1
|
Liu YQ, Zheng YL, Xu Y, Liu XY, Xia TY, Zhao QW, Li YQ. A new paradigm for the regulation of A40926B0 biosynthesis. Synth Syst Biotechnol 2025; 10:794-806. [PMID: 40297762 PMCID: PMC12035728 DOI: 10.1016/j.synbio.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Dalbavancin is a novel glycopeptide antibiotic with activity against a broad range of Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA). A40926B0 is the direct precursor of dalbavancin, but the regulatory mechanisms underlying its biosynthesis are not well understood. Additionally, the presence of seven homologs leads to significant metabolic burden, affecting both production and purity of A40926B0. To further reveal the transcriptional regulatory mechanism of A40926B0 biosynthesis in N. gerenzanensis L70, this study employed multiple strategies to explore the regulatory network of its biosynthesis from both intracluster and extracluster aspects. WblA regulates gene expression within and outside the biosynthetic gene cluster (BGC), impacting multiple biosynthetic pathways, and Dbv3, a key regulator in the A40926B0 cluster, positively influences biosynthesis. Using a bottom-up (DNA to protein) regulator mining strategy with the key intra-cluster regulator Dbv3, it was determined that GlnR is also involved in the regulation of secondary metabolism, while BkdR regulates precursor supply. By constructing the combination of GlnR, BkdR and Dbv3 together with the WblA deletion, the regulatory network of A40926B0 was reconstructed, resulting in a 92 % improvement in purity of A40926B0. The objective of this study is to elucidate the regulatory mechanisms governing A40926B0 biosynthesis by constructing a comprehensive, multidimensional model of its regulatory network. The findings of this study serve to enhance our comprehension of A40926B0 biosynthesis and furnish insights into broader strategies for enhancing the production of other natural products and secondary metabolites in industrial microbiology.
Collapse
Affiliation(s)
- Yan-Qiu Liu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Synthetic Biotechnology for Microbial Medicine, Hangzhou, 310058, China
| | - Yi-Lei Zheng
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Synthetic Biotechnology for Microbial Medicine, Hangzhou, 310058, China
| | - Ye Xu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Synthetic Biotechnology for Microbial Medicine, Hangzhou, 310058, China
| | - Xue-Yan Liu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Synthetic Biotechnology for Microbial Medicine, Hangzhou, 310058, China
| | - Tian-Yu Xia
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Synthetic Biotechnology for Microbial Medicine, Hangzhou, 310058, China
| | - Qing-Wei Zhao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Synthetic Biotechnology for Microbial Medicine, Hangzhou, 310058, China
| |
Collapse
|
2
|
Baltz RH. Regulation of daptomycin biosynthesis in Streptomyces roseosporus: new insights from genomic analysis and synthetic biology to accelerate lipopeptide discovery and commercial production. Nat Prod Rep 2024; 41:1895-1914. [PMID: 39279757 DOI: 10.1039/d4np00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Covering 2005-2024Daptomycin is a clinically important antibiotic that treats Gram-positive infections of skin and skin structure, bacteremia, and right-sided endocarditis, including those caused by methicillin-resistant Staphylococcus aureus (MRSA). Daptomycin is now generic, and many companies are involved in manufacturing and commercializing this life-saving medicine. There has been much recent interest in improving the daptomycin fermentation of Streptomyces roseosporus by mutagenesis, metabolic engineering, and synthetic biology methods. The genome sequences of two strains discovered and developed at Eli Lilly and Company, a wild-type low-producer and a high-producer induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) mutagenesis, are available for comparitive studies. DNA sequence analysis of the daptomycin biosynthetic gene clusters (BGCs) from these strains indicates that the high producer has two mutations in a large promoter region that drives the transcription of a giant multicistronic mRNA that includes all nine genes involved in daptomycin biosynthesis. The locations of translational start and stop codons strongly suggest that all nine genes are translationally coupled by overlapping stop and start codons or by 70S ribosome scanning. This report also reviews recent studies on this promoter region that have identified at least ten positive or negative regulatory genes suitable to manipulate by metabolic engineering, synthetic biology and focused mutagenesis for strain improvement. Improvements in daptomycin production will also enable high-level production of novel lipopeptide antibiotics identified by genome mining and combinatorial biosynthesis, and accelerate clinical and commercial development of superior lipopeptide antibiotics.
Collapse
Affiliation(s)
- Richard H Baltz
- CognoGen Biotechnology Consulting, 7757 Uliva Way, Sarasota, FL 34238, USA.
| |
Collapse
|
3
|
Cumsille A, Serna-Cardona N, González V, Claverías F, Undabarrena A, Molina V, Salvà-Serra F, Moore ERB, Cámara B. Exploring the biosynthetic gene clusters in Brevibacterium: a comparative genomic analysis of diversity and distribution. BMC Genomics 2023; 24:622. [PMID: 37858045 PMCID: PMC10588199 DOI: 10.1186/s12864-023-09694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Exploring Brevibacterium strains from various ecosystems may lead to the discovery of new antibiotic-producing strains. Brevibacterium sp. H-BE7, a strain isolated from marine sediments from Northern Patagonia, Chile, had its genome sequenced to study the biosynthetic potential to produce novel natural products within the Brevibacterium genus. The genome sequences of 98 Brevibacterium strains, including strain H-BE7, were selected for a genomic analysis. A phylogenomic cladogram was generated, which divided the Brevibacterium strains into four major clades. A total of 25 strains are potentially unique new species according to Average Nucleotide Identity (ANIb) values. These strains were isolated from various environments, emphasizing the importance of exploring diverse ecosystems to discover the full diversity of Brevibacterium. Pangenome analysis of Brevibacterium strains revealed that only 2.5% of gene clusters are included within the core genome, and most gene clusters occur either as singletons or as cloud genes present in less than ten strains. Brevibacterium strains from various phylogenomic clades exhibit diverse BGCs. Specific groups of BGCs show clade-specific distribution patterns, such as siderophore BGCs and carotenoid-related BGCs. A group of clade IV-A Brevibacterium strains possess a clade-specific Polyketide synthase (PKS) BGCs that connects with phenazine-related BGCs. Within the PKS BGC, five genes, including the biosynthetic PKS gene, participate in the mevalonate pathway and exhibit similarities with the phenazine A BGC. However, additional core biosynthetic phenazine genes were exclusively discovered in nine Brevibacterium strains, primarily isolated from cheese. Evaluating the antibacterial activity of strain H-BE7, it exhibited antimicrobial activity against Salmonella enterica and Listeria monocytogenes. Chemical dereplication identified bioactive compounds, such as 1-methoxyphenazine in the crude extracts of strain H-BE7, which could be responsible of the observed antibacterial activity. While strain H-BE7 lacks the core phenazine biosynthetic genes, it produces 1-methoxyphenazine, indicating the presence of an unknown biosynthetic pathway for this compound. This suggests the existence of alternative biosynthetic pathways or promiscuous enzymes within H-BE7's genome.
Collapse
Affiliation(s)
- Andrés Cumsille
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Néstor Serna-Cardona
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Valentina González
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Fernanda Claverías
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Agustina Undabarrena
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Vania Molina
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Francisco Salvà-Serra
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland and Sahlgrenska Academy, Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Edward R B Moore
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Microbiology, Region Västra Götaland and Sahlgrenska Academy, Culture Collection University of Gothenburg (CCUG), Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
- Microbiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Beatriz Cámara
- Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile.
| |
Collapse
|
4
|
Fang JL, Gao WL, Xu WF, Lyu ZY, Ma L, Luo S, Chen XA, Mao XM, Li YQ. m4C DNA methylation regulates biosynthesis of daptomycin in Streptomyces roseosporus L30. Synth Syst Biotechnol 2022; 7:1013-1023. [PMID: 35801092 PMCID: PMC9240718 DOI: 10.1016/j.synbio.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jiao-Le Fang
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Wen-Li Gao
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Wei-Feng Xu
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Zhong-Yuan Lyu
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Lie Ma
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Shuai Luo
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Xin-Ai Chen
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, 310058, Hangzhou, PR China
- Corresponding author. Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, PR China.
| |
Collapse
|
5
|
Lyu ZY, Bu QT, Fang JL, Zhu CY, Xu WF, Ma L, Gao WL, Chen XA, Li YQ. Improving the Yield and Quality of Daptomycin in Streptomyces roseosporus by Multilevel Metabolic Engineering. Front Microbiol 2022; 13:872397. [PMID: 35509317 PMCID: PMC9058172 DOI: 10.3389/fmicb.2022.872397] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Daptomycin is a cyclic lipopeptide antibiotic with a significant antibacterial action against antibiotic-resistant Gram-positive bacteria. Despite numerous attempts to enhance daptomycin yield throughout the years, the production remains unsatisfactory. This study reports the application of multilevel metabolic engineering strategies in Streptomyces roseosporus to reconstruct high-quality daptomycin overproducing strain L2797-VHb, including precursor engineering (i.e., refactoring kynurenine pathway), regulatory pathway reconstruction (i.e., knocking out negative regulatory genes arpA and phaR), byproduct engineering (i.e., removing pigment), multicopy biosynthetic gene cluster (BGC), and fermentation process engineering (i.e., enhancing O2 supply). The daptomycin titer of L2797-VHb arrived at 113 mg/l with 565% higher comparing the starting strain L2790 (17 mg/l) in shake flasks and was further increased to 786 mg/l in 15 L fermenter. This multilevel metabolic engineering method not only effectively increases daptomycin production, but can also be applied to enhance antibiotic production in other industrial strains.
Collapse
Affiliation(s)
- Zhong-Yuan Lyu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Qing-Ting Bu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Jiao-Le Fang
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Chen-Yang Zhu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Wei-Feng Xu
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Lie Ma
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Wen-Li Gao
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Xin-Ai Chen
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
| | - Yong-Quan Li
- First Affiliated Hospital and Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Provincial Key Laboratory for Microbial Biochemistry and Metabolic Engineering, Hangzhou, China
- *Correspondence: Yong-Quan Li,
| |
Collapse
|
6
|
A novel strategy of gene screen based on multi-omics in Streptomyces roseosporus. Appl Microbiol Biotechnol 2022; 106:3103-3112. [PMID: 35389068 DOI: 10.1007/s00253-022-11904-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/02/2022]
Abstract
Daptomycin is a new lipopeptide antibiotic for treatment of severe infection caused by multi-drug-resistant bacteria, but its production cost remains high currently. Thus, it is very important to improve the fermentation ability of the daptomycin producer Streptomyces roseosporus. Here, we found that the deletion of proteasome in S. roseosporus would result in the loss of ability to produce daptomycin. Therefore, transcriptome and 4D label-free proteome analyses of the proteasome mutant (Δprc) and wild type were carried out, showing 457 differential genes. Further, five genes were screened by integrated crotonylation omics analysis. Among them, two genes (orf04750/orf05959) could significantly promote the daptomycin synthesis by overexpression, and the fermentation yield in shake flask increased by 54% and 76.7%, respectively. By enhancing the crotonylation modification via lysine site mutation (K-Q), the daptomycin production in shake flask was finally increased by 98.8% and 206.3%, respectively. This result proved that the crotonylation modification of appropriate proteins could effectively modulate daptomycin biosynthesis. In summary, we established a novel strategy of gene screen for antibiotic biosynthesis process, which is more convenient than the previous screening method based on pathway-specific regulators. KEY POINTS: • Δprc strain has lost the ability of daptomycin production • Five genes were screened by multi-omics analysis • Two genes (orf04750/orf05959) could promote the daptomycin synthesis by overexpression.
Collapse
|
7
|
Rational engineering strategies for achieving high-yield, high-quality and high-stability of natural product production in actinomycetes. Metab Eng 2021; 67:198-215. [PMID: 34166765 DOI: 10.1016/j.ymben.2021.06.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/30/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022]
Abstract
Actinomycetes are recognized as excellent producers of microbial natural products, which have a wide range of applications, especially in medicine, agriculture and stockbreeding. The three main indexes of industrialization (titer, purity and stability) must be taken into overall consideration in the manufacturing process of natural products. Over the past decades, synthetic biology techniques have expedited the development of industrially competitive strains with excellent performances. Here, we summarize various rational engineering strategies for upgrading the performance of industrial actinomycetes, which include enhancing the yield of natural products, eliminating the by-products and improving the genetic stability of engineered strains. Furthermore, the current challenges and future perspectives for optimizing the industrial strains more systematically through combinatorial engineering strategies are also discussed.
Collapse
|
8
|
Gläser L, Kuhl M, Stegmüller J, Rückert C, Myronovskyi M, Kalinowski J, Luzhetskyy A, Wittmann C. Superior production of heavy pamamycin derivatives using a bkdR deletion mutant of Streptomyces albus J1074/R2. Microb Cell Fact 2021; 20:111. [PMID: 34082758 PMCID: PMC8176718 DOI: 10.1186/s12934-021-01602-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Background Pamamycins are macrodiolides of polyketide origin which form a family of differently large homologues with molecular weights between 579 and 663. They offer promising biological activity against pathogenic fungi and gram-positive bacteria. Admittedly, production titers are very low, and pamamycins are typically formed as crude mixture of mainly smaller derivatives, leaving larger derivatives rather unexplored so far. Therefore, strategies that enable a more efficient production of pamamycins and provide increased fractions of the rare large derivatives are highly desired. Here we took a systems biology approach, integrating transcription profiling by RNA sequencing and intracellular metabolite analysis, to enhance pamamycin production in the heterologous host S. albus J1074/R2. Results Supplemented with l-valine, the recombinant producer S. albus J1074/R2 achieved a threefold increased pamamycin titer of 3.5 mg L−1 and elevated fractions of larger derivatives: Pam 649 was strongly increased, and Pam 663 was newly formed. These beneficial effects were driven by increased availability of intracellular CoA thioesters, the building blocks for the polyketide, resulting from l-valine catabolism. Unfavorably, l-valine impaired growth of the strain, repressed genes of mannitol uptake and glycolysis, and suppressed pamamycin formation, despite the biosynthetic gene cluster was transcriptionally activated, restricting production to the post l-valine phase. A deletion mutant of the transcriptional regulator bkdR, controlling a branched-chain amino acid dehydrogenase complex, revealed decoupled pamamycin biosynthesis. The regulator mutant accumulated the polyketide independent of the nutrient status. Supplemented with l-valine, the novel strain enabled the biosynthesis of pamamycin mixtures with up to 55% of the heavy derivatives Pam 635, Pam 649, and Pam 663: almost 20-fold more than the wild type. Conclusions Our findings open the door to provide rare heavy pamamycins at markedly increased efficiency and facilitate studies to assess their specific biological activities and explore this important polyketide further. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01602-6.
Collapse
Affiliation(s)
- Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Martin Kuhl
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Julian Stegmüller
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Maksym Myronovskyi
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Andriy Luzhetskyy
- Department of Pharmacy, Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
9
|
Gavriilidou A, Mackenzie TA, Sánchez P, Tormo JR, Ingham C, Smidt H, Sipkema D. Bioactivity Screening and Gene-Trait Matching across Marine Sponge-Associated Bacteria. Mar Drugs 2021; 19:75. [PMID: 33573261 PMCID: PMC7912018 DOI: 10.3390/md19020075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/23/2022] Open
Abstract
Marine sponges harbor diverse microbial communities that represent a significant source of natural products. In the present study, extracts of 21 sponge-associated bacteria were screened for their antimicrobial and anticancer activity, and their genomes were mined for secondary metabolite biosynthetic gene clusters (BGCs). Phylogenetic analysis assigned the strains to four major phyla in the sponge microbiome, namely Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Bioassays identified one extract with anti-methicillin-resistant Staphylococcus aureus (MRSA) activity, and more than 70% of the total extracts had a moderate to high cytotoxicity. The most active extracts were derived from the Proteobacteria and Actinobacteria, prominent for producing bioactive substances. The strong bioactivity potential of the aforementioned strains was also evident in the abundance of BGCs, which encoded mainly beta-lactones, bacteriocins, non-ribosomal peptide synthetases (NRPS), terpenes, and siderophores. Gene-trait matching was performed for the most active strains, aiming at linking their biosynthetic potential with the experimental results. Genetic associations were established for the anti-MRSA and cytotoxic phenotypes based on the similarity of the detected BGCs with BGCs encoding natural products with known bioactivity. Overall, our study highlights the significance of combining in vitro and in silico approaches in the search of novel natural products of pharmaceutical interest.
Collapse
Affiliation(s)
- Asimenia Gavriilidou
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (H.S.); (D.S.)
| | - Thomas Andrew Mackenzie
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (T.A.M.); (P.S.); (J.R.T.)
| | - Pilar Sánchez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (T.A.M.); (P.S.); (J.R.T.)
| | - José Ruben Tormo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (T.A.M.); (P.S.); (J.R.T.)
| | | | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (H.S.); (D.S.)
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (H.S.); (D.S.)
| |
Collapse
|
10
|
Yuan Y, Xu QM, Yu SC, Sun HZ, Cheng JS, Yuan YJ. Control of the polymyxin analog ratio by domain swapping in the nonribosomal peptide synthetase of Paenibacillus polymyxa. J Ind Microbiol Biotechnol 2020; 47:551-562. [PMID: 32495197 DOI: 10.1007/s10295-020-02275-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/15/2020] [Indexed: 11/26/2022]
Abstract
Polymyxins are used as the last-line therapy against multidrug-resistant bacteria. However, their further clinical development needs to solve problems related to the presence of heterogeneous analogs, but there is still no platform or methods that can regulate the biosynthesis of polymyxin analogs. In this study, we present an approach to swap domains in the polymyxin gene cluster to regulate the production of different analogs. Following adenylation domain swapping, the proportion of polymyxin B1 increased from 41.36 to 52.90%, while that of B1-1 decreased from 18.25 to 3.09%. The ratio of polymyxin B1 and B3 following starter condensation domain swapping changed from 41.36 and 16.99 to 55.03 and 6.39%, respectively. The two domain-swapping strains produced 62.96% of polymyxin B1, 6.70% of B3 and 3.32% of B1-1. This study also revealed the presence of overflow fluxes between acetoin, 2,3-butanediol and polymyxin. To our best knowledge, this is the first report of engineering the polymyxin synthetase gene cluster in situ to regulate the relative proportions of polymyxin analogs. This research paves a way for regulating lipopeptide analogs and will facilitate the development of novel lipopeptide derivatives.
Collapse
Affiliation(s)
- Ye Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin, 300387, People's Republic of China.
| | - Si-Cen Yu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Hui-Zhong Sun
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| |
Collapse
|
11
|
Lu JY, Zhou K, Huang WT, Zhou P, Yang S, Zhao X, Xie J, Xia L, Ding X. A comprehensive genomic and growth proteomic analysis of antitumor lipopeptide bacillomycin Lb biosynthesis in Bacillus amyloliquefaciens X030. Appl Microbiol Biotechnol 2019; 103:7647-7662. [PMID: 31352508 DOI: 10.1007/s00253-019-10019-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/23/2022]
Abstract
Lipopeptides (such as iturin, fengycin, and surfactin) from Bacillus possess antibacterial, antifungal, and antiviral activities and have important application in agriculture and pharmaceuticals. Although unremitting efforts have been devoted to improve lipopeptide production by designing gene regulatory circuits or optimizing fermentation process, little attention has been paid to utilizing multi-omics for systematically mining core genes and proteins during the bacterial growth cycle. Here, lipopeptide bacillomycin Lb from new Bacillus amyloliquefaciens X030 was isolated and first found to have anticancer activity in various cancer cells (such as SMMC-7721 and MDA-MB-231). A comprehensive genomic and growth proteomic analysis of X030 revealed bacillomycin Lb biosynthetic gene cluster, key enzymes and potential regulatory proteins (PerR, PhoP, CcpA, and CsfB), and novel links between primary metabolism and bacillomycin Lb production in X030. The antitumor activity of the fermentation supernatant supplemented with amino acids (such as glutamic acid) and sucrose was significantly increased, verifying the role of key metabolic switches in the metabolic regulatory network. Quantitative real-time PCR analysis confirmed that 7 differential expressed genes exhibited a positive correlation between changes at transcriptional and translational levels. The study not only will stimulate the deeper and wider antitumor study of lipopeptides but also provide a comprehensive database, which promotes an in-depth analysis of pathways and networks for complex events in lipopeptide biosynthesis and regulation and gives great help in improving the yield of bacillomycin Lb (media optimization, genetic modification, or pathway engineering).
Collapse
Affiliation(s)
- Jiao Yang Lu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Kexuan Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Pengji Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Shuqing Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xiaoli Zhao
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Junyan Xie
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China
| | - Xuezhi Ding
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, 410081, People's Republic of China.
| |
Collapse
|