1
|
Influence of Long-Term Agar-Slant Preservation at 4 °C on the Recombinant Enzyme Activity of Engineered Yeast. FERMENTATION 2023. [DOI: 10.3390/fermentation9020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Strain preservation to maintain stable vitality and the recombinant enzyme activity plays a crucial role in industrial fermentation. A Pichia pastoris strain is routinely stored at −80 °C in a glycerol vial and activated on an antibiotic-containing YPD agar plate before being used for fermentation. Alternatively, the activated strain should be preserved in the agar slant at 2~4 °C (low-temperature storage) for a short period before use. To maximize the utilization of the low-temperature storage for fermentation, we evaluated this method by observing the capacity of both the vitality and the recombinant enzyme activity of the strain at different preservation durations. We found that engineered yeast could be preserved by low-temperature storage for at least 30 months without losing its vitality and biomass enzyme activity by the end of fermentation and could be directly used for the seed cultivation of fermentation, which is more time-saving than strain recovery from −80 °C in a glycerol vial. Moreover, the antibiotic added to the agar slant could be omitted if the heterologous gene was integrated into the host chromosome. Our approach may greatly elevate the production efficiency of the strain.
Collapse
|
2
|
Wang D, Li W, Zhang X, Liang S, Lin Y. Green Process: Improved Semi-Continuous Fermentation of Pichia pastoris Based on the Principle of Vitality Cell Separation. Front Bioeng Biotechnol 2021; 9:777774. [PMID: 34917600 PMCID: PMC8669635 DOI: 10.3389/fbioe.2021.777774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
The large-scale fermentation of Pichia pastoris for recombinant protein production would be time consuming and produce a large amount of waste yeast. Here we introduce a novel semi-continuous fermentation process for P. pastoris GS115 that can separate vitality cells from broth and recycle the cells to produce high-secretory recombinant pectate lyase. It is based on differences in cell sedimentation coefficients with the formation of salt bridges between metal ions and various cell states. Compared to batch-fed cultivation and general semi-continuous culture, the novel process has significant advantages, such as consuming fewer resources, taking less time, and producing less waste yeast. Sedimentation with the addition of Fe3+ metal ions consumed 14.8 ± 0.0% glycerol, 97.8 ± 1.3% methanol, 55.0 ± 0.9 inorganic salts, 81.5 ± 0.0% time cost, and 77.0 ± 0.1% waste yeast versus batch-fed cultivation to produce an equal amount of protein; in addition, the cost of solid-liquid separation was lower for cells in the collected fermentation broth. The process is economically and environmentally efficient for producing recombinant proteins.
Collapse
Affiliation(s)
- Denggang Wang
- South China University of Technology, Guangzhou, China
| | - Wenjie Li
- South China University of Technology, Guangzhou, China
| | - Xinying Zhang
- South China University of Technology, Guangzhou, China
| | - Shuli Liang
- South China University of Technology, Guangzhou, China
| | - Ying Lin
- South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Mutation of Key Residues in β-Glycosidase LXYL-P1-2 for Improved Activity. Catalysts 2021. [DOI: 10.3390/catal11091042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The β-glycosidase LXYL-P1-2 identified from Lentinula edodes can be used to hydrolyze 7-β-xylosyl-10-deacetyltaxol (XDT) into 10-deacetyltaxol (DT) for the semi-synthesis of Taxol. Recent success in obtaining the high-resolution X-ray crystal of LXYL-P1-2 and resolving its three-dimensional structure has enabled us to perform molecular docking of LXYL-P1-2 with substrate XDT and investigate the roles of the three noncatalytic amino acid residues located around the active cavity in LXYL-P1-2. Site-directed mutagenesis results demonstrated that Tyr268 and Ser466 were essential for maintaining the β-glycosidase activity, and the L220G mutation exhibited a positive effect on increasing activity by enlarging the channel that facilitates the entrance of the substrate XDT into the active cavity. Moreover, introducing L220G mutation into the other LXYL-P1-2 mutant further increased the enzyme activity, and the β-d-xylosidase activity of the mutant EP2-L220G was nearly two times higher than that of LXYL-P1-2. Thus, the recombinant yeast GS115-EP2-L220G can be used for efficiently biocatalyzing XDT to DT for the semi-synthesis of Taxol. Our study provides not only the prospective candidate strain for industrial production, but also a theoretical basis for exploring the key amino acid residues in LXYL-P1-2.
Collapse
|
4
|
Liu W, Xiang H, Zhang T, Pang X, Su J, Liu H, Ma B, Yu L. Development of a New Bioprocess for Clean Diosgenin Production through Submerged Fermentation of an Endophytic Fungus. ACS OMEGA 2021; 6:9537-9548. [PMID: 33869934 PMCID: PMC8047649 DOI: 10.1021/acsomega.1c00010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Diosgenin is used widely to synthesize steroidal hormone drugs in the pharmaceutical industry. The conventional diosgenin production process, direct acid hydrolysis of the root of Dioscorea zingiberensis C. H. Wright (DZW), causes large amounts of wastewater and severe environmental pollution. To develop a clean and effective method, the endophytic fungus Fusarium sp. CPCC 400226 was screened for the first time for the microbial biotransformation of DZW in submerged fermentation (SmF). Statistical design and response surface methodology (RSM) were implemented to develop the diosgenin production process using the Fusarium strains. The environmental variables that significantly affected diosgenin yield were determined by the two-level Plackett-Burman design (PBD) with nine factors. PBD indicates that the fermentation period, culture temperature, and antifoam reagent addition are the most influential variables. These three variables were further optimized using the response surface design (RSD). A quadratic model was then built by the central composite design (CCD) to study the impact of interaction and quadratic effect on diosgenin yield. The values of the coefficient of determination for the PBD and CCD models were all over 0.95. P-values for both models were 0.0024 and <0.001, with F-values of ∼414 and ∼2215, respectively. The predicted results showed that a maximum diosgenin yield of 2.22% could be obtained with a fermentation period of 11.89 days, a culture temperature of 30.17 °C, and an antifoam reagent addition of 0.20%. The experimental value was 2.24%, which was in great agreement with predicted value. As a result, over 80% of the steroidal saponins in DZW were converted into diosgenin, presenting a ∼3-fold increase in diosgenin yield. For the first time, we report the SmF of a Fusarium strain used to produce diosgenin through the microbial biotransformation of DZW. A practical diosgenin production process was established for the first time for Fusarium strains. This bioprocess is acid-free and wastewater-free, providing a promising environmentally friendly alternative to diosgenin production in industrial applications. The information provided in the current study may be applicable to produce diosgenin in SmF by other endophytic fungi and lays a solid foundation for endophytic fungi to produce natural products.
Collapse
Affiliation(s)
- Wancang Liu
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| | - Haibo Xiang
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
- State
Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life
Sciences, Hubei University, 368 You Yi Road, Wuhan, Hubei 430062, P. R. China
| | - Tao Zhang
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| | - Xu Pang
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| | - Jing Su
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| | - Hongyu Liu
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| | - Baiping Ma
- Institute
of Radiation Medicine, 27 Tai Ping Road, Beijing 100850, P. R. China
| | - Liyan Yu
- Institute
of Medicinal Biotechnology, Chinese Academy
of Medical Sciences & Peking Union Medical College, 2 Nanwei Road, Beijing 100050, P. R.
China
| |
Collapse
|
5
|
Liu W, Xiang H, Zhang T, Pang X, Su J, Liu H, Ma B, Yu L. Development of a New High-Cell Density Fermentation Strategy for Enhanced Production of a Fungus β-Glucosidase in Pichia pastoris. Front Microbiol 2020; 11:1988. [PMID: 32973717 PMCID: PMC7472535 DOI: 10.3389/fmicb.2020.01988] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
Traditional diosgenin manufacturing process has led to serious environmental contamination and wastewater. Clean processes are needed that can alternate the diosgenin production. The β-glucosidase FBG1, cloned from Fusarium sp. CPCC 400709, can biotransform trillin and produce diosgenin. In this study, Pichia pastoris production of recombinant FBG1 was implemented to investigate various conventional methanol induction strategies, mainly including DO-stat (constant induction DO), μ-stat (constant exponential feeding rate) and m-stat (constant methanol concentration). The new co-stat strategy combining μ-stat and m-stat strategies was then developed for enhanced FBG1 production during fed-batch high-cell density fermentation on methanol. The fermentation process was characterized with respect to cell growth, methanol consumption, FBG1 production and methanol metabolism. It was found that large amounts of formaldehyde were released by the enhanced dissimilation pathway when the co-stat strategy was implemented, and therefore the energy generation was enhanced because of improved methanol metabolism. Using co-stat feeding, the highest volumetric activity reached ∼89 × 104 U/L, with the maximum specific activity of ∼90 × 102 U/g. After 108 h induction, the highest volumetric production reached ∼403 mg/L, which was ∼91, 154, and 183 mg/L higher than the maximal production obtained at m-stat, μ-stat, and DO-stat strategies, respectively. FBG1 is the first P. pastoris produced recombinant enzyme for diosgenin production through the biotransformation of trillin. Moreover, this newly developed co-stat induction strategy represents the highest expression of FBG1 in P. pastoris, and the strategy can be used to produce FBG1 from similar Pichia strains harboring Fbg1 gene, which lays solid foundation for clean and sustainable production of diosgenin. The current work provides unique information on cell growth, substrate metabolism and protein biosynthesis for enhanced β-glucosidase production using a P. pastoris strain under controlled fermentation conditions. This information may be applicable for expression of similar proteins from P. pastoris strains.
Collapse
Affiliation(s)
- Wancang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haibo Xiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Tao Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xu Pang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jing Su
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hongyu Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Baiping Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Liyan Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Liu W, Zhou F, Xia D, Shiloach J. Expression of multidrug transporter P-glycoprotein in Pichia pastoris affects the host's methanol metabolism. Microb Biotechnol 2019; 12:1226-1236. [PMID: 31131547 PMCID: PMC6801151 DOI: 10.1111/1751-7915.13420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/05/2022] Open
Abstract
Pichia pastoris KM71H (MutS ) is an efficient producer of hard-to-express proteins such as the membrane protein P-glycoprotein (Pgp), an ATP-powered efflux pump which is expressed properly, but at very low concentration, using the conventional induction strategy. Evaluation of different induction strategies indicated that it was possible to increase Pgp expression by inducing the culture with 20% media containing 2.5% methanol. By quantifying methanol, formaldehyde, hydrogen peroxide and formate, and by measuring alcohol oxidase, catalase, formaldehyde dehydrogenase, formate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenases, it was possible to correlate Pgp expression to the induction strategy. Inducing the culture by adding methanol with fresh media was associated with decreases in formaldehyde and hydrogen peroxide, and increases in formaldehyde dehydrogenase, formate dehydrogenase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenases. At these conditions, Pgp expression was 1400-fold higher, an indication that Pgp expression is affected by increases in formaldehyde and hydrogen peroxide. It is possible that Pgp is responsible for this behaviour, since the increased metabolite concentrations and decreased enzymatic activities were not observed when parental Pichia was subjected to the same growth conditions. This report adds information on methanol metabolism during expression of Pgp from P. pastoris MutS strain and suggests an expression procedure for hard-to-express proteins from P. pastoris.
Collapse
Affiliation(s)
- Wan‐cang Liu
- Biotechnology Core LaboratoryNational Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)National Institutes of Health (NIH)BethesdaMD20892USA
| | - Fei Zhou
- Laboratory of Cell BiologyCenter for Cancer Research (CCR)National Cancer Institute (NCI)National Institutes of Health (NIH)BethesdaMD20892USA
| | - Di Xia
- Laboratory of Cell BiologyCenter for Cancer Research (CCR)National Cancer Institute (NCI)National Institutes of Health (NIH)BethesdaMD20892USA
| | - Joseph Shiloach
- Biotechnology Core LaboratoryNational Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)National Institutes of Health (NIH)BethesdaMD20892USA
| |
Collapse
|
7
|
Chen JJ, Liang X, Wang F, Wen YH, Chen TJ, Liu WC, Gong T, Yang JL, Zhu P. Combinatorial mutation on the β-glycosidase specific to 7- β-xylosyltaxanes and increasing the mutated enzyme production by engineering the recombinant yeast. Acta Pharm Sin B 2019; 9:626-638. [PMID: 31193781 PMCID: PMC6542770 DOI: 10.1016/j.apsb.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/08/2018] [Accepted: 11/18/2018] [Indexed: 11/20/2022] Open
Abstract
Taxol is a “blockbuster” antitumor drug produced by Taxus species with extremely low amount, while its analogue 7-β-xylosyl-10-deacetyltaxol is generally much higher in the plants. Both the fungal enzymes LXYL-P1−1 and LXYL-P1−2 can convert 7-β-xylosyl-10-deacetyltaxol into 10-deacetyltaxol for Taxol semi-synthesis. Of them, LXYL-P1−2 is twice more active than LXYL-P1−1, but there are only 11 significantly different amino acids in terms of the polarity and acidic-basic properties between them. In this study, single and multiple site-directed mutations at the 11 sites from LXYL-P1−1 to LXYL-P1−2 were performed to define the amino acids with upward bias in activities and to acquire variants with improved catalytic properties. Among all the 17 mutants, E12 (A72T/V91S) was the most active and even displayed 2.8- and 3-fold higher than LXYL-P1−2 on β-xylosidase and β-glucosidase activities. The possible mechanism for such improvement was proposed by homology modeling and molecular docking between E12 and 7-β-xylosyl-10-deacetyltaxol. The recombinant yeast GS115-P1E12-7 was constructed by introducing variant E12, the molecular chaperone gene pdi and the bacterial hemoglobin gene vhb. This engineered yeast rendered 4 times higher biomass enzyme activity than GS115-3.5K-P1−2 that had been used for demo-scale fermentation. Thus, GS115-P1E12-7 becomes a promising candidate to replace GS115-3.5K-P1−2 for industrial purpose.
Collapse
|
8
|
Liu WC, Inwood S, Gong T, Sharma A, Yu LY, Zhu P. Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production. Crit Rev Biotechnol 2019; 39:258-271. [DOI: 10.1080/07388551.2018.1554620] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wan-Cang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Biotechnology, Beijing, P. R. China
| | - Sarah Inwood
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ashish Sharma
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, U.S.A
| | - Li-Yan Yu
- Chinese Academy of Medical Sciences & Peking Union Medical College, Institute of Medicinal Biotechnology, Beijing, P. R. China
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
9
|
Chen JJ, Liang X, Chen TJ, Yang JL, Zhu P. Site-Directed Mutagenesis of a β-Glycoside Hydrolase from Lentinula Edodes. Molecules 2018; 24:E59. [PMID: 30586935 PMCID: PMC6337304 DOI: 10.3390/molecules24010059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/19/2018] [Accepted: 12/23/2018] [Indexed: 12/13/2022] Open
Abstract
The β-glycoside hydrolases (LXYL-P1-1 and LXYL-P1-2) from Lentinula edodes (strain M95.33) can specifically hydrolyze 7-β-xylosyl-10-deacetyltaxol (XDT) to form 10-deacetyltaxol for the semi-synthesis of Taxol. Our previous study showed that both the I368T mutation in LXYL-P1-1 and the T368E mutation in LXYL-P1-2 could increase the enzyme activity, which prompted us to investigate the effect of the I368E mutation on LXYL-P1-1 activity. In this study, the β-xylosidase and β-glucosidase activities of LXYL-P1-1I368E were 1.5 and 2.2 times higher than those of LXYL-P1-1. Most importantly, combination of I368E and V91S exerted the cumulative effects on the improvement of the enzyme activities and catalytic efficiency. The β-xylosidase and β-glucosidase activities of the double mutant LXYL-P1-1V91S/I368E were 3.2 and 1.7-fold higher than those of LXYL-P1-1I368E. Similarly, the catalytic efficiency of LXYL-P1-1V91S/I368E on 7-β-xylosyl-10-deacetyltaxol was 1.8-fold higher than that of LXYL-P1-1I368E due to the dramatic increase in the substrate affinity. Molecular docking results suggest that the V91S and I368E mutation might positively promote the interaction between enzyme and substrate through altering the loop conformation near XDT and increasing the hydrogen bonds among Ser91, Trp301, and XDT. This study lays the foundation for exploring the relationship between the structure and function of the β-glycoside hydrolases.
Collapse
Affiliation(s)
- Jing-Jing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| | - Xiao Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| | - Tian-Jiao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| | - Jin-Ling Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.
| |
Collapse
|
10
|
Vidal-Limon HR, Almagro L, Moyano E, Palazon J, Pedreño MA, Cusido RM. Perfluorodecalins and Hexenol as Inducers of Secondary Metabolism in Taxus media and Vitis vinifera Cell Cultures. FRONTIERS IN PLANT SCIENCE 2018; 9:335. [PMID: 29616056 PMCID: PMC5865277 DOI: 10.3389/fpls.2018.00335] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/28/2018] [Indexed: 05/14/2023]
Abstract
Plant cell cultures constitute a potentially efficient and sustainable tool for the production of high added-value bioactive compounds. However, due to the inherent restrictions in the expression of secondary metabolism, to date the yields obtained have generally been low. Plant cell culture elicitation can boost production, sometimes leading to dramatic improvements in yield, as well as providing insight into the target biosynthetic pathways and the regulation of the genes involved. Among the secondary compounds successfully being produced in biotechnological platforms are taxanes and trans-resveratrol (t-R). In the current study, perfluorodecalins (PFDs) and hexenol (Hex) were tested for the first time with Taxus media and Vitis vinifera cell cultures to explore their effect on plant cell growth and secondary metabolite production, either alone or combined with other elicitors already established as highly effective, such as methyl jasmonate (MeJa), coronatine (Coro) or randomly methylated β-cyclodextrins (β-CDs). The total taxane content at the peak of production in T. media cell cultures treated with PFDs together with Coro plus β-CDs was 3.3-fold higher than in the control, whereas the t-R production in MeJa and β-CD-treated V. vinifera cell cultures increased 552.6-fold compared to the extremely low-yielding control. Hex was ineffective as an elicitor in V. vinifera cell cultures, and in T. media cell suspensions it blocked the taxol production but induced a clear enhancement of baccatin III. Regarding biosynthetic gene expression, a strong positive relationship was observed between the transcript level of targeted genes and taxol production in the T. media cell cultures, but not with t-R production in the elicited V. vinifera cell cultures.
Collapse
Affiliation(s)
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Elisabeth Moyano
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Javier Palazon
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
| | - Maria A. Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Rosa M. Cusido
- Secció de Fisiologia Vegetal, Facultat de Farmacia, Universitat de Barcelona, Barcelona, Spain
- *Correspondence: Rosa M. Cusido,
| |
Collapse
|
11
|
Improving the Catalytic Property of the Glycoside Hydrolase LXYL-P1-2 by Directed Evolution. Molecules 2017; 22:molecules22122133. [PMID: 29207529 PMCID: PMC6149855 DOI: 10.3390/molecules22122133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/01/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022] Open
Abstract
The glycoside hydrolase LXYL-P1–2 from Lentinula edodes can specifically hydrolyze 7-β-xylosyltaxanes to form 7-β-hydroxyltaxanes for the semi-synthesis of paclitaxel. In order to improve the catalytic properties of the enzyme, we performed error-prone PCR to construct the random mutant library of LXYL-P1–2 and used the methanol-induced plate method to screen the mutants with improved catalytic properties. Two variants, LXYL-P1–2-EP1 (EP1, S91D mutation) and LXYL-P1–2-EP2 (EP2, T368E mutation), were obtained from the library and exhibited 17% and 47% increases in their catalytic efficiencies on 7-β-xylosyl-10-deacetyltaxol. Meanwhile, compared with LXYL-P1–2, EP1 and EP2 showed elevated stabilities in the range of pH ≥ 6 conditions. After treatment at pH 12 for 48 h, EP1 and EP2 retained 77% and 63% activities, respectively, while the wild-type only retained 33% activity under the same condition. Molecular docking results revealed that the S91D mutation led to a shorter distance between the R-chain and the substrate, while the T368E mutation increased negative charge at the surface of the enzyme, and may introduce alterations of the loop near the active pocket, both of which may result in improved stabilities and catalytic activities of enzymes. This study provides a practical directed evolution method for exploring catalytically improved glycoside hydrolase.
Collapse
|
12
|
Wang QH, Liang L, Liu WC, Gong T, Chen JJ, Hou Q, Yang JL, Zhu P. Enhancement of recombinant BmK AngM1 production in Pichia pastoris by regulating gene dosage, co-expressing with chaperones and fermenting in fed-batch mode. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:581-594. [PMID: 28376654 DOI: 10.1080/10286020.2017.1311872] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The scorpion peptide BmK AngM1 was reported to exhibit evident analgesic effect, but its yield by extraction from scorpion venom limits the research and application. The heterologous expression of BmK AngM1 was achieved in Pichia pastoris in our previous study. In order to realize high-level expression of recombinant BmK AngM1 (rBmK AngM1), the gene dosage of BmK AngM1 was optimized in engineered strains. The yield of rBmK AngM1 in the four-copy strain reached up to 100 mg/L, which was further enhanced to 190 mg/L by co-expressing with chaperones of PDI, BiP, and HAC1. Moreover, the yield of rBmK AngM1 was up to 1200 mg/L by high-density fermentation in 10 L fermenter. Finally, 360 mg rBmK AngM1 was purified from 1 L cultures by a two-step purification method. The efficient and convenient techniques presented in this study could facilitate further scale-up for industrial production of rBmK AngM1.
Collapse
Affiliation(s)
- Qing-Hua Wang
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
- b Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Lan Liang
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
- b Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Wan-Cang Liu
- c Institute of Medicinal Biotechnology , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Ting Gong
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
- b Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Jing-Jing Chen
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
- b Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Qi Hou
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
- b Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Jin-Ling Yang
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
- b Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| | - Ping Zhu
- a State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
- b Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica , Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100050 , China
| |
Collapse
|
13
|
Li BJ, Wang H, Gong T, Chen JJ, Chen TJ, Yang JL, Zhu P. Improving 10-deacetylbaccatin III-10-β-O-acetyltransferase catalytic fitness for Taxol production. Nat Commun 2017; 8:15544. [PMID: 28516951 PMCID: PMC5454391 DOI: 10.1038/ncomms15544] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/06/2017] [Indexed: 01/21/2023] Open
Abstract
The natural concentration of the anticancer drug Taxol is about 0.02% in yew trees, whereas that of its analogue 7-β-xylosyl-10-deacetyltaxol is up to 0.5%. While this compound is not an intermediate in Taxol biosynthetic route, it can be converted into Taxol by de-glycosylation and acetylation. Here, we improve the catalytic efficiency of 10-deacetylbaccatin III-10-O-acetyltransferase (DBAT) of Taxus towards 10-deacetyltaxol, a de-glycosylated derivative of 7-β-xylosyl-10-deacetyltaxol to generate Taxol using mutagenesis. We generate a three-dimensional structure of DBAT and identify its active site using alanine scanning and design a double DBAT mutant (DBATG38R/F301V) with a catalytic efficiency approximately six times higher than that of the wild-type. We combine this mutant with a β-xylosidase to obtain an in vitro one-pot conversion of 7-β-xylosyl-10-deacetyltaxol to Taxol yielding 0.64 mg ml−1 Taxol in 50 ml at 15 h. This approach represents a promising environmentally friendly alternative for Taxol production from an abundant analogue. Taxol is a widely used anticancer drug that is found in very low amounts in the bark of Taxus plants. Here, the authors improve the catalytic fitness of DBAT, an enzyme that catalyses the conversion of tree by products into taxol, enabling the design of an in vitro biochemical systems for taxol production.
Collapse
Affiliation(s)
- Bing-Juan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.,Key Laboratory of Biosynthesis of Natural Products, National Health and Family Planning Commission of PRC, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Hao Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.,Key Laboratory of Biosynthesis of Natural Products, National Health and Family Planning Commission of PRC, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.,Key Laboratory of Biosynthesis of Natural Products, National Health and Family Planning Commission of PRC, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Jing-Jing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.,Key Laboratory of Biosynthesis of Natural Products, National Health and Family Planning Commission of PRC, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Tian-Jiao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.,Key Laboratory of Biosynthesis of Natural Products, National Health and Family Planning Commission of PRC, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Jin-Ling Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.,Key Laboratory of Biosynthesis of Natural Products, National Health and Family Planning Commission of PRC, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China.,Key Laboratory of Biosynthesis of Natural Products, National Health and Family Planning Commission of PRC, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, China
| |
Collapse
|
14
|
Berrios J, Flores MO, Díaz-Barrera A, Altamirano C, Martínez I, Cabrera Z. A comparative study of glycerol and sorbitol as co-substrates in methanol-induced cultures of Pichia pastoris: temperature effect and scale-up simulation. ACTA ACUST UNITED AC 2017; 44:407-411. [DOI: 10.1007/s10295-016-1895-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/22/2016] [Indexed: 11/28/2022]
Abstract
Abstract
The production of recombinant proteins by Pichia pastoris under AOX1 promoter is usually performed using methanol together with either glycerol or sorbitol as co-substrate. Although both co-substrates have been widely used, comparative studies are scarce. In addition, these comparisons have been performed at different specific growth rate (µ) that it is well known that has an important effect on productivity. Thus, the effect of using these co-substrates on the production of Rhyzopus oryzae lipase (ROL) by P. pastoris was compared in continuous cultures growing at the same µ at either 22 or 30 °C. Results show that using glycerol as co-substrate led to higher volumetric productivities, and lower specific and volumetric methanol consumption rates. Scale-up simulation with 10–10,000 L bioreactor sizes indicated that glycerol produced the highest volumetric productivity of ROL with lower aeration requirements. Therefore, glycerol rises as a better option than sorbitol in ROL production.
Collapse
Affiliation(s)
- Julio Berrios
- grid.8170.e 0000000115375962 School of Biochemical Engineering Pontificia Universidad Católica de Valparaíso Av. Brasil 2085 Valparaíso Chile
| | - María-Olga Flores
- grid.8170.e 0000000115375962 School of Biochemical Engineering Pontificia Universidad Católica de Valparaíso Av. Brasil 2085 Valparaíso Chile
| | - Alvaro Díaz-Barrera
- grid.8170.e 0000000115375962 School of Biochemical Engineering Pontificia Universidad Católica de Valparaíso Av. Brasil 2085 Valparaíso Chile
| | - Claudia Altamirano
- grid.8170.e 0000000115375962 School of Biochemical Engineering Pontificia Universidad Católica de Valparaíso Av. Brasil 2085 Valparaíso Chile
| | - Irene Martínez
- grid.8170.e 0000000115375962 School of Biochemical Engineering Pontificia Universidad Católica de Valparaíso Av. Brasil 2085 Valparaíso Chile
| | - Zaida Cabrera
- grid.8170.e 0000000115375962 School of Biochemical Engineering Pontificia Universidad Católica de Valparaíso Av. Brasil 2085 Valparaíso Chile
| |
Collapse
|
15
|
Rosales-Mendoza S, Angulo C, Meza B. Food-Grade Organisms as Vaccine Biofactories and Oral Delivery Vehicles. Trends Biotechnol 2016; 34:124-136. [DOI: 10.1016/j.tibtech.2015.11.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/11/2015] [Accepted: 11/20/2015] [Indexed: 12/26/2022]
|
16
|
Liu WC, Gong T, Wang QH, Liang X, Chen JJ, Zhu P. Scaling-up Fermentation of Pichia pastoris to demonstration-scale using new methanol-feeding strategy and increased air pressure instead of pure oxygen supplement. Sci Rep 2016; 6:18439. [PMID: 26790977 PMCID: PMC4726300 DOI: 10.1038/srep18439] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/17/2015] [Indexed: 01/25/2023] Open
Abstract
Scaling-up of high-cell-density fermentation (HCDF) of Pichia pastoris from the lab or pilot scale to the demonstration scale possesses great significance because the latter is the final technological hurdle in the decision to go commercial. However, related investigations have rarely been reported. In this paper, we study the scaling-up processes of a recombinant P. pastoris from the pilot (10 to 100-L) to the demonstration (1,000-L) scales, which can be used to convert 7-β-xylosyl-10-deacetyltaxol into 10-deacetyltaxol by the β-xylosidase for semi-synthesis of Taxol. We demonstrated that a pure oxygen supplement can be omitted from the HCDF if the super atmospheric pressure was increased from 0.05 to 0.10 ± 0.05 MPa, and we developed a new methanol feeding biomass-stat strategy (0.035 mL/g/h) with 1% dissolved oxygen and 100 g/L initial induction biomass (dry cell weight). The scaling-up was reproducible, and the best results were obtained from the 1,000-L scale, featuring a shorter induction time and the highest enzyme activities and productions, respectively. The specific growth and specific production rates were also determined. This study lays a solid foundation for the commercial preparation of 10-deacetyltaxol through the recombinant yeast. It also provides a successful paradigm for scaling-up HCDF of P. pastoris to the demonstration scale.
Collapse
Affiliation(s)
- Wan-Cang Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P.R. China
| | - Ting Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P.R. China
| | - Qing-Hua Wang
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P.R. China
| | - Xiao Liang
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P.R. China
| | - Jing-Jing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P.R. China
| | - Ping Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P.R. China
- Key Laboratory of Biosynthesis of Natural Products of National Health and Family Planning Commission, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, P.R. China
| |
Collapse
|
17
|
Abstract
The protection and sustainable utilization of natural resources are among the most pressing global problems of the 21st century.
Collapse
Affiliation(s)
- W. C. Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - T. Gong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| | - P. Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences
- Peking Union Medical College
- Beijing 100050
| |
Collapse
|