulated inside the cells, and qp,extra, which depended on μ in a bell-shaped manner; (II) a transition phase, in which intracellular product accumulation reached a maximum and productivities (intracellular, extracellular, overall) were changing; (III) a new phase with constant productivities, where secretion prevailed over intracellular accumulation, qp,extra was linearly related to μ and was up to three times higher than in initial phase (I), while qp,intra decreased 4–6-fold. We show that stress caused by heterologous protein production induces cellular imbalance leading to a secretory bottleneck that ultimately reaches equilibrium. This understanding may help to develop cultivation strategies for improving protein secretion from P. pastoris.Key Points • A novel concept for industrial bioprocess development. • A Relationship between biomass growth and product formation in P. pastoris. • A Three (3) phases of protein production/secretion controlled by the AOX1-promoter. • A Proof of concept in production of industrially relevant penicillin G acylase. |
Collapse
Affiliation(s)
- Martina Borčinová
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland. .,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Viničná 5, 12840, Prague, Czech Republic.
| | - Hana Raschmanová
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland.,Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague, Czech Republic
| | - Iwo Zamora
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland.,Infors AG, Rittergasse 27, CH-4103, Bottmingen, Switzerland
| | - Verena Looser
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland.,Department of Biotechnology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technická 5, 16628, Prague, Czech Republic
| | - Helena Marešová
- Institute of Microbiology, Czech Academy of Sciences, Videňská 1083, 14220, Prague, Czech Republic
| | - Sven Hirsch
- Institute of Applied Simulation, Zurich University of Applied Sciences, Schloss 1, CH-8820, Wädenswil, Switzerland
| | - Pavel Kyslík
- Institute of Microbiology, Czech Academy of Sciences, Videňská 1083, 14220, Prague, Czech Republic
| | - Karin Kovar
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Campus Grüental, CH-8820, Wädenswil, Switzerland.,Daspool, Gerberacherweg 24, CH-8820, Wädenswil, Switzerland
| |
Collapse
|
10
|
Markina NM, Kotlobay AA, Tsarkova AS. Heterologous Metabolic Pathways: Strategies for Optimal Expression in Eukaryotic Hosts. Acta Naturae 2020; 12:28-39. [PMID: 32742725 PMCID: PMC7385092 DOI: 10.32607/actanaturae.10966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/29/2020] [Indexed: 11/20/2022] Open
Abstract
Heterologous pathways are linked series of biochemical reactions occurring in a host organism after the introduction of foreign genes. Incorporation of metabolic pathways into host organisms is a major strategy used to increase the production of valuable secondary metabolites. Unfortunately, simple introduction of the pathway genes into the heterologous host in most cases does not result in successful heterologous expression. Extensive modification of heterologous genes and the corresponding enzymes on many different levels is required to achieve high target metabolite production rates. This review summarizes the essential techniques used to create heterologous biochemical pathways, with a focus on the key challenges arising in the process and the major strategies for overcoming them.
Collapse
Affiliation(s)
- N. M. Markina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Planta LLC, Moscow, 121205 Russia
| | - A. A. Kotlobay
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
| | - A. S. Tsarkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997 Russia
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| |
Collapse
|
11
|
Jiang Z, Zhang C, Tang M, Xu B, Wang L, Qian W, He J, Zhao Z, Wu Q, Mu Y, Ding J, Zhang R, Huang Z, Han N. Improving the Thermostability of Rhizopus chinensis Lipase Through Site-Directed Mutagenesis Based on B-Factor Analysis. Front Microbiol 2020; 11:346. [PMID: 32194535 PMCID: PMC7063977 DOI: 10.3389/fmicb.2020.00346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/17/2020] [Indexed: 12/03/2022] Open
Abstract
In order to improve the thermostability of lipases derived from Rhizopus chinensis, we identified lipase (Lipr27RCL) mutagenesis sites that were associated with enhanced flexibility based upon B-factor analysis and multiple sequence alignment. We found that two mutated isoforms (Lipr27RCL-K64N and Lipr27RCL-K68T) exhibited enhanced thermostability and improved residual activity, with respective thermal activity retention values of 37.88% and 48.20% following a 2 h treatment at 50°C relative to wild type Lipr27RCL. In addition, these Lipr27RCL-K64N and Lipr27RCL-K68T isoforms exhibited 2.4- and 3.0-fold increases in enzymatic half-life following a 90 min incubation at 60°C. Together these results indicate that novel mutant lipases with enhanced thermostability useful for industrial applications can be predicted based upon B-factor analysis and constructed via site-directed mutagenesis.
Collapse
Affiliation(s)
- Zhanbao Jiang
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Chengbo Zhang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China
| | - Minyuan Tang
- School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Bo Xu
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Lili Wang
- Yunnan Walvax Biotechnology Co., Ltd., Kunming, China
| | - Wen Qian
- Yunnan Walvax Biotechnology Co., Ltd., Kunming, China
| | - Jiandong He
- Yunnan Walvax Biotechnology Co., Ltd., Kunming, China
| | - Zhihong Zhao
- Yunnan Walvax Biotechnology Co., Ltd., Kunming, China
| | - Qian Wu
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Yuelin Mu
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Junmei Ding
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Rui Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Zunxi Huang
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Nanyu Han
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| |
Collapse
|
12
|
Engineering a Pichia pastoris nitrilase whole cell catalyst through the increased nitrilase gene copy number and co-expressing of ER oxidoreductin 1. Appl Microbiol Biotechnol 2020; 104:2489-2500. [DOI: 10.1007/s00253-020-10422-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/18/2020] [Accepted: 01/26/2020] [Indexed: 12/14/2022]
|
13
|
Huang J, Wang Q, Bu W, Chen L, Yang Z, Zheng W, Li Y, Li J. Different construction strategies affected on the physiology of Pichia pastoris strains highly expressed lipase by transcriptional analysis of key genes. Bioengineered 2019; 10:150-161. [PMID: 31079540 PMCID: PMC6527059 DOI: 10.1080/21655979.2019.1614422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We demonstrated previously that expression of Rhizomucor miehei lipase (RML) in Pichia pastoris could be significantly increased by addition of gene propeptide, optimized signal peptide codons and manipulation of gene dosage. In this study, effects of various strategies on the protein synthesis and secretion pathways were analyzed. Using nine strains previously constructed, we evaluated cell culture properties, enzymatic activities, and analyzed transcriptional levels of nine genes involved in protein synthesis and secretion pathways by qPCR. We observed that (i) Addition of propeptide decreased lipase folding stress by down-regulated four UPR-related genes. (ii) Signal peptide codons optimization had no effect on host with no change in the nine detected genes. (iii) Folding stress and limited transport capacity produced when rml gene dosage exceed 2. Different limiting factors on lipase expression in strains with different construction strategies were identified. This study provides a theoretical basis for further improving RML by transforming host.
Collapse
Affiliation(s)
- Jinjin Huang
- a Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences , Jiangsu Normal University , Xuzhou , P. R. China.,b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China
| | - Qing Wang
- b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China.,c School of Life Sciences , Beijing University of Chinese Medicine , Beijing , P. R. China
| | - Wei Bu
- a Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences , Jiangsu Normal University , Xuzhou , P. R. China
| | - Lingxiao Chen
- a Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences , Jiangsu Normal University , Xuzhou , P. R. China
| | - Zhen Yang
- b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China
| | - Weifa Zheng
- a Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Sciences , Jiangsu Normal University , Xuzhou , P. R. China
| | - Ying Li
- b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China
| | - Jilun Li
- b State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology , College of Biological Sciences, China Agricultural University , Beijing , P. R. China
| |
Collapse
|
14
|
Yu Y, Liu Z, Chen M, Yang M, Li L, Mou H. Enhancing the expression of recombinant κ-carrageenase in Pichia pastoris using dual promoters, co-expressing chaperones and transcription factors. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1655001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Yuan Yu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Meng Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Min Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Li Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
15
|
Improving heterologous expression of porcine follicle-stimulating hormone in Pichia pastoris by integrating molecular strategies and culture condition optimization. Appl Microbiol Biotechnol 2018; 102:8867-8882. [PMID: 30136206 DOI: 10.1007/s00253-018-9260-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
Porcine follicle-stimulating hormone (pFSH), comprising α and β subunits, is commonly used to induce superovulation in domestic animals in assisted reproduction technologies; however, the practical application of pFSH is inhibited by the limited efficiency of its production. Recombinant yeast-derived FSH offers a practical alternative; however, the heterologous expression efficiency remains disappointingly low. To improve FSH production in Pichia pastoris, a series of molecular strategies, together with fermentation optimization, were tested in the present study. By comparing clones of the Muts phenotype strain, it was observed that the yield of soluble pFSH increased by approximately 96% in clones of the Mut+ phenotype strain. The protein levels of soluble pFSHβ, which confers biological specificity, increased by approximately 143 and 22% after two kinds of codon optimization strategies, respectively. Moreover, compared with the production of soluble pFSHβ and SUMO-pFSHβ, the production of soluble protein HSA-pFSHβ was significantly improved. Furthermore, the optimum pH and methanol concentration for expressing soluble HSA-pFSH in strain H3-3 were determined as 5.0-6.0 and 1.5-2% in shake-flask, and the yield of soluble HSA-pFSH could reach 40.8 mg/l after purification. In vitro bioactivity assays showed that recombinant HSA-pFSH could efficiently stimulate cAMP synthesis in HEK293 cells expressing porcine FSHR. In conclusion, our results demonstrated that the application of phenotypic selection of aox1 mutants, combined with codon optimization, the choice of fusion partners, and fermentation optimization, considerably increased the yield of pFSH in supernatant of P. pastoris and thus provided a valuable reference for the large-scale recombinant expression of pFSH.
Collapse
|
16
|
Zhang M, Yu XW, Swapna GVT, Liu G, Xiao R, Xu Y, Montelione GT. Backbone and Ile-δ1, Leu, Val methyl 1H, 15N, and 13C, chemical shift assignments for Rhizopus chinensis lipase. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:63-68. [PMID: 28929427 DOI: 10.1007/s12104-017-9781-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Lipase r27RCL is a 296-residue, 33 kDa monomeric enzyme with high ester hydrolysis activity, which has significant applications in the baking, paper and leather industries. The lipase gene proRCL from Rhizopus microsporus var. chinensis (also Rhizopus chinensis) CCTCC M201021 was cloned as a fusion construct C-terminal to a maltose-binding protein (MBP) tag, and expressed as MBP-proRCL in an Escherichia coli BL21 trxB (DE3) expression system with uniform 2H,13C,15N-enrichment and Ile-δ1, Leu, and Val 13CH3 methyl labeling. The fusion protein was hydrolyzed by Kex2 protease at the recognition site Lys-Arg between residues -29 and -28 of the prosequence, producing the enzyme form called r27RCL. Here we report extensive backbone 1H, 15N, and 13C, as well as Ile-δ1, Leu, and Val side chain methyl, NMR resonance assignments for r27RCL.
Collapse
Affiliation(s)
- Meng Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Xiao-Wei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| | - G V T Swapna
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Northeast Structural Genomics Consortium, Piscataway, NJ, USA
| | - Gaohua Liu
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Northeast Structural Genomics Consortium, Piscataway, NJ, USA
| | - Rong Xiao
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
- Northeast Structural Genomics Consortium, Piscataway, NJ, USA
| | - Yan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
- Northeast Structural Genomics Consortium, Piscataway, NJ, USA.
| |
Collapse
|
17
|
Healey RD, Lebhar H, Hornung S, Thordarson P, Marquis CP. An improved process for the production of highly purified recombinant thaumatin tagged-variants. Food Chem 2017; 237:825-832. [DOI: 10.1016/j.foodchem.2017.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/03/2017] [Accepted: 06/05/2017] [Indexed: 11/27/2022]
|
18
|
Yu XW, Sun WH, Wang YZ, Xu Y. Identification of novel factors enhancing recombinant protein production in multi-copy Komagataella phaffii based on transcriptomic analysis of overexpression effects. Sci Rep 2017; 7:16249. [PMID: 29176680 PMCID: PMC5701153 DOI: 10.1038/s41598-017-16577-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022] Open
Abstract
The methylotrophic yeast Komagataella phaffii (Pichia pastoris) has been developed into a highly successful system for heterologous protein expression in both academia and industry. However, overexpression of recombinant protein often leads to severe burden on the physiology of K. phaffii and triggers cellular stress. To elucidate the global effect of protein overexpression, we set out to analyze the differential transcriptome of recombinant strains with 12 copies and a single copy of phospholipase A2 gene (PLA2) from Streptomyces violaceoruber. Through GO, KEGG and heat map analysis of significantly differentially expressed genes, the results indicated that the 12-copy strain suffered heavy cellular stress. The genes involved in protein processing and stress response were significantly upregulated due to the burden of protein folding and secretion, while the genes in ribosome and DNA replication were significantly downregulated possibly contributing to the reduced cell growth rate under protein overexpression stress. Three most upregulated heat shock response genes (CPR6, FES1, and STI1) were co-overexpressed in K. phaffii and proved their positive effect on the secretion of reporter enzymes (PLA2 and prolyl endopeptidase) by increasing the production up to 1.41-fold, providing novel helper factors for rational engineering of K. phaffii.
Collapse
Affiliation(s)
- Xiao-Wei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China.
| | - Wei-Hong Sun
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Ying-Zheng Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China
| | - Yan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, P.R. China.
| |
Collapse
|
19
|
Yu XW, Yang M, Jiang C, Zhang X, Xu Y. N-Glycosylation Engineering to Improve the Constitutive Expression of Rhizopus oryzae Lipase in Komagataella phaffii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6009-6015. [PMID: 28681607 DOI: 10.1021/acs.jafc.7b01884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Our previous studies demonstrated that the N-glycans in Rhizopus chinensis lipase (RCL) was important for its secretion. In order to improve the secretion of Rhizopus oryzae lipase (ROL) under the control of the GAP promoter in Komagataella phaffii, two extra N-glycosylation sites were introduced in ROL according to the position of the N-glycosylation sites of RCL by sequence alignment. The results indicated that the secretion level of ROL was strongly improved by N-glycosylation engineering, and the highest value of extracellular enzyme activity was increased from 0.4 ± 0.2 U/mL to 207 ± 6 U/mL in a shake flask. In the 7-L fermenter, the extracellular enzyme activity of the mutant (2600 ± 43 U/mL) and the total protein concentration (2.5 ± 0.2 g/L) were 218- and 6.25-fold higher than these of the parent, respectively. This study presents a strategy for constitutive recombinant expression of ROL using the GAP promoter combined with N-glycosylation engineering, providing a potential enzyme for application in the food industry.
Collapse
Affiliation(s)
- Xiao-Wei Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi 214122, P. R. China
| | - Min Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi 214122, P. R. China
| | - Chuanhuan Jiang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi 214122, P. R. China
| | - Xiaofeng Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi 214122, P. R. China
| | - Yan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University , Wuxi 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi 214122, P. R. China
| |
Collapse
|
20
|
Wang QH, Liang L, Liu WC, Gong T, Chen JJ, Hou Q, Yang JL, Zhu P. Enhancement of recombinant BmK AngM1 production in Pichia pastoris by regulating gene dosage, co-expressing with chaperones and fermenting in fed-batch mode. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:581-594. [PMID: 28376654 DOI: 10.1080/10286020.2017.1311872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The scorpion peptide BmK AngM1 was reported to exhibit evident analgesic effect, but its yield by extraction from scorpion venom limits the research and application. The heterologous expression of BmK AngM1 was achieved in Pichia pastoris in our previous study. In order to realize high-level expression of recombinant BmK AngM1 (rBmK AngM1), the gene dosage of BmK AngM1 was optimized in engineered strains. The yield of rBmK AngM1 in the four-copy strain reached up to 100 mg/L, which was further enhanced to 190 mg/L by co-expressing with chaperones of PDI, BiP, and HAC1. Moreover, the yield of rBmK AngM1 was up to 1200 mg/L by high-density fermentation in 10 L fermenter. Finally, 360 mg rBmK AngM1 was purified from 1 L cultures by a two-step purification method. The efficient and convenient techniques presented in this study could facilitate further scale-up for industrial production of rBmK AngM1.
Collapse
Affiliation(s)
- Qing-Hua Wang
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
- b Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Lan Liang
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
- b Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Wan-Cang Liu
- c Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Ting Gong
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
- b Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Jing-Jing Chen
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
- b Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Qi Hou
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
- b Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Jin-Ling Yang
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
- b Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Ping Zhu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
- b Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
21
|
Mattanovich D, Sauer M, Gasser B. Industrial Microorganisms: Pichia pastoris. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Diethard Mattanovich
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Muthgasse 18 1190 Vienna Austria
| | - Michael Sauer
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Muthgasse 18 1190 Vienna Austria
- BOKU - University of Natural Resources and Life Sciences; CD-Laboratory for Biotechnology of Glycerol; Muthgasse 18 1190 Vienna Austria
| | - Brigitte Gasser
- BOKU - University of Natural Resources and Life Sciences; Department of Biotechnology; Muthgasse 18 1190 Vienna Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH); Muthgasse 18 1190 Vienna Austria
| |
Collapse
|
22
|
Lipases from the genus Rhizopus : Characteristics, expression, protein engineering and application. Prog Lipid Res 2016; 64:57-68. [DOI: 10.1016/j.plipres.2016.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/24/2016] [Accepted: 08/01/2016] [Indexed: 11/22/2022]
|
23
|
Li X, Liu Z, Wang G, Pan D, Jiao L, Yan Y. Overexpression of Candida rugosa lipase Lip1 via combined strategies in Pichia pastoris. Enzyme Microb Technol 2015; 82:115-124. [PMID: 26672457 DOI: 10.1016/j.enzmictec.2015.09.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/11/2015] [Accepted: 09/11/2015] [Indexed: 11/27/2022]
Abstract
In this study, combined strategies were employed to heterologously overexpress Candida rugosa lipase Lip1 (CRL1) in a Pichia pastoris system. The LIP1 gene was systematically codon-optimized and synthesized in vitro. The Lip1 activity of a recombinant strain harboring three copies of the codon-optimized LIP1 gene reached 1200 U/mL in a shake flask culture. Higher lipase activity, 1450 U/mL, was obtained using a five copy number construct. Co-expressing one copy of the ERO1p and BiP chaperones with Lip1p, the CRL1 lipase yield further reached 1758 U/mL, which was significantly higher than that achieved by expressing Lip1p alone or only co-expressing one molecular chaperone. When cultivated in a 3 L fermenter under optimal conditions, the recombinant strain GS115/87-ZA-ERO1p-BiP #7, expressing the molecular chaperones Ero1p and BiP, produced 13,490 U/mL of lipase activity at 130 h, which was greater than the 11,400 U/mL of activity for the recombinant strain GS115/pAO815-α-mCRL1 #87, which did not express a molecular chaperone. This study indicates that a strategy of combining codon optimization with co-expression of molecular chaperones has great potential for the industrial-scale production of pure CRL1.
Collapse
Affiliation(s)
- Xu Li
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Zimin Liu
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Guilong Wang
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Dujie Pan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Liangcheng Jiao
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yunjun Yan
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|