1
|
Evaluation of BOX-PCR and REP-PCR as Molecular Typing Tools for Antarctic Streptomyces. Curr Microbiol 2020; 77:3573-3581. [PMID: 32939638 DOI: 10.1007/s00284-020-02199-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/03/2020] [Indexed: 10/23/2022]
Abstract
Molecular studies led to the resurgence of natural products research from genus Streptomyces, already known for their long history and importance for the pharmaceutical industry. However, species belonging to this genus are difficult to identify and the most commonly used techniques, which are based on 16S rRNA sequencing, do not discriminate between related species. In this work, amplification profiles generated from BOX-PCR and REP-PCR of 49 Antarctic soil streptomycetes were compared to evaluate the diversity present in the group and to characterize the bacterial isolates, along with some 16S rRNA amplifications. The BOX-A1R primer exhibit clearer amplification fragments, different from the amplification patterns obtained using the REP 1R and 2R primers. A higher diversity was observed with REP-PCR amplifications, even though a larger number of fragments was obtained with BOX-A1R primer amplifications. There are at least four isolates that showed great similarity (about 90%) in both techniques. In other hand, there are two others that are 90% similar in BOX-PCR, but distant in REP-PCR, showing only 40% of similarity. Results of the combination of BOX-PCR and REP-PCR represent a simple and low-cost method to discriminate between Streptomyces strains. There is no species identification with only the 16S rRNA, most isolates seem to be related to S. globisporus. Further studies added to the obtained results may provide better data to help the characterization of these microorganisms.
Collapse
|
2
|
Shehroz M, Aslam M, Ali Khan M, Aiman S, Gul Afridi S, Khan A. The In Silico Characterization of a Salicylic Acid Analogue Coding Gene Clusters in Selected Pseudomonas fluorescens Strains. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 17:e2250. [PMID: 32671125 PMCID: PMC7357695 DOI: 10.30498/ijb.2019.95299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The microbial genome sequences provide solid in silico framework for interpretation of their drug-like chemical scaffolds biosynthetic potentials. Pseudomonas fluorescens strains are metabolically versatile and producing therapeutically important natural products. OBJECTIVES The key objective of the present study was to mine the publically available data of P. fluorescens strains genomes for putative drug-like metabolites identification. MATERIALS AND METHODS We implemented the computational biology resources of AntiSMASH and BAGEL3 for the secondary metabolites prediction from P. fluorescens strains genome sequences. The predicted secondary metabolites were evaluated using drug discovery chemoinformatics resources, like Drugbank database search and molecular docking inspection. RESULTS The analyses unveiled a wide array of chemical scaffolds biosynthesis in different P. fluorescens strains. Subsequently, the drug-like potential evaluation of these metabolites identified few strains, including P. fluorescens PT14, P. fluorescens A5O6, and P. fluorescens FW300-N2E3 that harbor the biosynthetic gene clusters for salicylic acid-like metabolite biosynthesis. The molecular docking inspection of this metabolite against human cyclooxygenase and aldo-keto reductase targets revealed its feasible inhibitory potentials like other salicylate compounds. CONCLUSION The computational biology and drug discovery analyses identified different gene clusters in P. fluorescens genomes coding for salicylic acid-like chemotypes biosynthesis. These gene clusters may worthy to target through metabolic engineering for the massive production of salicylates-like chemical scaffolds from microbial resources.
Collapse
Affiliation(s)
- Muhammad Shehroz
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muneeba Aslam
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Munazza Ali Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Sara Aiman
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan
| |
Collapse
|
3
|
Brocaeloid D, a novel compound isolated from a wheat pathogenic fungus, Microdochium majus 99049. Synth Syst Biotechnol 2019; 4:173-179. [PMID: 31667367 PMCID: PMC6807035 DOI: 10.1016/j.synbio.2019.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/10/2019] [Accepted: 09/15/2019] [Indexed: 11/23/2022] Open
Abstract
Microbes serve as the most important resource for drug discovery. During our screening for bioactive compounds from our natural products library, a pathogenic fungus, Microdochium majus strain 99049, from wheat was selected for further investigation. A new alkaloid named brocaeloid D (1), together with six previously characterized compounds (2–7) were identified. Compound 1 belongs to 4-oxoquinoline with C-2 reversed prenylation and a succinimide substructure. All the structures of these newly isolated compounds were determined by different means in spectroscopic experiments. The absolute configurations of 1 was further deduced from comparison of its CD spectrum with that of known compound 2. The bioactivities of these identified compounds were evaluated against several pathogenic microorganisms and cancer cell lines. Compounds 1–5 showed activity against HUH-7 human hepatoma cells with IC50 values of 80 μg/mL. Compound 6 showed mild activity against HeLa cells (IC50 = 51.9 μg/mL), weak anti-MTB activity (MIC = 80 μg/mL), and moderate anti-MRSA activity (MIC = 25 μg/mL), and compound 7 showed weak anti-MRSA activity (MIC = 100 μg/mL).
Collapse
|
4
|
Isolation and identification of two alkaloid structures with radical scavenging activity from Actinokineospora sp. UTMC 968, a new promising source of alkaloid compounds. Mol Biol Rep 2018; 45:2325-2332. [PMID: 30242664 DOI: 10.1007/s11033-018-4395-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
For decades, natural products from Actinomycetes have been recognized as one of the inestimable sources of therapeutic compounds. Presently, due to some challenges in the identification of novel compounds including the validation of novel natural products and their compatibility with the high throughput screening bioassays, evaluating new activity from known commercial ones would be an important designation. On the other hand, finding new sources of bioactive compounds from Actinomycetes can be promising in attaining pharmaceutical compounds with fewer purification steps and cost-effective production of the bioproducts. Here we describe the isolation and identification of two alkaloid compounds from a soil actinobacterium Actinokineospora sp. UTMC 968 including N-acetyltyramine (1) and N-acetyltryptamine (2) with revealing a new bioactivity for these molecules. The producer is a rare actinobacterium belonging to family Pseudonocardiaceae as the first alkaloid compounds producer genus in its family. The structures of alkaloid 1 and 2 were assigned on the basis of 1D and 2D NMR spectroscopy and MS analyses. Compound 1 and 2 are used commercially for their pharmaceutical activity but their radical scavenging activity has not previously been reported. The results of 1,1-diphenyl-2-picrylhydrazyl radical scavenging assay represented a remarkable DPPH radical scavenging capability with an IC50 value of 64.7 ± 0.5 and 131.3 ± 1.8 µg/mL for compound 1 and 2, respectively.
Collapse
|
5
|
Antoraz S, Rico S, Rodríguez H, Sevillano L, Alzate JF, Santamaría RI, Díaz M. The Orphan Response Regulator Aor1 Is a New Relevant Piece in the Complex Puzzle of Streptomyces coelicolor Antibiotic Regulatory Network. Front Microbiol 2017; 8:2444. [PMID: 29312165 PMCID: PMC5733086 DOI: 10.3389/fmicb.2017.02444] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/24/2017] [Indexed: 11/13/2022] Open
Abstract
Streptomyces coelicolor, the best-known biological antibiotic producer, encodes 29 predicted orphan response regulators (RR) with a putative role in the response to environmental stimuli. However, their implication in relation to secondary metabolite production is mostly unexplored. Here, we show how the deletion of the orphan RR Aor1 (SCO2281) provoked a drastic decrease in the production of the three main antibiotics produced by S. coelicolor and a delay in morphological differentiation. With the aim to better understand the transcriptional events underpinning these phenotypes, and the global role of Aor1 in Streptomyces, a transcriptional fingerprint of the Δaor1 mutant was compared to a wild-type strain. RNA-Seq analysis revealed that the deletion of this orphan regulator affects a strikingly high number of genes, such as the genes involved in secondary metabolism, which matches the antibiotic production profiles observed. Of particular note, the sigma factor SigB and all of the genes comprising its regulon were up regulated in the mutant. Our results show that this event links osmotic stress to secondary metabolite production in S. coelicolor and indicates that the RR encoded by aor1 could be a key regulator in both of these processes.
Collapse
Affiliation(s)
- Sergio Antoraz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Sergio Rico
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Héctor Rodríguez
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain.,Cic bioGUNE, Derio, Spain
| | - Laura Sevillano
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Juan F Alzate
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - Ramón I Santamaría
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| | - Margarita Díaz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
6
|
Chevrette MG, Aicheler F, Kohlbacher O, Currie CR, Medema MH. SANDPUMA: ensemble predictions of nonribosomal peptide chemistry reveal biosynthetic diversity across Actinobacteria. Bioinformatics 2017; 33:3202-3210. [PMID: 28633438 PMCID: PMC5860034 DOI: 10.1093/bioinformatics/btx400] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/19/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
SUMMARY Nonribosomally synthesized peptides (NRPs) are natural products with widespread applications in medicine and biotechnology. Many algorithms have been developed to predict the substrate specificities of nonribosomal peptide synthetase adenylation (A) domains from DNA sequences, which enables prioritization and dereplication, and integration with other data types in discovery efforts. However, insufficient training data and a lack of clarity regarding prediction quality have impeded optimal use. Here, we introduce prediCAT, a new phylogenetics-inspired algorithm, which quantitatively estimates the degree of predictability of each A-domain. We then systematically benchmarked all algorithms on a newly gathered, independent test set of 434 A-domain sequences, showing that active-site-motif-based algorithms outperform whole-domain-based methods. Subsequently, we developed SANDPUMA, a powerful ensemble algorithm, based on newly trained versions of all high-performing algorithms, which significantly outperforms individual methods. Finally, we deployed SANDPUMA in a systematic investigation of 7635 Actinobacteria genomes, suggesting that NRP chemical diversity is much higher than previously estimated. SANDPUMA has been integrated into the widely used antiSMASH biosynthetic gene cluster analysis pipeline and is also available as an open-source, standalone tool. AVAILABILITY AND IMPLEMENTATION SANDPUMA is freely available at https://bitbucket.org/chevrm/sandpuma and as a docker image at https://hub.docker.com/r/chevrm/sandpuma/ under the GNU Public License 3 (GPL3). CONTACT chevrette@wisc.edu or marnix.medema@wur.nl. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Marc G Chevrette
- Department of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Bacteriology and J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Fabian Aicheler
- Applied Bioinformatics, Department of Computer Science, Quantitative Biology Center and Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department of Computer Science, Quantitative Biology Center and Center for Bioinformatics, University of Tübingen, Tübingen, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Cameron R Currie
- Department of Bacteriology and J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
7
|
Microindolinone A, a Novel 4,5,6,7-Tetrahydroindole, from the Deep-Sea-Derived Actinomycete Microbacterium sp. MCCC 1A11207. Mar Drugs 2017. [DOI: 10.3390/md15070230 pmid: 287539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Niu S, Zhou TT, Xie CL, Zhang GY, Yang XW. Microindolinone A, a Novel 4,5,6,7-Tetrahydroindole, from the Deep-Sea-Derived Actinomycete Microbacterium sp. MCCC 1A11207. Mar Drugs 2017; 15:md15070230. [PMID: 28753937 PMCID: PMC5532672 DOI: 10.3390/md15070230] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/30/2017] [Accepted: 07/14/2017] [Indexed: 11/16/2022] Open
Abstract
A novel indole, microindolinone A (1), was isolated from a deep-sea-derived actinomycete Microbacterium sp. MCCC 1A11207, together with 18 known compounds (2-19). By detailed analysis of the ¹H, 13C, HSQC, COSY, HMBC, high resolution electron spray ionization mass spectrum (HRESIMS), and circular dichroism (CD) data, the absolute configuration of 1 was elucidated as 5R-hydroxy-4,5,6,7-tetrahydroindole-4-one. It is noteworthy that 1 is the second example of a saturated indole isolated from nature.
Collapse
Affiliation(s)
- Siwen Niu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| | - Ting-Ting Zhou
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| | - Chun-Lan Xie
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| | - Gai-Yun Zhang
- Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| | - Xian-Wen Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
- Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, 184 Daxue Road, Xiamen 361005, China.
| |
Collapse
|
9
|
Phylogeny-guided (meta)genome mining approach for the targeted discovery of new microbial natural products. ACTA ACUST UNITED AC 2017; 44:285-293. [DOI: 10.1007/s10295-016-1874-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/12/2016] [Indexed: 10/20/2022]
Abstract
Abstract
Genomics-based methods are now commonplace in natural products research. A phylogeny-guided mining approach provides a means to quickly screen a large number of microbial genomes or metagenomes in search of new biosynthetic gene clusters of interest. In this approach, biosynthetic genes serve as molecular markers, and phylogenetic trees built with known and unknown marker gene sequences are used to quickly prioritize biosynthetic gene clusters for their metabolites characterization. An increase in the use of this approach has been observed for the last couple of years along with the emergence of low cost sequencing technologies. The aim of this review is to discuss the basic concept of a phylogeny-guided mining approach, and also to provide examples in which this approach was successfully applied to discover new natural products from microbial genomes and metagenomes. I believe that the phylogeny-guided mining approach will continue to play an important role in genomics-based natural products research.
Collapse
|
10
|
Molecular beacons to identify gifted microbes for genome mining. J Antibiot (Tokyo) 2017; 70:639-646. [DOI: 10.1038/ja.2017.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/12/2016] [Accepted: 12/26/2016] [Indexed: 12/19/2022]
|
11
|
Cruz-Morales P, Kopp JF, Martínez-Guerrero C, Yáñez-Guerra LA, Selem-Mojica N, Ramos-Aboites H, Feldmann J, Barona-Gómez F. Phylogenomic Analysis of Natural Products Biosynthetic Gene Clusters Allows Discovery of Arseno-Organic Metabolites in Model Streptomycetes. Genome Biol Evol 2016; 8:1906-16. [PMID: 27289100 PMCID: PMC4943196 DOI: 10.1093/gbe/evw125] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Natural products from microbes have provided humans with beneficial antibiotics for millennia. However, a decline in the pace of antibiotic discovery exerts pressure on human health as antibiotic resistance spreads, a challenge that may better faced by unveiling chemical diversity produced by microbes. Current microbial genome mining approaches have revitalized research into antibiotics, but the empirical nature of these methods limits the chemical space that is explored. Here, we address the problem of finding novel pathways by incorporating evolutionary principles into genome mining. We recapitulated the evolutionary history of twenty-three enzyme families previously uninvestigated in the context of natural product biosynthesis in Actinobacteria, the most proficient producers of natural products. Our genome evolutionary analyses where based on the assumption that expanded—repurposed enzyme families—from central metabolism, occur frequently and thus have the potential to catalyze new conversions in the context of natural products biosynthesis. Our analyses led to the discovery of biosynthetic gene clusters coding for hidden chemical diversity, as validated by comparing our predictions with those from state-of-the-art genome mining tools; as well as experimentally demonstrating the existence of a biosynthetic pathway for arseno-organic metabolites in Streptomyces coelicolor and Streptomyces lividans, Using a gene knockout and metabolite profile combined strategy. As our approach does not rely solely on sequence similarity searches of previously identified biosynthetic enzymes, these results establish the basis for the development of an evolutionary-driven genome mining tool termed EvoMining that complements current platforms. We anticipate that by doing so real ‘chemical dark matter’ will be unveiled.
Collapse
Affiliation(s)
- Pablo Cruz-Morales
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Irapuato, Guanajuato, México
| | - Johannes Florian Kopp
- Trace Element Speciation Laboratory (TESLA) College of Physical Sciences, Aberdeen, Scotland, UK
| | | | | | - Nelly Selem-Mojica
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Irapuato, Guanajuato, México
| | - Hilda Ramos-Aboites
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Irapuato, Guanajuato, México
| | - Jörg Feldmann
- Trace Element Speciation Laboratory (TESLA) College of Physical Sciences, Aberdeen, Scotland, UK
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Langebio, Cinvestav-IPN, Irapuato, Guanajuato, México
| |
Collapse
|
12
|
Anti-MRSA and anti-TB metabolites from marine-derived Verrucosispora sp. MS100047. Appl Microbiol Biotechnol 2016; 100:7437-47. [PMID: 26975378 DOI: 10.1007/s00253-016-7406-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/31/2016] [Accepted: 02/18/2016] [Indexed: 02/05/2023]
Abstract
Microbes belonging to the genus Verrucosispora possess significant chemical diversity and biological properties. They have attracted the interests of many researchers and are becoming promising resources in the marine natural product research field. A bioassay-guided isolation from the crude extract of Verrucosispora sp. strain MS100047, isolated from sediments collected from the South China Sea, has led to the identification of a new salicylic derivative, glycerol 1-hydroxy-2,5-dimethyl benzoate (1), along with three known compounds, brevianamide F (2), abyssomicin B (3), and proximicin B (4). Compound 1 showed selective activity against methicillin-resistant Staphylococcus aureus (MRSA) with a minimum inhibitory concentration (MIC) value of 12.5 μg/mL. Brevianamide F (2), which was isolated from actinomycete for the first time, showed a good anti-BCG activity with a MIC value of 12.5 μg/mL that has not been reported previously in literatures. Proximicin B (4) showed significant anti-MRSA (MIC = 3.125 μg/mL), anti-BCG (MIC = 6.25 μg/mL), and anti-tuberculosis (TB) (MIC = 25 μg/mL) activities. This is the first report on the anti-tubercular activities of proximicins. In addition, Verrucosispora sp. strain MS100047 was found to harbor 18 putative secondary metabolite gene clusters based on genomic sequence analysis. These include the biosynthetic loci encoding polyketide synthase (PKS) and non-ribosomal peptide synthetase (NRPS) consistent with abyssomicins and proximicins, respectively. The biosynthetic pathways of these isolated compounds have been proposed. These results indicate that MS100047 possesses a great potential as a source of active secondary metabolites.
Collapse
|
13
|
Chemler JA, Tripathi A, Hansen DA, O'Neil-Johnson M, Williams RB, Starks C, Park SR, Sherman DH. Evolution of Efficient Modular Polyketide Synthases by Homologous Recombination. J Am Chem Soc 2015; 137:10603-9. [PMID: 26230368 DOI: 10.1021/jacs.5b04842] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural scaffolds of many complex natural products are produced by multifunctional type I polyketide synthase (PKS) enzymes that operate as biosynthetic assembly lines. The modular nature of these mega-enzymes presents an opportunity to construct custom biocatalysts built in a lego-like fashion by inserting, deleting, or exchanging native or foreign domains to produce targeted variants of natural polyketides. However, previously engineered PKS enzymes are often impaired resulting in limited production compared to native systems. Here, we show a versatile method for generating and identifying functional chimeric PKS enzymes for synthesizing custom macrolactones and macrolides. PKS genes from the pikromycin and erythromycin pathways were hybridized in Saccharomyces cerevisiae to generate hybrid libraries. We used a 96-well plate format for plasmid purification, transformations, sequencing, protein expression, in vitro reactions and analysis of metabolite formation. Active chimeric enzymes were identified with new functionality. Streptomyces venezuelae strains that expressed these PKS chimeras were capable of producing engineered macrolactones. Furthermore, a macrolactone generated from selected PKS chimeras was fully functionalized into a novel macrolide analogue. This method permits the engineering of PKS pathways as modular building blocks for the production of new antibiotic-like molecules.
Collapse
Affiliation(s)
| | | | | | - Mark O'Neil-Johnson
- Sequoia Sciences, Inc. , 1912 Innerbelt Business Center Drive, Saint Louis, Missouri 63114, United States
| | - Russell B Williams
- Sequoia Sciences, Inc. , 1912 Innerbelt Business Center Drive, Saint Louis, Missouri 63114, United States
| | - Courtney Starks
- Sequoia Sciences, Inc. , 1912 Innerbelt Business Center Drive, Saint Louis, Missouri 63114, United States
| | | | | |
Collapse
|
14
|
The Origin and Evolution of Baeyer-Villiger Monooxygenases (BVMOs): An Ancestral Family of Flavin Monooxygenases. PLoS One 2015; 10:e0132689. [PMID: 26161776 PMCID: PMC4498894 DOI: 10.1371/journal.pone.0132689] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 06/18/2015] [Indexed: 12/13/2022] Open
Abstract
The Baeyer-Villiger Monooxygenases (BVMOs) are enzymes belonging to the "Class B" of flavin monooxygenases and are capable of performing exquisite selective oxidations. These enzymes have been studied from a biotechnological perspective, but their physiological substrates and functional roles are widely unknown. Here, we investigated the origin, taxonomic distribution and evolutionary history of the BVMO genes. By using in silico approaches, 98 BVMO encoding genes were detected in the three domains of life: Archaea, Bacteria and Eukarya. We found evidence for the presence of these genes in Metazoa (Hydra vulgaris, Oikopleura dioica and Adineta vaga) and Haptophyta (Emiliania huxleyi) for the first time. Furthermore, a search for other "Class B" monooxygenases (flavoprotein monooxygenases--FMOs--and N-hydroxylating monooxygenases--NMOs) was conducted. These sequences were also found in the three domains of life. Phylogenetic analyses of all "Class B" monooxygenases revealed that NMOs and BVMOs are monophyletic, whereas FMOs form a paraphyletic group. Based on these results, we propose that BVMO genes were already present in the last universal common ancestor (LUCA) and their current taxonomic distribution is the result of differential duplication and loss of paralogous genes.
Collapse
|
15
|
Endophytic Streptomyces in the traditional medicinal plant Arnica montana L.: secondary metabolites and biological activity. Antonie van Leeuwenhoek 2015; 108:391-402. [PMID: 26036671 DOI: 10.1007/s10482-015-0492-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/24/2015] [Indexed: 10/23/2022]
Abstract
Arnica montana L. is a medical plant of the Asteraceae family and grows preferably on nutrient poor soils in mountainous environments. Such surroundings are known to make plants dependent on symbiosis with other organisms. Up to now only arbuscular mycorrhizal fungi were found to act as endophytic symbiosis partners for A. montana. Here we identified five Streptomyces strains, microorganisms also known to occur as endophytes in plants and to produce a huge variety of active secondary metabolites, as inhabitants of A. montana. The secondary metabolite spectrum of these strains does not contain sesquiterpene lactones, but consists of the glutarimide antibiotics cycloheximide and actiphenol as well as the diketopiperazines cyclo-prolyl-valyl, cyclo-prolyl-isoleucyl, cyclo-prolyl-leucyl and cyclo-prolyl-phenylalanyl. Notably, genome analysis of one strain was performed and indicated a huge genome size with a high number of natural products gene clusters among which genes for cycloheximide production were detected. Only weak activity against the Gram-positive bacterium Staphylococcus aureus was revealed, but the extracts showed a marked cytotoxic activity as well as an antifungal activity against Candida parapsilosis and Fusarium verticillioides. Altogether, our results provide evidence that A. montana and its endophytic Streptomyces benefit from each other by completing their protection against competitors and pathogens and by exchanging plant growth promoting signals with nutrients.
Collapse
|