1
|
Wang Y, Han Y, Liu C, Cao L, Ye Q, Ding C, Wang Y, Huang Q, Mao J, Zhang CY, Yu A. Engineering Yarrowia lipolytica to Produce l-Malic Acid from Glycerol. ACS Synth Biol 2024; 13:3635-3645. [PMID: 39444231 DOI: 10.1021/acssynbio.4c00445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The declining availability of cheap fossil-based resources has sparked growing interest in the sustainable biosynthesis of organic acids. l-Malic acid, a crucial four-carbon dicarboxylic acid, finds extensive applications in the food, chemical, and pharmaceutical industries. Synthetic biology and metabolic engineering have enabled the efficient microbial production of l-malic acid, albeit not in Yarrowia lipolytica, an important industrial microorganism. The present study aimed to explore the potential of this fungal species for the production of l-malic acid. First, endogenous biosynthetic genes and heterologous transporter genes were overexpressed in Y. lipolytica to identify bottlenecks in the l-malic acid biosynthesis pathway grown on glycerol. Second, overexpression of isocitrate lyase, malate synthase, and malate dehydrogenase in the glyoxylate cycle pathway and introduction of a malate transporter from Schizosaccharomyces pombe significantly boosted l-malic acid production, which reached 27.0 g/L. A subsequent increase to 37.0 g/L was attained through shake flask medium optimization. Third, adaptive laboratory evolution allowed the engineered strain Po1g-CEE2+Sp to tolerate a lower pH and to accumulate a higher amount of l-malic acid (56.0 g/L). Finally, when scaling up to a 5 L bioreactor, a titer of 112.5 g/L was attained. In conclusion, this study demonstrates for the first time the successful production of l-malic acid in Y. lipolytica by combining metabolic engineering and laboratory evolution, paving the way for large-scale sustainable biosynthesis of this and other organic acids.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Yuqing Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Chang Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Liyan Cao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Qingqing Ye
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Chen Ding
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Yuyang Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Qingeng Huang
- Qingyuan One Alive Institute of Biological Research Co., Ltd, Qingyuan 500112, PR China
| | - Jiwei Mao
- Department of Life Sciences, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Cui-Ying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| | - Aiqun Yu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 the 13th Street TEDA, Tianjin 300457, PR China
| |
Collapse
|
2
|
Ding Q, Ye C. Recent advances in producing food additive L-malate: Chassis, substrate, pathway, fermentation regulation and application. Microb Biotechnol 2023; 16:709-725. [PMID: 36604311 PMCID: PMC10034640 DOI: 10.1111/1751-7915.14206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
In addition to being an important intermediate in the TCA cycle, L-malate is also widely used in the chemical and beverage industries. Due to the resulting high demand, numerous studies investigated chemical methods to synthesize L-malate from petrochemical resources, but such approaches are hampered by complex downstream processing and environmental pollution. Accordingly, there is an urgent need to develop microbial methods for environmentally-friendly and economical L-malate biosynthesis. The rapid progress and understanding of DNA manipulation, cell physiology, and cell metabolism can improve industrial L-malate biosynthesis by applying intelligent biochemical strategies and advanced synthetic biology tools. In this paper, we mainly focused on biotechnological approaches for enhancing L-malate synthesis, encompassing the microbial chassis, substrate utilization, synthesis pathway, fermentation regulation, and industrial application. This review emphasizes the application of novel metabolic engineering strategies and synthetic biology tools combined with a deep understanding of microbial physiology to improve industrial L-malate biosynthesis in the future.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life SciencesAnhui UniversityHefeiChina
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education InstitutesAnhui UniversityHefeiChina
- Anhui Key Laboratory of Modern BiomanufacturingHefeiChina
| | - Chao Ye
- School of Food Science and Pharmaceutical EngineeringNanjing Normal UniversityNanjingChina
| |
Collapse
|
3
|
Recent advances and perspectives on production of value-added organic acids through metabolic engineering. Biotechnol Adv 2023; 62:108076. [PMID: 36509246 DOI: 10.1016/j.biotechadv.2022.108076] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Organic acids are important consumable materials with a wide range of applications in the food, biopolymer and chemical industries. The global consumer organic acids market is estimated to increase to $36.86 billion by 2026. Conventionally, organic acids are produced from the chemical catalysis process with petrochemicals as raw materials, which posts severe environmental concerns and conflicts with our sustainable development goals. Most of the commonly used organic acids can be produced from various organisms. As a state-of-the-art technology, large-scale fermentative production of important organic acids with genetically-modified microbes has become an alternative to the chemical route to meet the market demand. Despite the fact that bio-based organic acid production from renewable cheap feedstock provides a viable solution, low productivity has impeded their industrial-scale application. With our deeper understanding of strain genetics, physiology and the availability of strain engineering tools, new technologies including synthetic biology, various metabolic engineering strategies, omics-based system biology tools, and high throughput screening methods are gradually established to bridge our knowledge gap. And they were further applied to modify the cellular reaction networks of potential microbial hosts and improve the strain performance, which facilitated the commercialization of consumable organic acids. Here we present the recent advances of metabolic engineering strategies to improve the production of important organic acids including fumaric acid, citric acid, itaconic acid, adipic acid, muconic acid, and we also discuss the current challenges and future perspectives on how we can develop a cost-efficient, green and sustainable process to produce these important chemicals from low-cost feedstocks.
Collapse
|
4
|
Wu N, Xing M, Chen Y, Zhang C, Li Y, Song P, Xu Q, Liu H, Huang H. Improving the productivity of malic acid by alleviating oxidative stress during Aspergillus niger fermentation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:151. [PMID: 36581946 PMCID: PMC9801644 DOI: 10.1186/s13068-022-02250-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND As an attractive platform chemical, malic acid has been commonly used in the food, feed and pharmaceutical field. Microbial fermentation of biobased sources to produce malic acid has attracted great attention because it is sustainable and environment-friendly. However, most studies mainly focus on improving yield and ignore shortening fermentation time. A long fermentation period means high cost, and hinders the industrial applications of microbial fermentation. Stresses, especially oxidative stress generated during fermentation, inhibit microbial growth and production, and prolong fermentation period. Previous studies have shown that polypeptides could effectively relieve stresses, but the underlying mechanisms were poorly understood. RESULTS In this study, polypeptides (especially elastin peptide) addition improves the productivity of malic acid in A. niger, resulting in shortening of fermentation time from 120 to 108 h. Transcriptome and biochemical analyses demonstrated that both antioxidant enzyme-mediated oxidative stress defense system, such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and nonenzymatic antioxidant system, such as glutathione, were enhanced in the presence of elastin peptide, suggesting elastin peptide relieving oxidative stresses is involved in many pathways. In order to further investigate the relationship between oxidative stress defense and malic acid productivity, we overexpressed three enzymes (Sod1, CAT, Tps1) related to oxidation resistance in A. niger, respectively, and these resulting strains display varying degree of improvement in malic acid productivity. Especially, the strain overexpressing the Sod1 gene achieved a malate titer of 91.85 ± 2.58 g/L in 96 h, corresponding to a productivity of 0.96 g/L/h, which performs better than elastin peptide addition. CONCLUSIONS Our investigation provides an excellent reference for alleviating the stress of the fungal fermentation process and improving fermentation efficiency.
Collapse
Affiliation(s)
- Na Wu
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China ,grid.260474.30000 0001 0089 5711College of Life Sciences, Nanjing Normal University, Nanjing, 210046 China
| | - Mingyan Xing
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Yaru Chen
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Chi Zhang
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Yingfeng Li
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China ,grid.260474.30000 0001 0089 5711College of Life Sciences, Nanjing Normal University, Nanjing, 210046 China
| | - Ping Song
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Qing Xu
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China
| | - Hao Liu
- grid.413109.e0000 0000 9735 6249Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin University of Science & Technology, Tianjin, 300457 China
| | - He Huang
- grid.260474.30000 0001 0089 5711School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023 China ,grid.412022.70000 0000 9389 5210College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800 China
| |
Collapse
|
5
|
Yadav M, Sehrawat N, Kumar S, Sharma AK, Singh M, Kumar A. Malic acid: fermentative production and applications. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Microbial metabolites have gained lot of industrial interest. These are currently employed in various industries including pharmaceuticals, chemical, textiles, food etc. Organic acids are among the important microbial products. Production of microbial organic acids present numerous advantages like agro-industrial waste may be utilized as substrate, low production cost, natural in origin and production is environment friendly. Malic acid is an organic acid (C4 dicarboxylic acid) that can be produced by microbes. It is also useful in industrial sectors as food, chemicals, and pharmaceuticals etc. Production/extraction of malic acid has been reported from fruits, egg shells, microbes, via chemical synthesis, bio-transformation and from renewable sources. Microbial production of malic acid seems very promising due to various advantages and the approach is environment-friendly. In recent years, researchers have focused on fermentative microbial production of malic acid and possibility of using agro-industrial waste as raw substrates. In current article, malic acid production along with applications has been discussed with recent advances in the area.
Collapse
Affiliation(s)
- Mukesh Yadav
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , India
| | - Nirmala Sehrawat
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , India
| | - Sunil Kumar
- Department of Microbiology, Faculty of Bio-Medical Sciences , Kampala International University , Kampala , Uganda
| | - Anil Kumar Sharma
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , India
| | - Manoj Singh
- Department of Biotechnology , Maharishi Markandeshwar (Deemed to be University) , Mullana-Ambala , India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Technology , Sharda University , Greater Noida , U.P. , India
| |
Collapse
|
6
|
Repurposing anaerobic digestate for economical biomanufacturing and water recovery. Appl Microbiol Biotechnol 2022; 106:1419-1434. [PMID: 35122155 DOI: 10.1007/s00253-022-11804-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 11/02/2022]
Abstract
Due to mounting impacts of climate change, particularly increased incidence of drought, hence water scarcity, it has become imperative to develop new technologies for recovering water from nutrient-rich, water-replete effluents other than sewage. Notably, anaerobic digestate could be harnessed for the purpose of water recovery by repurposing digestate-borne minerals as nutrients in fermentative processes. The high concentrations of ammonium, phosphate, sulfate, and metals in anaerobic digestate are veritable microbial nutrients that could be harnessed for bio-production of bulk and specialty chemicals. Tethering nutrient sequestration from anaerobic digestate to bio-product accumulation offers promise for concomitant water recovery, bio-chemical production, and possible phosphate recovery. In this review, we explore the potential of anaerobic digestate as a nutrient source and as a buffering agent in fermentative production of glutamine, glutamate, fumarate, lactate, and succinate. Additionally, we discuss the potential of synthetic biology as a tool for enhancing nutrient removal from anaerobic digestate and for expanding the range of products derivable from digestate-based fermentations. Strategies that harness the nutrients in anaerobic digestate with bio-product accumulation and water recovery could have far-reaching implications on sustainable management of nutrient-rich manure, tannery, and fish processing effluents that also contain high amounts of water. KEY POINTS: • Anaerobic digestate may serve as a source of nutrients in fermentation. • Use of digestate in fermentation would lead to the recovery of valuable water.
Collapse
|
7
|
Improving the Extraction of Active Ingredients from Medicinal Plants by XynA Modification. J CHEM-NY 2022. [DOI: 10.1155/2022/2483797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Active ingredients of medicinal plants have unique pharmacological and clinical effects. However, conventional extraction technology has many disadvantages, such as long-time and low-efficiency. XynA-assisted extraction may overcome such problems, since the plant cell wall is mainly composed of cellulose. Based on the three-dimensional protein structure, we found the C-terminal domain and N-terminal domain twisted together and resulted in more flexibility. We carried out a series of truncations, with XynA_ΔN36 getting more yields of active ingredients. As shown by HPLC analysis, the efficiencies for extraction of salvianic acid A and berberine from Salvia miltiorrhiza and Phellodendron chinense were increased by approximately 38.14% and 35.20%, respectively, compared with the conventional extraction protocol. The yields of the two compounds reached 2.84 ± 0.05 mg g−1 and 3.52 ± 0.14 mg g−1, respectively. Above all, XynA_ΔN36 can be applied to the extraction of salvianic acid A and berberine, and this study provides a novel enzyme for the extraction technology, which aids rational utilization and quality control of medicinal plants.
Collapse
|
8
|
Inyang V, Lokhat D. Parametric Study of the Extraction of Malic Acid Using Emulsion Liquid Membrane (ELM). ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-06395-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Current Progress in Production of Building-Block Organic Acids by Consolidated Bioprocessing of Lignocellulose. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Several organic acids have been indicated among the top value chemicals from biomass. Lignocellulose is among the most attractive feedstocks for biorefining processes owing to its high abundance and low cost. However, its highly complex nature and recalcitrance to biodegradation hinder development of cost-competitive fermentation processes. Here, current progress in development of single-pot fermentation (i.e., consolidated bioprocessing, CBP) of lignocellulosic biomass to high value organic acids will be examined, based on the potential of this approach to dramatically reduce process costs. Different strategies for CBP development will be considered such as: (i) design of microbial consortia consisting of (hemi)cellulolytic and valuable-compound producing strains; (ii) engineering of microorganisms that combine biomass-degrading and high-value compound-producing properties in a single strain. The present review will mainly focus on production of organic acids with application as building block chemicals (e.g., adipic, cis,cis-muconic, fumaric, itaconic, lactic, malic, and succinic acid) since polymer synthesis constitutes the largest sector in the chemical industry. Current research advances will be illustrated together with challenges and perspectives for future investigations. In addition, attention will be dedicated to development of acid tolerant microorganisms, an essential feature for improving titer and productivity of fermentative production of acids.
Collapse
|
10
|
Potential Valorization of Organic Waste Streams to Valuable Organic Acids through Microbial Conversion: A South African Case Study. Catalysts 2021. [DOI: 10.3390/catal11080964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The notion of a “biobased economy” in the context of a developing country such as South Africa (SA) necessitates the development of technologies that utilize sustainable feedstocks, have simple and robust operations, are feasible at small scale and produce a variety of valuable bioproducts, thus fitting the biorefinery concept. This case study focuses on the microbial production of higher-value products from selected organic waste streams abundant in the South African agricultural sector using microbes adapted to utilize different parts of biomass waste streams. A ruminant-based carboxylate platform based on mixed or undefined anaerobic co-cultures of rumen microorganisms can convert the carbohydrate polymers in the lignocellulosic part of organic waste streams to carboxylic acids that can be upgraded to biofuels or green chemicals. Furthermore, yeast and fungi can convert the simpler carbohydrates (such as the sugars and malic acid in grape and apple pomace) to ethanol and high-value carboxylic acids, such as lactic, fumaric, succinic and citric acid. This review will discuss the combinational use of the ruminal carboxylate platform and native or recombinant yeasts to valorize biomass waste streams through the production of higher-value organic acids with various applications.
Collapse
|
11
|
Fouilloux H, Thomas CM. Production and Polymerization of Biobased Acrylates and Analogs. Macromol Rapid Commun 2021; 42:e2000530. [DOI: 10.1002/marc.202000530] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/23/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Hugo Fouilloux
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris Paris 75005 France
| | - Christophe M. Thomas
- PSL University Chimie ParisTech CNRS Institut de Recherche de Chimie Paris Paris 75005 France
| |
Collapse
|
12
|
Song S, Qu J, Han P, Hülsey MJ, Zhang G, Wang Y, Wang S, Chen D, Lu J, Yan N. Visible-light-driven amino acids production from biomass-based feedstocks over ultrathin CdS nanosheets. Nat Commun 2020; 11:4899. [PMID: 32994420 PMCID: PMC7525434 DOI: 10.1038/s41467-020-18532-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/14/2020] [Indexed: 11/09/2022] Open
Abstract
Chemical synthesis of amino acids from renewable sources is an alternative route to the current processes based on fermentation. Here, we report visible-light-driven amination of biomass-derived α-hydroxyl acids and glucose into amino acids using NH3 at 50 °C. Ultrathin CdS nanosheets are identified as an efficient and stable catalyst, exhibiting an order of magnitude higher activity towards alanine production from lactic acid compared to commercial CdS as well as CdS nanoobjects bearing other morphologies. Its unique catalytic property is attributed mainly to the preferential formation of oxygen-centered radicals to promote α-hydroxyl acids conversion to α-keto acids, and partially to the poor H2 evolution which is an undesired side reaction. Encouragingly, a number of amino acids are prepared using the current protocol, and one-pot photocatalytic conversion of glucose to alanine is also achieved. This work offers an effective catalytic system for amino acid synthesis from biomass feedstocks under mild conditions.
Collapse
Affiliation(s)
- Song Song
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jiafu Qu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 215123, Suzhou, China
| | - Peijie Han
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Max J Hülsey
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Guping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 215123, Suzhou, China
| | - Yunzhu Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Shuai Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, and College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 215123, Suzhou, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, 215123, Suzhou, China.
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| |
Collapse
|
13
|
Wu C, Li C, Jiang J, Hartley W, Kong X, Wu Y, Xue S. Revealing the alkaline characteristic evolution of bauxite residue under biomass fermentation. JOURNAL OF SOILS AND SEDIMENTS 2020; 20:3083-3090. [DOI: 10.1007/s11368-019-02482-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/30/2019] [Indexed: 06/18/2023]
|
14
|
Gérardy R, Debecker DP, Estager J, Luis P, Monbaliu JCM. Continuous Flow Upgrading of Selected C 2-C 6 Platform Chemicals Derived from Biomass. Chem Rev 2020; 120:7219-7347. [PMID: 32667196 DOI: 10.1021/acs.chemrev.9b00846] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ever increasing industrial production of commodity and specialty chemicals inexorably depletes the finite primary fossil resources available on Earth. The forecast of population growth over the next 3 decades is a very strong incentive for the identification of alternative primary resources other than petro-based ones. In contrast with fossil resources, renewable biomass is a virtually inexhaustible reservoir of chemical building blocks. Shifting the current industrial paradigm from almost exclusively petro-based resources to alternative bio-based raw materials requires more than vibrant political messages; it requires a profound revision of the concepts and technologies on which industrial chemical processes rely. Only a small fraction of molecules extracted from biomass bears significant chemical and commercial potentials to be considered as ubiquitous chemical platforms upon which a new, bio-based industry can thrive. Owing to its inherent assets in terms of unique process experience, scalability, and reduced environmental footprint, flow chemistry arguably has a major role to play in this context. This review covers a selection of C2 to C6 bio-based chemical platforms with existing commercial markets including polyols (ethylene glycol, 1,2-propanediol, 1,3-propanediol, glycerol, 1,4-butanediol, xylitol, and sorbitol), furanoids (furfural and 5-hydroxymethylfurfural) and carboxylic acids (lactic acid, succinic acid, fumaric acid, malic acid, itaconic acid, and levulinic acid). The aim of this review is to illustrate the various aspects of upgrading bio-based platform molecules toward commodity or specialty chemicals using new process concepts that fall under the umbrella of continuous flow technology and that could change the future perspectives of biorefineries.
Collapse
Affiliation(s)
- Romaric Gérardy
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium
| | - Julien Estager
- Certech, Rue Jules Bordet 45, Zone Industrielle C, B-7180 Seneffe, Belgium
| | - Patricia Luis
- Research & Innovation Centre for Process Engineering (ReCIPE), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.,Materials & Process Engineering (iMMC-IMAP), UCLouvain, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-Christophe M Monbaliu
- Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium
| |
Collapse
|
15
|
Capson-Tojo G, Batstone DJ, Grassino M, Vlaeminck SE, Puyol D, Verstraete W, Kleerebezem R, Oehmen A, Ghimire A, Pikaar I, Lema JM, Hülsen T. Purple phototrophic bacteria for resource recovery: Challenges and opportunities. Biotechnol Adv 2020; 43:107567. [PMID: 32470594 DOI: 10.1016/j.biotechadv.2020.107567] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Sustainable development is driving a rapid focus shift in the wastewater and organic waste treatment sectors, from a "removal and disposal" approach towards the recovery and reuse of water, energy and materials (e.g. carbon or nutrients). Purple phototrophic bacteria (PPB) are receiving increasing attention due to their capability of growing photoheterotrophically under anaerobic conditions. Using light as energy source, PPB can simultaneously assimilate carbon and nutrients at high efficiencies (with biomass yields close to unity (1 g CODbiomass·g CODremoved-1)), facilitating the maximum recovery of these resources as different value-added products. The effective use of infrared light enables selective PPB enrichment in non-sterile conditions, without competition with other phototrophs such as microalgae if ultraviolet-visible wavelengths are filtered. This review reunites results systematically gathered from over 177 scientific articles, aiming at producing generalized conclusions. The most critical aspects of PPB-based production and valorisation processes are addressed, including: (i) the identification of the main challenges and potentials of different growth strategies, (ii) a critical analysis of the production of value-added compounds, (iii) a comparison of the different value-added products, (iv) insights into the general challenges and opportunities and (v) recommendations for future research and development towards practical implementation. To date, most of the work has not been executed under real-life conditions, relevant for full-scale application. With the savings in wastewater discharge due to removal of organics, nitrogen and phosphorus as an important economic driver, priorities must go to using PPB-enriched cultures and real waste matrices. The costs associated with artificial illumination, followed by centrifugal harvesting/dewatering and drying, are estimated to be 1.9, 0.3-2.2 and 0.1-0.3 $·kgdry biomass-1. At present, these costs are likely to exceed revenues. Future research efforts must be carried out outdoors, using sunlight as energy source. The growth of bulk biomass on relatively clean wastewater streams (e.g. from food processing) and its utilization as a protein-rich feed (e.g. to replace fishmeal, 1.5-2.0 $·kg-1) appears as a promising valorisation route.
Collapse
Affiliation(s)
- Gabriel Capson-Tojo
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia; CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Damien J Batstone
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - María Grassino
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Siegfried E Vlaeminck
- Research Group of Sustainable Energy, Air and Water Technology, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium.
| | - Daniel Puyol
- Department of Chemical and Environmental Technology, ESCET, Rey Juan Carlos University, Móstoles, Spain.
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Gent, Belgium; Avecom NV, Industrieweg 122P, 9032 Wondelgem, Belgium.
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, the Netherlands.
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Anish Ghimire
- Department of Environmental Science and Engineering, Kathmandu University, Dhulikhel, Nepal.
| | - Ilje Pikaar
- School of Civil Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Juan M Lema
- CRETUS Institute, Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Tim Hülsen
- Advanced Water Management Centre, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
16
|
Production of Itaconic Acid from Cellulose Pulp: Feedstock Feasibility and Process Strategies for an Efficient Microbial Performance. ENERGIES 2020. [DOI: 10.3390/en13071654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study assessed the feasibility of using bleached cellulose pulp from Eucalyptus wood as a feedstock for the production of itaconic acid by fermentation. Additionally, different process strategies were tested with the aim of selecting suitable conditions for an efficient production of itaconic acid by the fungus Aspergillus terreus. The feasibility of using cellulose pulp was demonstrated through assays that revealed the preference of the strain in using glucose as carbon source instead of xylose, mannose, sucrose or glycerol. Additionally, the cellulose pulp was easily digested by enzymes without requiring a previous step of pretreatment, producing a glucose-rich hydrolysate with a very low level of inhibitor compounds, suitable for use as a fermentation medium. Fermentation assays revealed that the technique used for sterilization of the hydrolysate (membrane filtration or autoclaving) had an important effect in its composition, especially on the nitrogen content, consequently affecting the fermentation performance. The carbon-to-nitrogen ratio (C:N ratio), initial glucose concentration and oxygen availability, were also important variables affecting the performance of the strain to produce itaconic acid from cellulose pulp hydrolysate. By selecting appropriate process conditions (sterilization by membrane filtration, medium supplementation with 3 g/L (NH4)2SO4, 60 g/L of initial glucose concentration, and oxygen availability of 7.33 (volume of air/volume of medium)), the production of itaconic acid was maximized resulting in a yield of 0.62 g/g glucose consumed, and productivity of 0.52 g/L·h.
Collapse
|
17
|
Optimized Bioproduction of Itaconic and Fumaric Acids Based on Solid-State Fermentation of Lignocellulosic Biomass. Molecules 2020; 25:molecules25051070. [PMID: 32121002 PMCID: PMC7179149 DOI: 10.3390/molecules25051070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/06/2023] Open
Abstract
The bioproduction of high-value chemicals such as itaconic and fumaric acids (IA and FA, respectively) from renewable resources via solid-state fermentation (SSF) represents an alternative to the current bioprocesses of submerged fermentation using refined sugars. Both acids are excellent platform chemicals with a wide range of applications in different market, such as plastics, coating, or cosmetics. The use of lignocellulosic biomass instead of food resources (starch or grains) in the frame of a sustainable development for IA and FA bioproduction is of prime importance. Filamentous fungi, especially belonging to the Aspergillus genus, have shown a great capacity to produce these organic dicarboxylic acids. This study attempts to develop and optimize the SSF conditions with lignocellulosic biomasses using A. terreus and A. oryzae to produce IA and FA. First, a kinetic study of SSF was performed with non-food resources (wheat bran and corn cobs) and a panel of pH and moisture conditions was studied during fermentation. Next, a new process using an enzymatic cocktail simultaneously with SSF was investigated in order to facilitate the use of the biomass as microbial substrate. Finally, a large-scale fermentation process was developed for SSF using corn cobs with A. oryzae; this specific condition showed the best yield in acid production. The yields achieved were 0.05 mg of IA and 0.16 mg of FA per gram of biomass after 48 h. These values currently represent the highest reported productions for SSF from raw lignocellulosic biomass.
Collapse
|
18
|
|
19
|
Evaluating aeration and stirring effects to improve itaconic acid production from glucose using Aspergillus terreus. Biotechnol Lett 2019; 41:1383-1389. [PMID: 31617036 PMCID: PMC6828833 DOI: 10.1007/s10529-019-02742-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
The effects of the bioreactor conditions, in particular the mode and intensity of aeration and mixing were studied on itaconic acid (IA) fermentation efficiency by Aspergillus terreus strain from glucose substrate. IA was produced in batch system by systematically varying the oxygen content of the aeration gas (from 21 to 31.5 vol% O2) and the stirring rate (from 150 to 600 rpm). The data were analyzed kinetically to characterize the behavior of the process, and besides, the performances were evaluated comparatively with the literature. It turned out that the operation of the bioreactor with either the higher inlet O2 concentration (31.5 vol% O2) or faster stirring (600 rpm) could enhance biological IA generation the most, resulting in yield and volumetric productivity of 0.31 g IA/g glucose and 0.32 g IA/g glucose and 3.15 g IA/L day and 4.26 g IA/L day, respectively. Overall, the significance of fermentation settings was shown in this work regarding IA production catalyzed by A. terreus and notable advances could be realized by adjusting the aeration and stirring towards an optimal combination.
Collapse
|
20
|
Teleky BE, Vodnar DC. Biomass-Derived Production of Itaconic Acid as a Building Block in Specialty Polymers. Polymers (Basel) 2019; 11:E1035. [PMID: 31212656 PMCID: PMC6630286 DOI: 10.3390/polym11061035] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022] Open
Abstract
Biomass, the only source of renewable organic carbon on Earth, offers an efficient substrate for bio-based organic acid production as an alternative to the leading petrochemical industry based on non-renewable resources. Itaconic acid (IA) is one of the most important organic acids that can be obtained from lignocellulose biomass. IA, a 5-C dicarboxylic acid, is a promising platform chemical with extensive applications; therefore, it is included in the top 12 building block chemicals by the US Department of Energy. Biotechnologically, IA production can take place through fermentation with fungi like Aspergillus terreus and Ustilago maydis strains or with metabolically engineered bacteria like Escherichia coli and Corynebacterium glutamicum. Bio-based IA represents a feasible substitute for petrochemically produced acrylic acid, paints, varnishes, biodegradable polymers, and other different organic compounds. IA and its derivatives, due to their trifunctional structure, support the synthesis of a wide range of innovative polymers through crosslinking, with applications in special hydrogels for water decontamination, targeted drug delivery (especially in cancer treatment), smart nanohydrogels in food applications, coatings, and elastomers. The present review summarizes the latest research regarding major IA production pathways, metabolic engineering procedures, and the synthesis and applications of novel polymeric materials.
Collapse
Affiliation(s)
- Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania.
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania.
| |
Collapse
|
21
|
Zhao M, Shi D, Lu X, Zong H, Zhuge B. Co-production of 1,2,4-butantriol and ethanol from lignocellulose hydrolysates. BIORESOURCE TECHNOLOGY 2019; 282:433-438. [PMID: 30889534 DOI: 10.1016/j.biortech.2019.03.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
The aim of this work was to realize 1,2,4-butantriol (BT) production from sugarcane bagasse hydrolysates by microbial fermentation, and obtain co-production of BT and ethanol. Candida glycerinogenes UG21 was utilized to reduce the effect of osmolality resulting from high glucose concentration and furfural in hydrolysates on cell growth of BT-producing strains, and produced 54.1 g/L ethanol from glucose. After ethanol recovering, xylose containing stillage was obtained and used for BT production. 1.3 g/L BT was generated by a BT-producing strain. By the deletion of the crr gene and process optimization, BT titer reached 4.9 g/L. Meanwhile, the efficient utilization of sugarcane bagasse was achieved by a two-stage fermentation for co-production of BT and ethanol. This study provided a novel strategy for BT production from sugarcane bagasse, and demonstrated the potential for making full use of sugarcane bagasse hydrolysates to co-production value-added products.
Collapse
Affiliation(s)
- Meilin Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Dingchang Shi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China; Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China.
| |
Collapse
|
22
|
Optimized pH and Its Control Strategy Lead to Enhanced Itaconic Acid Fermentation by Aspergillus terreus on Glucose Substrate. FERMENTATION-BASEL 2019. [DOI: 10.3390/fermentation5020031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Biological itaconic acid production can by catalyzed by Aspergillus terreus (a filamentous fungi) where the fermentation medium pH is of prominent importance. Therefore, in this work, we investigated what benefits the different pH regulation options might offer in enhancing the process. The batch itaconic acid fermentation data underwent a kinetic analysis and the pH control alternatives were ranked subsequently. It would appear that the pH-shift strategy (initial adjustment of pH to 3 and its maintenance at 2.5 after 48 h) resulted in the most attractive fermentation pattern and could hence be recommended to achieve itaconic acid production with an improved performance using A. terreus from carbohydrate, such as glucose. Under this condition, the itaconic acid titer potential, the maximal itaconic acid (titer) production rate, the length of lag-phase and itaconic acid yield were 87.32 g/L, 0.22 g/L/h, 56.04 h and 0.35 g/g glucose, respectively.
Collapse
|
23
|
Maslova O, Stepanov N, Senko O, Efremenko E. Production of various organic acids from different renewable sources by immobilized cells in the regimes of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SFF). BIORESOURCE TECHNOLOGY 2019; 272:1-9. [PMID: 30292911 DOI: 10.1016/j.biortech.2018.09.143] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
The study was aimed at production of different organic acids (OA) (lactic, fumaric, or succinic) by various microbial cells (filamentous fungi Rhizopus oryzae (F-814, F-1127) and bacteria Actinobacillus succinogenes B-10111) immobilized into poly(vinyl alcohol) (PVA) cryogel from diverse renewable raw materials (wheat and rice straw, aspen and pine sawdust, Jerusalem artichoke stems and tubers, biomass of macro- and microalgae) under batch conditions. The process productivity, bulk output and OA concentrations were higher in case of using immobilized cells than in case of free cells under identical conditions. A higher OA productivity was reached via simultaneous enzymatic saccharification and microbial fermentation (SSF) of same raw materials as compared to their separate enzymatic hydrolysis and fermentation of accumulated reducing sugars (SHF). Maximal concentrations of all OAs studied were obtained for bioconversion of Jerusalem artichoke tubers. The immobilized cells were used in long-term conversion of various renewable materials to OAs in SSF.
Collapse
Affiliation(s)
- Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st., 4, Moscow 119334, Russia
| | - Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st., 4, Moscow 119334, Russia
| | - Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, 1-3 Leninskiye Gory, Moscow 119991, Russia; Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina st., 4, Moscow 119334, Russia.
| |
Collapse
|
24
|
Masoumi H, Penchah HR, Gilani HG, Shaldehi TJ. Malic acid extraction from aqueous solution by using aqueous two-phase system method. RESULTS IN CHEMISTRY 2019. [DOI: 10.1016/j.rechem.2019.100009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
25
|
Iyyappan J, Baskar G, Bharathiraja B, Saravanathamizhan R. Malic acid production from biodiesel derived crude glycerol using morphologically controlled Aspergillus niger in batch fermentation. BIORESOURCE TECHNOLOGY 2018; 269:393-399. [PMID: 30205264 DOI: 10.1016/j.biortech.2018.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/30/2018] [Accepted: 09/01/2018] [Indexed: 06/08/2023]
Abstract
In the present investigation, the effects of crude glycerol concentration, spore inoculum concentration, yeast extract concentration and shaking frequency on seed morphology of Aspergillus niger PJR1 on malic acid production were investigated and dispersed fungal mycelium with higher biomass (20.25 ± 0.91 g/L) was obtained when A. niger PJR1 grow on crude glycerol. Dry cell weight under dispersed fermentation was 21.28% higher than usual pellet fermentation. The optimal crude glycerol, nitrogen source and nitrogen source concentration were found to be 160 g/L, yeast extract and 1.5 g/L, respectively. Batch fermentation in a shake flask culture containing 160 g/L crude glycerol resulted in the yield of malic acid 83.23 ± 1.86 g/L, after 192 h at 25 °C. Results revealed that morphological control of A. niger is an efficient method for increased malic acid production when crude glycerol derived from biodiesel production is used as feedstock.
Collapse
Affiliation(s)
- J Iyyappan
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - G Baskar
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai 600119, India.
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
| | - R Saravanathamizhan
- Department of Chemical Engineering, A. C. Tech Campus, Anna University, Chennai 600025, India
| |
Collapse
|
26
|
Nieder-Heitmann M, Haigh KF, Görgens JF. Process design and economic analysis of a biorefinery co-producing itaconic acid and electricity from sugarcane bagasse and trash lignocelluloses. BIORESOURCE TECHNOLOGY 2018; 262:159-168. [PMID: 29704763 DOI: 10.1016/j.biortech.2018.04.075] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 05/10/2023]
Abstract
Itaconic acid has economic potential as a commodity biochemical for the sugar industry, but its production is limited due to high production costs. Using cheaper and alternative lignocellulosic feedstocks together with achieving higher product titres have been identified as potential strategies for viable IA production. Consequently the use of sugarcane bagasse and trash for the production of itaconic acid (IA) and electricity have been investigated for an integrated biorefinery, where the production facility is annexed to an existing sugar mill and new combined heat and power (CHP) plant. Three IA biorefinery scenarios were designed and simulated in Aspen Plus®. Subsequent economic analyses indicated that cheaper feedstocks reduced the IA production cost from 1565.5 US$/t for glucose to 616.5 US$/t, but coal supplementation was required to sufficiently lower the production cost to 604.3 US$/t for a competitive IA selling price of 1740 US$/t, compared to the market price of 1800 US$/t.
Collapse
Affiliation(s)
- Mieke Nieder-Heitmann
- Process Engineering Department, University of Stellenbosch, Banghoek Road, Stellenbosch Central, Stellenbosch 7599, South Africa
| | - Kathleen F Haigh
- Process Engineering Department, University of Stellenbosch, Banghoek Road, Stellenbosch Central, Stellenbosch 7599, South Africa.
| | - Johann F Görgens
- Process Engineering Department, University of Stellenbosch, Banghoek Road, Stellenbosch Central, Stellenbosch 7599, South Africa
| |
Collapse
|
27
|
|
28
|
Gu S, Li J, Chen B, Sun T, Liu Q, Xiao D, Tian C. Metabolic engineering of the thermophilic filamentous fungus Myceliophthora thermophila to produce fumaric acid. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:323. [PMID: 30534201 PMCID: PMC6278111 DOI: 10.1186/s13068-018-1319-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/22/2018] [Indexed: 05/16/2023]
Abstract
BACKGROUND Fumaric acid is widely used in food and pharmaceutical industries and is recognized as a versatile industrial chemical feedstock. Increasing concerns about energy and environmental problems have resulted in a focus on fumaric acid production by microbial fermentation via bioconversion of renewable feedstocks. Filamentous fungi are the predominant microorganisms used to produce organic acids, including fumaric acid, and most studies to date have focused on Rhizopus species. Thermophilic filamentous fungi have many advantages for the production of compounds by industrial fermentation. However, no previous studies have focused on fumaric acid production by thermophilic fungi. RESULTS We explored the feasibility of producing fumarate by metabolically engineering Myceliophthora thermophila using the CRISPR/Cas9 system. Screening of fumarases suggested that the fumarase from Candida krusei was the most suitable for efficient production of fumaric acid in M. thermophila. Introducing the C. krusei fumarase into M. thermophila increased the titer of fumaric acid by threefold. To further increase fumarate production, the intracellular fumarate digestion pathway was disrupted. After deletion of the two fumarate reductase and the mitochondrial fumarase genes of M. thermophila, the resulting strain exhibited a 2.33-fold increase in fumarate titer. Increasing the pool size of malate, the precursor of fumaric acid, significantly increased the final fumaric acid titer. Finally, disruption of the malate-aspartate shuttle increased the intracellular malate content by 2.16-fold and extracellular fumaric acid titer by 42%, compared with that of the parental strain. The strategic metabolic engineering of multiple genes resulted in a final strain that could produce up to 17 g/L fumaric acid from glucose in a fed-batch fermentation process. CONCLUSIONS This is the first metabolic engineering study on the production of fumaric acid by the thermophilic filamentous fungus M. thermophila. This cellulolytic fungal platform provides a promising method for the sustainable and efficient-cost production of fumaric acid from lignocellulose-derived carbon sources in the future.
Collapse
Affiliation(s)
- Shuying Gu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Jingen Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Bingchen Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Tao Sun
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Qian Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Dongguang Xiao
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457 China
| | - Chaoguang Tian
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
29
|
Satari B, Karimi K. Mucoralean fungi for sustainable production of bioethanol and biologically active molecules. Appl Microbiol Biotechnol 2017; 102:1097-1117. [DOI: 10.1007/s00253-017-8691-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 11/27/2022]
|
30
|
Wu X, Liu Q, Deng Y, Li J, Chen X, Gu Y, Lv X, Zheng Z, Jiang S, Li X. Production of itaconic acid by biotransformation of wheat bran hydrolysate with Aspergillus terreus CICC40205 mutant. BIORESOURCE TECHNOLOGY 2017; 241:25-34. [PMID: 28550772 DOI: 10.1016/j.biortech.2017.05.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 05/28/2023]
Abstract
The replacement of the carbon source in the microbial production of itaconic acid (IA) with economic alternatives has attracted significant attention. In this study, an Aspergillus terreus CICC40205 mutant was used to increase the IA titer and decrease the citric acid titer in the wheat bran hydrolysate compared with the parental strain. The results showed that the IA titer was increased by 33.4%, whereas the citric acid titer was decreased by 75.8%, and were in accordance with those of the improved pathway of co-metabolism of glucose and xylose according to the metabolic flux analysis. Additionally, the maximum IA titer obtained in a 7-L stirred tank was 49.65gL-1±0.38gL-1. Overall, A. terreus CICC40205 showed a great potential for the industrial production of IA through the biotransformation of the wheat bran hydrolysate.
Collapse
Affiliation(s)
- Xuefeng Wu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China
| | - Qing Liu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Yongdong Deng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Jinghong Li
- China Rural Technology Development Center, Beijing 100045, PR China
| | - Xiaoju Chen
- College of Chemistry and Material Engineering, Chaohu University, Hefei, Anhui Province 238000, PR China
| | - Yongzhong Gu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Xijun Lv
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China
| | - Zhi Zheng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China
| | - Shaotong Jiang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China
| | - Xingjiang Li
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, PR China; Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei, Anhui Province 230009, PR China.
| |
Collapse
|
31
|
Zhang J, Yuan J, Zhang WX, Zhu WY, Tu F, Jiang Y, Sun CZ. An aerobic detoxification photofermentation by Rhodospirillum rubrum for converting soy sauce residue into feed with moderate pretreatment. World J Microbiol Biotechnol 2017; 33:184. [DOI: 10.1007/s11274-017-2344-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/16/2017] [Indexed: 10/18/2022]
|
32
|
Witkowska D, Buska-Pisarek K, Łaba W, Piegza M, Kancelista A. Effect of Lyophilization on Survivability and Growth Kinetic of Trichoderma Strains Preserved on Various Agriculture By-Products. Pol J Microbiol 2017; 66:181-188. [PMID: 28735312 DOI: 10.5604/01.3001.0010.4361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Growth of four Trichoderma strains were tested on lignocellulosic by-products in solid state fermentation (SSF). The strains were also analyzed for their survival rate and growth after lyophilization on these carriers. All applied monocomponent and bicomponent media were substrates for the production and preservation of Trichoderma biomass. However, the maximum number of colony forming units (CFU/g dm) was acquired on bicomponent media based on dried grass and beet pulp or grass with corn cobs, when compared to monocomponent media. Although the process of lyophilization reduced the survival rate by 50%-60%, the actual number of viable cells in obtained biopreparations remained relatively high (0.58 × 108-1.68 × 108 CFU/g dm). The studied strains in the preserved biopreparations were characterized by a high growth rate, as evaluated in microcultures using the Bioscreen C system.
Collapse
Affiliation(s)
- Danuta Witkowska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Buska-Pisarek
- Laboratory of Reproductive Immunology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Wojciech Łaba
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Michał Piegza
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Anna Kancelista
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
33
|
Kashef MT, Helmy OM. Genetic Characterization of a Novel Composite Transposon Carrying armA and aac(6)-Ib Genes in an Escherichia coli Isolate from Egypt. Pol J Microbiol 2017; 66:163-169. [PMID: 28735317 DOI: 10.5604/01.3001.0010.7835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aminoglycosides are used in treating a wide range of infections caused by Gram-positive and Gram-negative bacteria; however, aminoglycoside resistance is common and occurs by several mechanisms. Among these mechanisms is bacterial rRNA methylation by the 16S rRNA methyl transferase (16S-RMTase) enzymes; but data about the spread of this mechanism in Egypt are scarce. Cephalosporins are the most commonly used antimicrobial agents in Egypt; therefore, this study was conducted to determine the frequency of 16S-RMTase among third generation cephalosporin-resistant clinical isolates in Egypt. One hundred and twenty three cephalosporin resistant Gram-negative clinical isolates were screened for aminoglycosides resistance by the Kirby Bauer disk diffusion method and tested for possible production of 16S-RMTase. PCR testing and sequencing were used to confirm the presence of 16S-RMTase and the associated antimicrobial resistance determinants, as well as the genetic region surrounding the armA gene. Out of 123 isolates, 66 (53.66%) were resistant to at least one aminoglycoside antibiotic. Only one Escherichia coli isolate (E9ECMO) which was totally resistant to all tested aminoglycosides, was confirmed to have the armA gene in association with blaTEM-1, blaCTX-M-15, blaCTX-M-14 and aac(6)-Ib genes. The armA gene was found to be carried on a large A/C plasmid. Genetic mapping of the armA surrounding region revealed, for the first time, the association of armA with aac(6)-Ib on the same transposon. In conclusion, the isolation frequency of 16S-RMTase was low among the tested aminoglycoside-resistant clinical samples. However, a novel composite transposon has been detected conferring high-level aminoglycosides resistance.
Collapse
Affiliation(s)
- Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Omneya M Helmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
34
|
|
35
|
Kumar S, Krishnan S, Samal SK, Mohanty S, Nayak SK. Itaconic acid used as a versatile building block for the synthesis of renewable resource-based resins and polyesters for future prospective: a review. POLYM INT 2017. [DOI: 10.1002/pi.5399] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sudheer Kumar
- Laboratory for Advanced Research in Polymeric Materials (LARPM); Central Institute of Plastic Engineering and Technology (CIPET); Bhubaneswar India
| | - Sukhila Krishnan
- Laboratory for Advanced Research in Polymeric Materials (LARPM); Central Institute of Plastic Engineering and Technology (CIPET); Bhubaneswar India
| | - Sushanta K Samal
- Laboratory for Advanced Research in Polymeric Materials (LARPM); Central Institute of Plastic Engineering and Technology (CIPET); Bhubaneswar India
| | - Smita Mohanty
- Laboratory for Advanced Research in Polymeric Materials (LARPM); Central Institute of Plastic Engineering and Technology (CIPET); Bhubaneswar India
| | - Sanjay K Nayak
- Laboratory for Advanced Research in Polymeric Materials (LARPM); Central Institute of Plastic Engineering and Technology (CIPET); Bhubaneswar India
| |
Collapse
|
36
|
|
37
|
Overexpression of a C 4-dicarboxylate transporter is the key for rerouting citric acid to C 4-dicarboxylic acid production in Aspergillus carbonarius. Microb Cell Fact 2017; 16:43. [PMID: 28288640 PMCID: PMC5348913 DOI: 10.1186/s12934-017-0660-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/08/2017] [Indexed: 11/24/2022] Open
Abstract
Background C4-dicarboxylic acids, including malic acid, fumaric acid and succinic acid, are valuable organic acids that can be produced and secreted by a number of microorganisms. Previous studies on organic acid production by Aspergillus carbonarius, which is capable of producing high amounts of citric acid from varieties carbon sources, have revealed its potential as a fungal cell factory. Earlier attempts to reroute citric acid production into C4-dicarboxylic acids have been with limited success. Results In this study, a glucose oxidase deficient strain of A. carbonarius was used as the parental strain to overexpress a native C4-dicarboxylate transporter and the gene frd encoding fumarate reductase from Trypanosoma brucei individually and in combination. Impacts of the introduced genetic modifications on organic acid production were investigated in a defined medium and in a hydrolysate of wheat straw containing high concentrations of glucose and xylose. In the defined medium, overexpression of the C4-dicarboxylate transporter alone and in combination with the frd gene significantly increased the production of C4-dicarboxylic acids and reduced the accumulation of citric acid, whereas expression of the frd gene alone did not result in any significant change of organic acid production profile. In the wheat straw hydrolysate after 9 days of cultivation, similar results were obtained as in the defined medium. High amounts of malic acid and succinic acid were produced by the same strains. Conclusions This study demonstrates that the key to change the citric acid production into production of C4-dicarboxylic acids in A. carbonarius is the C4-dicarboxylate transporter. Furthermore it shows that the C4-dicarboxylic acid production by A. carbonarius can be further increased via metabolic engineering and also shows the potential of A. carbonarius to utilize lignocellulosic biomass as substrates for C4-dicarboxylic acid production.
Collapse
|
38
|
Production of lovastatin and itaconic acid by Aspergillus terreus: a comparative perspective. World J Microbiol Biotechnol 2017; 33:34. [PMID: 28102516 PMCID: PMC5247550 DOI: 10.1007/s11274-017-2206-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/06/2017] [Indexed: 12/20/2022]
Abstract
Aspergillus terreus is a textbook example of an industrially relevant filamentous fungus. It is used for the biotechnological production of two valuable metabolites, namely itaconic acid and lovastatin. Itaconic acid serves as a precursor in polymer industry, whereas lovastatin found its place in the pharmaceutical market as a cholesterol-lowering statin drug and a precursor for semisynthetic statins. Interestingly, their biosynthetic gene clusters were shown to reside in the common genetic neighborhood. Despite the genomic proximity of the underlying biosynthetic genes, the production of lovastatin and itaconic acid was shown to be favored by different factors, especially with respect to pH values of the broth. While there are several reviews on various aspects of lovastatin and itaconic acid production, the survey on growth conditions, biochemistry and morphology related to the formation of these two metabolites has never been presented in the comparative manner. The aim of the current review is to outline the correlations and contrasts with respect to process-related and biochemical discoveries regarding itaconic acid and lovastatin production by A. terreus.
Collapse
|
39
|
Yang L, Lübeck M, Lübeck PS. Aspergillus as a versatile cell factory for organic acid production. FUNGAL BIOL REV 2017. [DOI: 10.1016/j.fbr.2016.11.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
|
41
|
Wang Y, Lewis JD, Román-Leshkov Y. Synthesis of Itaconic Acid Ester Analogues via Self-Aldol Condensation of Ethyl Pyruvate Catalyzed by Hafnium BEA Zeolites. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00561] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yuran Wang
- Department of Chemical
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jennifer D. Lewis
- Department of Chemical
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yuriy Román-Leshkov
- Department of Chemical
Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
42
|
Yang L, Lübeck M, Souroullas K, Lübeck PS. Co-consumption of glucose and xylose for organic acid production by Aspergillus carbonarius cultivated in wheat straw hydrolysate. World J Microbiol Biotechnol 2016; 32:57. [PMID: 26925619 DOI: 10.1007/s11274-016-2025-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/04/2016] [Indexed: 12/01/2022]
Abstract
Aspergillus carbonarius exhibits excellent abilities to utilize a wide range of carbon sources and to produce various organic acids. In this study, wheat straw hydrolysate containing high concentrations of glucose and xylose was used for organic acid production by A. carbonarius. The results indicated that A. carbonarius efficiently co-consumed glucose and xylose and produced various types of organic acids in hydrolysate adjusted to pH 7. The inhibitor tolerance of A. carbonarius to the hydrolysate at different pH values was investigated and compared using spores and recycled mycelia. This comparison showed a slight difference in the inhibitor tolerance of the spores and the recycled mycelia based on their growth patterns. Moreover, the wild-type and a glucose oxidase deficient (Δgox) mutant were compared for their abilities to produce organic acids using the hydrolysate and a defined medium. The two strains showed a different pattern of organic acid production in the hydrolysate where the Δgox mutant produced more oxalic acid but less citric acid than the wild-type, which was different from the results obtained in the defined medium This study demonstrates the feasibility of using lignocellulosic biomass for the organic acid production by A. carbonarius.
Collapse
Affiliation(s)
- Lei Yang
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vaenge 15, 2450, Copenhagen SV, Denmark
| | - Mette Lübeck
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vaenge 15, 2450, Copenhagen SV, Denmark
| | - Konstantinos Souroullas
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vaenge 15, 2450, Copenhagen SV, Denmark.,MEDOCHEMIE LTD, 1-10 Constantinoupoleos St., 3011, Limassol, Cyprus
| | - Peter S Lübeck
- Section for Sustainable Biotechnology, Department of Chemistry and Bioscience, Aalborg University Copenhagen, A. C. Meyers Vaenge 15, 2450, Copenhagen SV, Denmark.
| |
Collapse
|
43
|
Pellis A, Herrero Acero E, Gardossi L, Ferrario V, Guebitz GM. Renewable building blocks for sustainable polyesters: new biotechnological routes for greener plastics. POLYM INT 2016. [DOI: 10.1002/pi.5087] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alessandro Pellis
- University of Natural Resources and Life Sciences Vienna; Department for Agrobiotechnology IFA-Tulln, Institute for Environmental Biotechnology; Konrad Lorenz Strasse 20 A-3430 Tulln an der Donau Austria
| | - Enrique Herrero Acero
- Austrian Centre of Industrial Biotechnology; Division of Enzymes and Polymers; Konrad Lorenz Strasse 20 A-3430 Tulln an der Donau Austria
| | - Lucia Gardossi
- Laboratory of Applied and Computational Biocatalysis, Dipartimento di Scienze Chimiche e Farmaceutiche; Università degli Studi di Trieste; Piazzale Europa 1 34127 Trieste Italy
| | - Valerio Ferrario
- Laboratory of Applied and Computational Biocatalysis, Dipartimento di Scienze Chimiche e Farmaceutiche; Università degli Studi di Trieste; Piazzale Europa 1 34127 Trieste Italy
| | - Georg M Guebitz
- University of Natural Resources and Life Sciences Vienna; Department for Agrobiotechnology IFA-Tulln, Institute for Environmental Biotechnology; Konrad Lorenz Strasse 20 A-3430 Tulln an der Donau Austria
- Austrian Centre of Industrial Biotechnology; Division of Enzymes and Polymers; Konrad Lorenz Strasse 20 A-3430 Tulln an der Donau Austria
| |
Collapse
|