1
|
Chen Y, Liu F, Sha A, Xu M, Rao Z, Zhang X. Deciphering styrene oxide tolerance mechanisms in Gluconobacter oxydans mutant strain. BIORESOURCE TECHNOLOGY 2024; 401:130674. [PMID: 38642663 DOI: 10.1016/j.biortech.2024.130674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/22/2024]
Abstract
Chemical production wastewater contains large amounts of organic solvents (OSs), which pose a significant threat to the environment. In this study, a 10 g·L-1 styrene oxide tolerant strain with broad-spectrum OSs tolerance was obtained via adaptive laboratory evolution. The mechanisms underlying the high OS tolerance of tolerant strain were investigated by integrating physiological, multi-omics, and genetic engineering analyses. Physiological changes are one of the main factors responsible for the high OS tolerance in mutant strains. Moreover, the P-type ATPase GOX_RS04415 and the LysR family transcriptional regulator GOX_RS04700 were also verified as critical genes for styrene oxide tolerance. The tolerance mechanisms of OSs can be used in biocatalytic chassis cell factories to synthesize compounds and degrade environmental pollutants. This study provides new insights into the mechanisms underlying the toxicological response to OS stress and offers potential targets for enhancing the solvent tolerance of G. oxydans.
Collapse
Affiliation(s)
- Yan Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Fei Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Aobo Sha
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
2
|
Zhong M, Li Y, Deng L, Fang J, Yu X. Insight into the adaptation mechanisms of high hydrostatic pressure in physiology and metabolism of hadal fungi from the deepest ocean sediment. mSystems 2024; 9:e0108523. [PMID: 38117068 PMCID: PMC10804941 DOI: 10.1128/msystems.01085-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
High hydrostatic pressure (HHP) influences the life processes of organisms living at depth in the oceans. While filamentous fungi are one of the essential members of deep-sea microorganisms, few works have explored their piezotolerance to HHP. Here, we obtained three homogeneous Aspergillus sydowii from terrestrial, shallow, and hadal areas, respectively, to compare their pressure resistance. A set of all-around evaluation methods including determination of growth rate, metabolic activity, and microscopic staining observation was established and indicated that A. sydowii DM1 from the hadal area displayed significant piezotolerance. Global analysis of transcriptome data under elevated HHP revealed that A. sydowii DM1 proactively modulated cell membrane permeability, hyphae morphology, and septal quantities for seeking a better livelihood under mild pressure. Besides, differentially expressed genes were mainly enriched in the biosynthesis of amino acids, carbohydrate metabolism, cell process, etc., implying how the filamentous fungi respond to elevated pressure at the molecular level. We speculated that A. sydowii DM1 could acclimatize itself to HHP by adopting several strategies, including environmental response pathway HOG-MAPK, stress proteins, and cellular metabolisms.IMPORTANCEFungi play an ecological and biological function in marine environments, while the physiology of filamentous fungi under high hydrostatic pressure (HHP) is an unknown territory due to current technologies. As filamentous fungi are found in various niches, Aspergillus sp. from deep-sea inspire us to the physiological trait of eukaryotes under HHP, which can be considered as a prospective research model. Here, the evaluation methods we constructed would be universal for most filamentous fungi to assess their pressure resistance, and we found that Aspergillus sydowii DM1 from the hadal area owned better piezotolerance and the active metabolisms under HHP indicated the existence of undiscovered metabolic strategies for hadal fungi. Since pressure-related research of marine fungi has been unexpectedly neglected, our study provided an enlightening strategy for them under HHP; we believed that understanding their adaptation and ecological function in original niches will be accelerated in the perceivable future.
Collapse
Affiliation(s)
- Maosheng Zhong
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yongqi Li
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Ludan Deng
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Xi Yu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
3
|
Tu W, Xu J, Thompson IP, Huang WE. Engineering artificial photosynthesis based on rhodopsin for CO 2 fixation. Nat Commun 2023; 14:8012. [PMID: 38049399 PMCID: PMC10696030 DOI: 10.1038/s41467-023-43524-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/11/2023] [Indexed: 12/06/2023] Open
Abstract
Microbial rhodopsin, a significant contributor to sustaining life through light harvesting, holds untapped potential for carbon fixation. Here, we construct an artificial photosynthesis system which combines the proton-pumping ability of rhodopsin with an extracellular electron uptake mechanism, establishing a pathway to drive photoelectrosynthetic CO2 fixation by Ralstonia eutropha (also known as Cupriavidus necator) H16, a facultatively chemolithoautotrophic soil bacterium. R. eutropha is engineered to heterologously express an extracellular electron transfer pathway of Shewanella oneidensis MR-1 and Gloeobacter rhodopsin (GR). Employing GR and the outer-membrane conduit MtrCAB from S. oneidensis, extracellular electrons and GR-driven proton motive force are integrated into R. eutropha's native electron transport chain (ETC). Inspired by natural photosynthesis, the photoelectrochemical system splits water to supply electrons to R. eutropha via the Mtr outer-membrane route. The light-activated proton pump - GR, supported by canthaxanthin as an antenna, powers ATP synthesis and reverses the ETC to regenerate NADH/NADPH, facilitating R. eutropha's biomass synthesis from CO2. Overexpression of a carbonic anhydrase further enhances CO2 fixation. This artificial photosynthesis system has the potential to advance the development of efficient photosynthesis, redefining our understanding of the ecological role of microbial rhodopsins in nature.
Collapse
Affiliation(s)
- Weiming Tu
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Ian P Thompson
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK.
| |
Collapse
|
4
|
Lee CY, Chen KW, Chiang CL, Kao HY, Yu HC, Lee HC, Chen WL. Improved production of β-carotene in light-powered Escherichia coli by co-expression of Gloeobacter rhodopsin expression. Microb Cell Fact 2023; 22:207. [PMID: 37817206 PMCID: PMC10563301 DOI: 10.1186/s12934-023-02212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Providing sufficient and usable energy for the cell factory has long been a heated issue in biosynthesis as solar energy has never been rooted out from the strategy for improvement, and turning Escherichia coli (E. coli) into a phototrophic host has multiple captivating qualities for biosynthesis. In this study, β-carotene was a stable compound for production in E. coli with the expression of four enzymes (CrtE, CrtB, CrtI, CrtY) for production due to its light-harvesting feature as an antenna pigment and as an antioxidant and important precursor for human health. The expression of Gloeobacter rhodopsin (GR) in microbial organisms was proved to have potential for application. RESULTS The expression of fusion protein, GR-GFP, in E. coli showed visible GFP signal under fluorescent microscopy, and its in vivo proton pumping activity signal can be detected in induced photocurrent by electrodes on the chip under intervals of illumination. To assess the phototrophic synthesis ability of the host strain compared to wild-type and vector control strain in chemostat batch with illumination, the expression of red fluorescent protein (RFP) as a target protein showed its yield improvement in protein assay and also reflected its early dominance in RFP fluorescence signal during the incubation, whereas the synthesis of β-carotene also showed yield increase by 1.36-fold and 2.32-fold compared with its wildtype and vector control strain. To investigate the effect of GR-GFP on E. coli, the growth of the host showed early rise into the exponential phase compared to the vector control strain and glucose turnover rate was elevated in increased glucose intake rate and upregulation of ATP-related genes in glycolysis (PtsG, Pgk, Pyk). CONCLUSION We reported the first-time potential application of GR in the form of fusion protein GR-GFP. Expression of GR-GFP in E. coli improved the production of β-carotene and RFP. Our work provides a strain of E. coli harboring phototrophic metabolism, thus paving path to a more sustainable and scalable production of biosynthesis.
Collapse
Affiliation(s)
- Chao-Yu Lee
- Institute of Molecular Medicine and Bioengineering, Department of Biological Science & Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Kai-Wen Chen
- Institute of Molecular Medicine and Bioengineering, Department of Biological Science & Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chih-Lu Chiang
- Department of Civil Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hsuan-Yu Kao
- Department of Mechanical Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Department of Civil Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hao-Cheng Yu
- Institute of Molecular Medicine and Bioengineering, Department of Biological Science & Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hsiao-Ching Lee
- Institute of Molecular Medicine and Bioengineering, Department of Biological Science & Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Wen-Liang Chen
- Institute of Molecular Medicine and Bioengineering, Department of Biological Science & Technology, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan.
| |
Collapse
|
5
|
Davison PA, Tu W, Xu J, Della Valle S, Thompson IP, Hunter CN, Huang WE. Engineering a Rhodopsin-Based Photo-Electrosynthetic System in Bacteria for CO 2 Fixation. ACS Synth Biol 2022; 11:3805-3816. [PMID: 36264158 PMCID: PMC9680020 DOI: 10.1021/acssynbio.2c00397] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A key goal of synthetic biology is to engineer organisms that can use solar energy to convert CO2 to biomass, chemicals, and fuels. We engineered a light-dependent electron transfer chain by integrating rhodopsin and an electron donor to form a closed redox loop, which drives rhodopsin-dependent CO2 fixation. A light-driven proton pump comprising Gloeobacter rhodopsin (GR) and its cofactor retinal have been assembled in Ralstonia eutropha (Cupriavidus necator) H16. In the presence of light, this strain fixed inorganic carbon (or bicarbonate) leading to 20% growth enhancement, when formate was used as an electron donor. We found that an electrode from a solar panel can replace organic compounds to serve as the electron donor, mediated by the electron shuttle molecule riboflavin. In this new autotrophic and photo-electrosynthetic system, GR is augmented by an external photocell for reductive CO2 fixation. We demonstrated that this hybrid photo-electrosynthetic pathway can drive the engineered R. eutropha strain to grow using CO2 as the sole carbon source. In this system, a bioreactor with only two inputs, light and CO2, enables the R. eutropha strain to perform a rhodopsin-dependent autotrophic growth. Light energy alone, supplied by a solar panel, can drive the conversion of CO2 into biomass with a maximum electron transfer efficiency of 20%.
Collapse
Affiliation(s)
- Paul A. Davison
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Weiming Tu
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Jiabao Xu
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Simona Della Valle
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - Ian P. Thompson
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom
| | - C. Neil Hunter
- Plants,
Photosynthesis and Soil, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Wei E. Huang
- Department
of Engineering Science, University of Oxford, OxfordOX1 3PJ, United Kingdom,. Tel: +44 1865 283786
| |
Collapse
|
6
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
7
|
Abram F, Arcari T, Guerreiro D, O'Byrne CP. Evolutionary trade-offs between growth and survival: The delicate balance between reproductive success and longevity in bacteria. Adv Microb Physiol 2021; 79:133-162. [PMID: 34836610 DOI: 10.1016/bs.ampbs.2021.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All living cells strive to allocate cellular resources in a way that promotes maximal evolutionary fitness. While there are many competing demands for resources the main decision making process centres on whether to proceed with growth and reproduction or to "hunker down" and invest in protection and survival (or to strike an optimal balance between these two processes). The transcriptional programme active at any given time largely determines which of these competing processes is dominant. At the top of the regulatory hierarchy are the sigma factors that commandeer the transcriptional machinery and determine which set of promoters are active at any given time. The regulatory inputs controlling their activity are therefore often highly complex, with multiple layers of regulation, allowing relevant environmental information to produce the most beneficial response. The tension between growth and survival is also evident in the developmental programme necessary to promote biofilm formation, which is typically associated with low growth rates and enhanced long-term survival. Nucleotide second messengers and energy pools (ATP/ADP levels) play critical roles in determining the fate of individual cells. Regulatory small RNAs frequently play important roles in the decision making processes too. In this review we discuss the trade-off that exists between reproduction and persistence in bacteria and discuss some of the recent advances in this fascinating field.
Collapse
Affiliation(s)
- Florence Abram
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Talia Arcari
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Duarte Guerreiro
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Conor P O'Byrne
- Microbiology & Ryan Institute, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
8
|
Aerobic Conditions and Endogenous Reactive Oxygen Species Reduce the Production of Infectious MS2 Phage by Escherichia coli. Viruses 2021; 13:v13071376. [PMID: 34372580 PMCID: PMC8310082 DOI: 10.3390/v13071376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Most of the defective/non-infectious enteric phages and viruses that end up in wastewater originate in human feces. Some of the causes of this high level of inactivity at the host stage are unknown. There is a significant gap between how enteric phages are environmentally transmitted and how we might design molecular tools that would only detect infectious ones. Thus, there is a need to explain the low proportion of infectious viral particles once replicated. By analyzing lysis plaque content, we were able to confirm that, under aerobic conditions, Escherichia coli produce low numbers of infectious MS2 phages (I) than the total number of phages indicated by the genome copies (G) with an I/G ratio of around 2%. Anaerobic conditions of replication and ROS inhibition increase the I/G ratio to 8 and 25%, respectively. These data cannot only be explained by variations in the total numbers of MS2 phages produced or in the metabolism of E. coli. We therefore suggest that oxidative damage impacts the molecular replication and assembly of MS2 phages.
Collapse
|
9
|
Han JH, Jung ST, Oh MK. Improved Yield of Recombinant Protein via Flagella Regulator Deletion in Escherichia coli. Front Microbiol 2021; 12:655072. [PMID: 33790884 PMCID: PMC8005581 DOI: 10.3389/fmicb.2021.655072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Protein production requires a significant amount of intracellular energy. Eliminating the flagella has been proposed to help Escherichia coli improve protein production by reducing energy consumption. In this study, the gene encoding a subunit of FlhC, a master regulator of flagella assembly, was deleted to reduce the expression of flagella-related genes. FlhC knockout in the ptsG-deleted strain triggered significant growth retardation with increased ATP levels and a higher NADPH/NADP+ ratio. Metabolic flux analysis using a 13C-labeled carbon substrate showed increased fluxes toward the pentose phosphate and tricarboxylic acid cycle pathways in the flhC- and ptsG-deleted strains. Introduction of a high copy number plasmid or overexpression of the recombinant protein in this strain restored growth rate without increasing glucose consumption. These results suggest that the metabolic burden caused by flhC deletion was resolved by recombinant protein production. The recombinant enhanced green fluorescent protein yield per glucose consumption increased 1.81-fold in the flhC mutant strain. Thus, our study demonstrates that high-yield production of the recombinant protein was achieved with reduced flagella formation.
Collapse
Affiliation(s)
- Jae-Ho Han
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Sang Taek Jung
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, South Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
10
|
Activation of metabolic and stress responses during subtoxic expression of the type I toxin hok in Erwinia amylovora. BMC Genomics 2021; 22:74. [PMID: 33482720 PMCID: PMC7821729 DOI: 10.1186/s12864-021-07376-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022] Open
Abstract
Background Toxin-antitoxin (TA) systems, abundant in prokaryotes, are composed of a toxin gene and its cognate antitoxin. Several toxins are implied to affect the physiological state and stress tolerance of bacteria in a population. We previously identified a chromosomally encoded hok-sok type I TA system in Erwinia amylovora, the causative agent of fire blight disease on pome fruit trees. A high-level induction of the hok gene was lethal to E. amylovora cells through unknown mechanisms. The molecular targets or regulatory roles of Hok were unknown. Results Here, we examined the physiological and transcriptomic changes of Erwinia amylovora cells expressing hok at subtoxic levels that were confirmed to confer no cell death, and at toxic levels that resulted in killing of cells. In both conditions, hok caused membrane rupture and collapse of the proton motive force in a subpopulation of E. amylovora cells. We demonstrated that induction of hok resulted in upregulation of ATP biosynthesis genes, and caused leakage of ATP from cells only at toxic levels. We showed that overexpression of the phage shock protein gene pspA largely reversed the cell death phenotype caused by high levels of hok induction. We also showed that induction of hok at a subtoxic level rendered a greater proportion of stationary phase E. amylovora cells tolerant to the antibiotic streptomycin. Conclusions We characterized the molecular mechanism of toxicity by high-level of hok induction and demonstrated that low-level expression of hok primes the stress responses of E. amylovora against further membrane and antibiotic stressors. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07376-w.
Collapse
|
11
|
Lee MJ, Park J, Park K, Kim JF, Kim P. Reverse Engineering Targets for Recombinant Protein Production in Corynebacterium glutamicum Inspired by a Fast-Growing Evolved Descendant. Front Bioeng Biotechnol 2020; 8:588070. [PMID: 33363126 PMCID: PMC7755716 DOI: 10.3389/fbioe.2020.588070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
We previously reported a Corynebacterium glutamicum JH41 strain with a 58% faster growth rate through application of adaptive laboratory evolution. To verify that the fast-reproducing strain was useful as a host for recombinant protein expression, we introduced a plasmid responsible for the secretory production of a recombinant protein. The JH41 strain harboring the plasmid indeed produced the secretory recombinant protein at a 2.7-fold greater rate than its ancestral strain. To provide the reverse engineering targets responsible for boosting recombinant protein production and cell reproduction, we compared the genome sequence of the JH41 strain with its ancestral strain. Among the 15 genomic variations, a point mutation was confirmed in the 14 bases upstream of NCgl1959 (encoding a presumed siderophore-binding protein). This mutation allowed derepression of NCgl1959, thereby increasing iron consumption and ATP generation. A point mutation in the structural gene ramA (A239G), a LuxR-type global transcription regulator involved in central metabolism, allowed an increase in glucose consumption. Therefore, mutations to increase the iron and carbon consumption were concluded as being responsible for the enhanced production of recombinant protein and cell reproduction in the evolved host.
Collapse
Affiliation(s)
- Min Ju Lee
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi, South Korea
| | - Jihoon Park
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi, South Korea
| | - Kyunghoon Park
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi, South Korea
| | - Jihyun F Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Pil Kim
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi, South Korea
| |
Collapse
|
12
|
Enhanced glutathione production by bifunctional enzyme coupling with ydaO-based ATP regulating system in Escherichia coli. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
13
|
Park J, Lee S, Lee MJ, Park K, Lee S, Kim JF, Kim P. Accelerated Growth of Corynebacterium glutamicum by Up-Regulating Stress- Responsive Genes Based on Transcriptome Analysis of a Fast-Doubling Evolved Strain. J Microbiol Biotechnol 2020; 30:1420-1429. [PMID: 32699195 PMCID: PMC9728273 DOI: 10.4014/jmb.2006.06035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/15/2022]
Abstract
Corynebacterium glutamicum, an important industrial strain, has a relatively slower reproduction rate. To acquire a growth-boosted C. glutamicum, a descendant strain was isolated from a continuous culture after 600 generations. The isolated descendant C. glutamicum, JH41 strain, was able to double 58% faster (td=1.15 h) than the parental type strain (PT, td=1.82 h). To understand the factors boosting reproduction, the transcriptomes of JH41 and PT strains were compared. The mRNAs involved in respiration and TCA cycle were upregulated. The intracellular ATP of the JH41 strain was 50% greater than the PT strain. The upregulation of NCgl1610 operon (a putative dyp-type heme peroxidase, a putative copper chaperone, and a putative copper importer) that presumed to role in the assembly and redox control of cytochrome c oxidase was found in the JH41 transcriptome. Plasmid-driven expression of the operon enabled the PT strain to double 19% faster (td=1.82 h) than its control (td=2.17 h) with 14% greater activity of cytochrome c oxidase and 27% greater intracellular ATP under the oxidative stress conditions. Upregulations of genes those might enhance translation fitness were also found in the JH41 transcriptome. Plasmid-driven expressions of NCgl0171 (encoding a cold-shock protein) and NCgl2435 (encoding a putative peptidyl-tRNA hydrolase) enabled the PT to double 22% and 32% faster than its control, respectively (empty vector: td=1.93 h, CspA: td=1.58 h, and Pth: td=1.44 h). Based on the results, the factors boosting growth rate in C. gluctamicum were further discussed in the viewpoints of cellular energy state, oxidative stress management, and translation.
Collapse
Affiliation(s)
- Jihoon Park
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi 14662, Republic of Korea
| | - SuRin Lee
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi 14662, Republic of Korea
| | - Min Ju Lee
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi 14662, Republic of Korea
| | - Kyunghoon Park
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi 14662, Republic of Korea
| | - Seungki Lee
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi 14662, Republic of Korea
| | - Jihyun F. Kim
- Department of Systems Biology, Division of Life Sciences, and Institute for Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Pil Kim
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi 14662, Republic of Korea,Corresponding author Phone/Fax: +82-2-2164-4922 E-mail:
| |
Collapse
|
14
|
Shimizu K, Matsuoka Y. Redox rebalance against genetic perturbations and modulation of central carbon metabolism by the oxidative stress regulation. Biotechnol Adv 2019; 37:107441. [PMID: 31472206 DOI: 10.1016/j.biotechadv.2019.107441] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/04/2019] [Accepted: 08/23/2019] [Indexed: 12/11/2022]
Abstract
The micro-aerophilic organisms and aerobes as well as yeast and higher organisms have evolved to gain energy through respiration (via oxidative phosphorylation), thereby enabling them to grow much faster than anaerobes. However, during respiration, reactive oxygen species (ROSs) are inherently (inevitably) generated, and threaten the cell's survival. Therefore, living organisms (or cells) must furnish the potent defense systems to keep such ROSs at harmless level, where the cofactor balance plays crucial roles. Namely, NADH is the source of energy generation (catabolism) in the respiratory chain reactions, through which ROSs are generated, while NADPH plays important roles not only for the cell synthesis (anabolism) but also for detoxifying ROSs. Therefore, the cell must rebalance the redox ratio by modulating the fluxes of the central carbon metabolism (CCM) by regulating the multi-level regulation machinery upon genetic perturbations and the change in the growth conditions. Here, we discuss about how aerobes accomplish such cofactor homeostasis against redox perturbations. In particular, we consider how single-gene mutants (including pgi, pfk, zwf, gnd and pyk mutants) modulate their metabolisms in relation to cofactor rebalance (and also by adaptive laboratory evolution). We also discuss about how the overproduction of NADPH (by the pathway gene mutation) can be utilized for the efficient production of useful value-added chemicals such as medicinal compounds, polyhydroxyalkanoates, and amino acids, all of which require NADPH in their synthetic pathways. We then discuss about the metabolic responses against oxidative stress, where αketoacids play important roles not only for the coordination between catabolism and anabolism, but also for detoxifying ROSs by non-enzymatic reactions, as well as for reducing the production of ROSs by repressing the activities of the TCA cycle and respiration (via carbon catabolite repression). Thus, we discuss about the mechanisms (basic strategies) that modulate the metabolism from respiration to respiro-fermentative metabolism causing overflow, based on the role of Pyk activity, affecting the NADPH production at the oxidative pentose phosphate (PP) pathway, and the roles of αketoacids for the change in the source of energy generation from the oxidative phosphorylation to the substrate level phosphorylation.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan; Institute of Advanced Biosciences, Keio university, Tsuruoka, Yamagata 997-0017, Japan.
| | - Yu Matsuoka
- Kyushu institute of Technology, Iizuka, Fukuoka 820-8502, Japan.
| |
Collapse
|
15
|
Abstract
Inflammatory bowel disease is a chronic nonspecific inflammatory disease of the intestine. Its pathogenesis is not yet fully understood. It may be related to heredity, environmental triggers, infection, immune dysfunction and other factors. Purinergic receptor (P2X7R) ligand-gated ion channel is closely related to inflammation and widely expressed in intestinal cells. Previous studies have shown that ATP/P2X7R signal is involved in the pathogenesis of intestinal inflammation, but its specific mechanism needs further study. This article reviews the research progress of P2X7 receptor in inflammatory bowel disease.
Collapse
Affiliation(s)
- Yajun Liu
- a Department of Gastroenterology , Xiangya Hospital, Central South University , Changsha , China
| | - Xiaowei Liu
- a Department of Gastroenterology , Xiangya Hospital, Central South University , Changsha , China
| |
Collapse
|
16
|
Zhu C, Chen J, Wang Y, Wang L, Guo X, Chen N, Zheng P, Sun J, Ma Y. Enhancing 5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli. Biotechnol Bioeng 2019; 116:2018-2028. [PMID: 30934113 DOI: 10.1002/bit.26981] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/03/2019] [Accepted: 03/28/2019] [Indexed: 01/06/2023]
Abstract
5-Aminolevulinic acid (ALA) is a value-added compound with potential applications in the fields of agriculture and medicine. Although massive efforts have recently been devoted to building microbial producers of ALA through metabolic engineering, few studies focused on the cellular response and tolerance to ALA. In this study, we demonstrated that ALA caused severe cell damage and morphology change of Escherichia coli via generating reactive oxygen species (ROS), which were further determined to be mainly hydrogen peroxide and superoxide anion radical. ALA treatment activated the native antioxidant defense system by upregulating catalase (CAT) and superoxide dismutase (SOD) expression to combat ROS. Further overexpressing CAT (encoded by katG and katE) and SOD (encoded by sodA, sodB, and sodC) not only improved ALA tolerance but also its production level. Notably, coexpression of katE and sodB in an ALA synthase expressing strain enhanced the biomass and final ALA titer by 81% and 117% (11.5 g/L) in a 5 L bioreactor, respectively. This study demonstrates the importance of tolerance engineering in strain development. Reinforcing the antioxidant defense system holds promise to improve the bioproduction of chemicals that cause oxidative stress.
Collapse
Affiliation(s)
- Chengchao Zhu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiuzhou Chen
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Lixian Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xuan Guo
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Ning Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yanhe Ma
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
17
|
Kim HA, Kim HJ, Lee MJ, Park J, Choi AR, Jeong H, Jung KH, Kim P, Lee SJ. Genome Variations of Evolved Escherichia coli ET8 With a Rhodopsin-Based Phototrophic Metabolism. Biotechnol J 2018; 13:e1700497. [PMID: 29469946 DOI: 10.1002/biot.201700497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 02/07/2018] [Indexed: 11/10/2022]
Abstract
We reported that the phototrophic metabolism via plasmid-originated Gloeobacter rhodopsin(GR)-expression is improved in Escherichia coli ET5 harboring pKJ606-GR by a genomic point mutation (dgcQC1082A ) encoding a transmembrane cell signaling protein (Microb. Cell Fact. 16:111, 2017). Another evolved descendant is isolated from the chemostat, and the genome variation of the strain named ET8 harboring pKJ606-GR is investigated in this study. Whole genome sequencing analysis identifies a single point mutation (C3831976A) located in the non-coding upstream region of kdtA and an IS4 insertional mutation at galUG706 without any mutations in the plasmid. ET8 strain shows enhanced kdtA transcription and no growth in the D-galactose or lactose sole carbon sourced minimal media. Size of ET8 strain are almost identical to that of the ancestor. Phototrophic growth and proton pumping in ET8 expressing GR (ET8 + GR) are increased 1.5-fold and threefold, respectively, compared with those in the ancestor (W3110 + GR). To verify the effects of the genomic mutations, either the kdtA-upregulation or the galU-disruption is conducted in the ancestor. Both the kdtA-upregulation and the galU-disruption result in the drastic increases of proton-pumping. The physiological properties arising from the genomic variations of the evolved host with the new phototrophic metabolism are further discussed.
Collapse
Affiliation(s)
- Hyun Aaron Kim
- Hana Academy Seoul, Seoul, Republic of Korea.,Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hyun Ju Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| | - Min Ju Lee
- Department of Biotechnology, the Catholic University of Korea, Bucheon, Gyeonggi, Republic of Korea
| | - Jihoon Park
- Department of Biotechnology, the Catholic University of Korea, Bucheon, Gyeonggi, Republic of Korea
| | - Ah Reum Choi
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Haeyoung Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kwang-Hwan Jung
- Department of Life Science, Sogang University, Seoul, Republic of Korea
| | - Pil Kim
- Department of Biotechnology, the Catholic University of Korea, Bucheon, Gyeonggi, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Gyeonggi, Republic of Korea
| |
Collapse
|
18
|
Zhang Z, Milias-Argeitis A, Heinemann M. Dynamic single-cell NAD(P)H measurement reveals oscillatory metabolism throughout the E. coli cell division cycle. Sci Rep 2018; 8:2162. [PMID: 29391569 PMCID: PMC5795003 DOI: 10.1038/s41598-018-20550-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/22/2018] [Indexed: 11/09/2022] Open
Abstract
Recent work has shown that metabolism between individual bacterial cells in an otherwise isogenetic population can be different. To investigate such heterogeneity, experimental methods to zoom into the metabolism of individual cells are required. To this end, the autofluoresence of the redox cofactors NADH and NADPH offers great potential for single-cell dynamic NAD(P)H measurements. However, NAD(P)H excitation requires UV light, which can cause cell damage. In this work, we developed a method for time-lapse NAD(P)H imaging in single E. coli cells. Our method combines a setup with reduced background emission, UV-enhanced microscopy equipment and optimized exposure settings, overall generating acceptable NAD(P)H signals from single cells, with minimal negative effect on cell growth. Through different experiments, in which we perturb E. coli's redox metabolism, we demonstrated that the acquired fluorescence signal indeed corresponds to NAD(P)H. Using this new method, for the first time, we report that intracellular NAD(P)H levels oscillate along the bacterial cell division cycle. The developed method for dynamic measurement of NAD(P)H in single bacterial cells will be an important tool to zoom into metabolism of individual cells.
Collapse
Affiliation(s)
- Zheng Zhang
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, Netherlands.
| |
Collapse
|
19
|
Holistic bioengineering: rewiring central metabolism for enhanced bioproduction. Biochem J 2017; 474:3935-3950. [PMID: 29146872 PMCID: PMC5688466 DOI: 10.1042/bcj20170377] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/29/2022]
Abstract
What does it take to convert a living organism into a truly productive biofactory? Apart from optimizing biosynthesis pathways as standalone units, a successful bioengineering approach must bend the endogenous metabolic network of the host, and especially its central metabolism, to support the bioproduction process. In practice, this usually involves three complementary strategies which include tuning-down or abolishing competing metabolic pathways, increasing the availability of precursors of the desired biosynthesis pathway, and ensuring high availability of energetic resources such as ATP and NADPH. In this review, we explore these strategies, focusing on key metabolic pathways and processes, such as glycolysis, anaplerosis, the TCA (tricarboxylic acid) cycle, and NADPH production. We show that only a holistic approach for bioengineering — considering the metabolic network of the host organism as a whole, rather than focusing on the production pathway alone — can truly mold microorganisms into efficient biofactories.
Collapse
|
20
|
Reexamination of the Physiological Role of PykA in Escherichia coli Revealed that It Negatively Regulates the Intracellular ATP Levels under Anaerobic Conditions. Appl Environ Microbiol 2017; 83:AEM.00316-17. [PMID: 28363967 DOI: 10.1128/aem.00316-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 03/24/2017] [Indexed: 11/20/2022] Open
Abstract
Pyruvate kinase is one of the three rate-limiting glycolytic enzymes that catalyze the last step of glycolysis, conversion of phosphoenolpyruvate (PEP) into pyruvate, which is associated with ATP generation. Two isozymes of pyruvate kinase, PykF and PykA, are identified in Escherichia coli PykF is considered important, whereas PykA has a less-defined role. Prior studies inactivated the pykA gene to increase the level of its substrate, PEP, and thereby increased the yield of end products derived from PEP. We were surprised when we found a pykA::Tn5 mutant in a screen for increased yield of an end product derived from pyruvate (n-butanol), suggesting that the role of PykA needs to be reexamined. We show that the pykA mutant exhibited elevated intracellular ATP levels, biomass concentrations, glucose consumption, and n-butanol production. We also discovered that the pykA mutant expresses higher levels of a presumed pyruvate transporter, YhjX, permitting the mutant to recapture and metabolize excreted pyruvate. Furthermore, we demonstrated that the nucleotide diphosphate kinase activity of PykA leads to negative regulation of the intracellular ATP levels. Taking the data together, we propose that inactivation of pykA can be considered a general strategy to enhance the production of pyruvate-derived metabolites under anaerobic conditions.IMPORTANCE This study showed that knocking out pykA significantly increased the intracellular ATP level and thus significantly increased the levels of glucose consumption, biomass formation, and pyruvate-derived product formation under anaerobic conditions. pykA was considered to be encoding a dispensable pyruvate kinase; here we show that pykA negatively regulates the anaerobic glycolysis rate through regulating the energy distribution. Thus, knocking out pykA can be used as a general strategy to increase the level of pyruvate-derived fermentative products.
Collapse
|
21
|
Chen Y, Zhou H, Wang M, Tan T. Control of ATP concentration in Escherichia coli using an ATP-sensing riboswitch for enhanced S-adenosylmethionine production. RSC Adv 2017. [DOI: 10.1039/c7ra02538f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We proposed an ATP-sensing riboswitch-based strategy which could be applied to regulate the intracellular ATP concentration dynamically inE. coli. This strategy will be most beneficial for enhancing the production of the ATP-driven metabolites.
Collapse
Affiliation(s)
- Yawei Chen
- College of Chemical and Pharmaceutical Engineering
- Henan University of Science and Technology
- Luoyang 471023
- PR China
| | - Huiyun Zhou
- College of Chemical and Pharmaceutical Engineering
- Henan University of Science and Technology
- Luoyang 471023
- PR China
| | - Meng Wang
- National Energy R&D Center for Biorefinery
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery
- College of Life Science and Technology
- Beijing University of Chemical Technology
- Beijing 100029
- PR China
| |
Collapse
|
22
|
van Beilen JWA, Hellingwerf KJ. All Three Endogenous Quinone Species of Escherichia coli Are Involved in Controlling the Activity of the Aerobic/Anaerobic Response Regulator ArcA. Front Microbiol 2016; 7:1339. [PMID: 27656164 PMCID: PMC5013052 DOI: 10.3389/fmicb.2016.01339] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/15/2016] [Indexed: 12/31/2022] Open
Abstract
The enteron Escherichia coli is equipped with a branched electron transfer chain that mediates chemiosmotic electron transfer, that drives ATP synthesis. The components of this electron transfer chain couple the oxidation of available electron donors from cellular metabolism (e.g., NADH, succinate, lactate, formate, etc.) to the reduction of electron acceptors like oxygen, nitrate, fumarate, di-methyl-sulfoxide, etc. Three different quinones, i.e., ubiquinone, demethyl-menaquinone and menaquinone, couple the transfer of electrons between the dehydrogenases and reductases/oxidases that constitute this electron transfer chain, whereas, the two-component regulation system ArcB/A regulates gene expression, to allow the organism to adapt itself to the ambient conditions of available electron donors and acceptors. Here, we report that E. coli can grow and adjust well to transitions in the availability of oxygen, with any of the three quinones as its single quinone. In all three ‘single-quinone’ E. coli strains transitions in the activity of ArcB are observed, as evidenced by changes in the level of phosphorylation of the response regulator ArcA, upon depletion/readmission of oxygen. These results lead us to conclude that all quinol species of E. coli can reduce (i.e., activate) the sensor ArcB and all three quinones oxidize (i.e., de-activate) it. These results also confirm our earlier conclusion that demethyl-menaquinone can function in aerobic respiration.
Collapse
Affiliation(s)
- Johan W A van Beilen
- Department of Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Klaas J Hellingwerf
- Department of Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
23
|
Chen Q, van der Steen JB, Dekker HL, Ganapathy S, de Grip WJ, Hellingwerf KJ. Expression of holo-proteorhodopsin in Synechocystis sp. PCC 6803. Metab Eng 2016; 35:83-94. [PMID: 26869136 DOI: 10.1016/j.ymben.2016.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 01/11/2016] [Accepted: 02/01/2016] [Indexed: 01/15/2023]
Abstract
Retinal-based photosynthesis may contribute to the free energy conversion needed for growth of an organism carrying out oxygenic photosynthesis, like a cyanobacterium. After optimization, this may even enhance the overall efficiency of phototrophic growth of such organisms in sustainability applications. As a first step towards this, we here report on functional expression of the archetype proteorhodopsin in Synechocystis sp. PCC 6803. Upon use of the moderate-strength psbA2 promoter, holo-proteorhodopsin is expressed in this cyanobacterium, at a level of up to 10(5) molecules per cell, presumably in a hexameric quaternary structure, and with approximately equal distribution (on a protein-content basis) over the thylakoid and the cytoplasmic membrane fraction. These results also demonstrate that Synechocystis sp. PCC 6803 has the capacity to synthesize all-trans-retinal. Expressing a substantial amount of a heterologous opsin membrane protein causes a substantial growth retardation Synechocystis, as is clear from a strain expressing PROPS, a non-pumping mutant derivative of proteorhodopsin. Relative to this latter strain, proteorhodopsin expression, however, measurably stimulates its growth.
Collapse
Affiliation(s)
- Que Chen
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Jeroen B van der Steen
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Henk L Dekker
- Mass Spectrometry of Biomacromolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Srividya Ganapathy
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Willem J de Grip
- Biophysical Organic Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Klaas J Hellingwerf
- Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Kwon YM, Kim S, Jung K, Kim S. Diversity and functional analysis of light-driven pumping rhodopsins in marine Flavobacteria. Microbiologyopen 2015; 5:212-23. [PMID: 26663527 PMCID: PMC4831467 DOI: 10.1002/mbo3.321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 10/28/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022] Open
Abstract
The aims of this study are the description of diversity for proteorhodopsin (PR)-containing flavobacteria in marine environments, the finding of novel photoreceptive membrane proteins, and the elucidation of the effect of light on the growth of three rhodopsin genes containing flavobacterium. We investigated novel sodium ion rhodopsin (NaR) and halorhodopsin (HR) genes from PR-containing flavobacteria that were previously isolated from diverse aquatic sites, mainly from tidal flat sediment (62.5%). In 16 PR-containing isolates, three new types of genes were found. Among these three isolates, one (Nonlabens sp. YIK11 isolated from sediment) contained both the NaR and chloride ion rhodopsin (ClR) - HR type of gene. The sequences showed that the DTE (proton pump), NDQ (sodium ion pump) and NTQ (chloride ion pump) motifs corresponding to the D85, T89, and D96 positions in bacteriorhodopsin (BR) were well conserved. Phylogenetic analysis indicated that three NaR and one ClR grouped within the same clade, as previously reported. Illumination of cell suspensions showed the change in proton pump activity, supporting that one or more rhodopsins are functional. The qRT-PCR study revealed that three rhodopsin genes, especially NaR, are highly induced when they are incubated in the presence of light or in the absence of sufficient nutrients. The expression levels of the DTE, NDQ, and NTQ motif-containing rhodopsin genes in YIK11 correlate positively with illumination, but negatively with nutrient levels. Based on those results, we concluded that light has a positive impact on the relative expression levels of the three rhodopsin genes in the flavobacterium, Nonlabens sp. YIK11, but with no apparent positive impact on growth. Consequently, light did not stimulate the growth of YIK11 as determined by cell numbers in a nutrient-limited or -enriched medium, although it contains and induces three rhodopsins.
Collapse
Affiliation(s)
- Yong Min Kwon
- Marine Biotechnology Research CenterKorea Institute of Ocean Science & Technology787 HaeanroAnsan426‐744Korea
| | - So‐Young Kim
- Department of Life Science and Institute of Biological ScienceSogang University35 Baekbeom‐RoMapo‐GuSeoul121‐742Korea
| | - Kwang‐Hwan Jung
- Department of Life Science and Institute of Biological ScienceSogang University35 Baekbeom‐RoMapo‐GuSeoul121‐742Korea
| | - Sang‐Jin Kim
- Marine Biotechnology Research CenterKorea Institute of Ocean Science & Technology787 HaeanroAnsan426‐744Korea
- Marine Biodiversity Institute of KoreaSeocheon325‐902Korea
| |
Collapse
|
25
|
Chen Y, Lou S, Fan L, Zhang X, Tan T. Control of ATP concentration in Escherichia coli using synthetic small regulatory RNAs for enhanced S-adenosylmethionine production. FEMS Microbiol Lett 2015; 362:fnv115. [PMID: 26187745 DOI: 10.1093/femsle/fnv115] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2015] [Indexed: 01/28/2023] Open
Abstract
ATP is the limiting precursor and driving force for S-adenosylmethionine (SAM) biosynthesis in Escherichia coli. In contrast to traditional optimization of fermentation processes, the synthetic sRNA-based repression strategy, which was developed as a highly efficient gene knockdown approach, has been applied for the regulation of the intracellular ATP concentration in order to enhance SAM production. In this work, proB, glnA and argB, all involved in the synthesis of ATP-dependent by-products in the S-adenosylmethionine production were selected as candidates for repression. The results show that the S-adenosylmethionine titer and yield in the recombinant strain were doubled compared with the control. The best-performing strain, Anti-argB, produced the highest SAM titer (1.21 mg L(-1)), and strain Anti-glnA gave the highest yield (0.13 mg g(-1), 12 h). Both the concentration of ATP and the ratio of ATP to ADP were shown to have a positive effect on the S-adenosylmethionine synthesis. Overall, the synthetic sRNA-based downregulation strategy has a high potential for cofactor regulation and will be useful for industrial ATP-driven bioprocesses.
Collapse
Affiliation(s)
- Yawei Chen
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China College of Chemical and Pharmaceutical Engineering, Henan University of Science and Technology, Luoyang 471003, People's Republic of China
| | - Shuangyan Lou
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Lihai Fan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xu Zhang
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Tianwei Tan
- National Energy R&D Center for Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|