1
|
Singh A, Chen CW, Patel AK, Dong CD, Singhania RR. Subcritical Water Pretreatment for the Efficient Valorization of Sorghum Distillery Residue for the Biorefinery Platform. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010038. [PMID: 36671609 PMCID: PMC9854917 DOI: 10.3390/bioengineering10010038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022]
Abstract
The depletion of fossil fuels is resulting in an increased energy crisis, which is leading the paradigm shift towards alternative energy resources to overcome the issue. Lignocellulosic biomass or agricultural residue could be utilized to produce energy fuel (bioethanol) as it can resolve the issue of energy crisis and reduce environmental pollution that occurs due to waste generation from agriculture and food industries. A huge amount of sorghum distillery residue (SDR) is produced during the Kaoliang liquor production process, which may cause environmental problems. Therefore, the SDR generated can be utilized to produce bioethanol to meet current energy demands and resolve environmental problems. Using a central composite experimental design, the SDR was subjected to hydrothermal pretreatment. The conditions selected for hydrothermal pretreatment are 155 °C, 170 °C, and 185 °C for 10, 30, and 50 min, respectively. Based on the analysis, 150 °C for 30 min conditions for SDR hydrothermal pretreatment were selected as no dehydration product (Furfural and HMF) was detected in the liquid phase. Therefore, the pretreated slurry obtained using hydrothermal pretreatment at 150 °C for 30 min was subjected to enzymatic hydrolysis at 5% solid loading and 15 FPU/gds. The saccharification yield obtained at 72 h was 75.05 ± 0.5%, and 5.33 g/L glucose concentration. This non-conventional way of enzymatic hydrolysis eliminates the separation and detoxification process, favoring the concept of an economical and easy operational strategy in terms of biorefinery.
Collapse
Affiliation(s)
- Anusuiya Singh
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Cheng-Di Dong
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Correspondence: (C.-D.D.); (R.R.S.)
| | - Reeta Rani Singhania
- Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
- Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
- Correspondence: (C.-D.D.); (R.R.S.)
| |
Collapse
|
2
|
Characterization of a GH5 endoxylanase from Penicillium funiculosum and its synergism with GH16 endo-1,3(4)-glucanase in saccharification of sugarcane bagasse. Sci Rep 2022; 12:17219. [PMID: 36241677 PMCID: PMC9568505 DOI: 10.1038/s41598-022-21529-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/28/2022] [Indexed: 01/06/2023] Open
Abstract
The production of second-generation fuels from lignocellulosic residues such as sugarcane bagasse (SCB) requires the synergistic interaction of key cellulose-degrading enzymes and accessory proteins for their complete deconstruction to useful monomeric sugars. Here, we recombinantly expressed and characterized unknown GH5 xylanase from P. funiculosum (PfXyn5) in Pichia pastoris, which was earlier found in our study to be highly implicated in SCB saccharification. The PfXyn5 has a molecular mass of ~ 55 kDa and showed broad activity against a range of substrates like xylan, xyloglucan, laminarin and p-nitrophenyl-β-D-xylopyranoside, with the highest specific activity of 0.7 U/mg against xylan at pH 4.5 and 50 °C. Analysis of the degradation products of xylan and SCB by PfXyn5 showed significant production of xylooligosaccharides (XOS) with a degree of polymerization (DP) ranging from two (DP2) to six (DP6), thus, suggesting that the PfXyn5 is an endo-acting enzyme. The enzyme synergistically improved the saccharification of SCB when combined with the crude cellulase cocktail of P. funiculosum with a degree of synergism up to 1.32. The PfXyn5 was further expressed individually and simultaneously with a notable GH16 endoglucanase (PfEgl16) in a catabolite-derepressed strain of P. funiculosum, PfMig188, and the saccharification efficiency of the secretomes from the resulting transformants were investigated on SCB. The secretome of PfMig188 overexpressing Xyn5 or Egl16 increased the saccharification of SCB by 9% or 7%, respectively, over the secretome of PfMig188, while the secretome of dual transformant increased SCB saccharification by ~ 15% at the same minimal protein concentration.
Collapse
|
3
|
Evaluation of endoglucanase and xylanase production by Aspergillus tamarii cultivated in agro-industrial lignocellulosic biomasses. Folia Microbiol (Praha) 2022; 67:721-732. [PMID: 35451731 DOI: 10.1007/s12223-022-00971-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/06/2022] [Indexed: 11/04/2022]
Abstract
To better understand the production of enzymes of industrial interest from microorganisms with biotechnological potential using lignocellulosic biomass, we evaluated the production of endoglucanase and xylanase from Aspergillus tamarii. CAZymes domains were evaluated in the genome, and a screening of the enzymatic potential of A. tamarii in various agricultural biomasses was done. The enzymatic profile could be associated with the biomass complexity, with increased biomass recalcitrance yielding higher activity. A time-course profile defined 48 h of cultivation as the best period for cultivating A. tamarii in sugarcane bagasse reached 12.05 IU/mg for endoglucanase and 74.86 IU/mg for xylanase. Using 0.1% (w/v) tryptone as the only nitrogen source and 12 µmol/L CuSO4 addition had an overall positive effect on the enzymatic activity and protein production. A 22 factorial central composite design was used then to investigate the simultaneous influence of tryptone and CuSO4 on enzyme activity. Tryptone strongly affected enzymatic activity, decreasing endoglucanase activity but increasing xylanase activity. CuSO4 supplementation was advantageous for endoglucanases, increasing their activity, and it had a negative effect on xylanases. But overall, the experimental design increased the enzymatic activity of all biomasses used. For the clean cotton residue, the experimental design was able to reach the highest enzyme activity for endoglucanase and xylanase, with 1.195 IU/mL and 6.353 IU/mL, respectively. More experimental studies are required to investigate how the biomass induction effect impacts enzyme production.
Collapse
|
4
|
Hamann PRV, de M B Silva L, Gomes TC, Noronha EF. Assembling mini-xylanosomes with Clostridium thermocellum XynA, and their properties in lignocellulose deconstruction. Enzyme Microb Technol 2021; 150:109887. [PMID: 34489040 DOI: 10.1016/j.enzmictec.2021.109887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 12/01/2022]
Abstract
Lignocellulose is a prominent source of carbohydrates to be used in biorefineries. One of the main challenges associated with its use is the low yields obtained during enzymatic hydrolysis, as well as the high cost associate with enzyme acquisition. Despite the great attention in using the fraction composed by hexoses, nowadays, there is a growing interest in enzymatic blends to deconstruct the pentose-rich fraction. Among the organisms studied as a source of enzymes to lignocellulose deconstruction, the anaerobic bacterium Clostridium thermocellum stands out. Most of the remarkable performance of C. thermocellum in degrading cellulose is related to its capacity to assemble enzymes into well-organized enzymatic complexes, cellulosomes. A mini-version of a cellulosome was designed in the present study, using the xylanase XynA and the N-terminus portion of scaffolding protein, mCipA, harboring one CBM3 and two cohesin I domains. The formed mini-xylanosome displayed maximum activity between 60 and 70 °C in a pH range from 6 to 8. Although biochemical properties of complexed/non-complexed enzymes were similar, the formed xylanosome displayed higher hydrolysis at 60 and 70 °C for alkali-treated sugarcane bagasse. Lignocellulose deconstruction using fungal secretome and the mini-xylanosome resulted in higher d-glucose yield, and the addition of the mCipA scaffolding protein enhanced cellulose deconstruction when coupled with fungal enzymes. Results obtained in this study demonstrated that the assembling of xylanases into mini-xylanosomes could improve sugarcane deconstruction, and the mCipA protein can work as a cellulose degradation enhancer.
Collapse
Affiliation(s)
- Pedro R V Hamann
- University of Brasilia, Cell Biology Department, Enzymology Laboratory, Brazil.
| | - Luísa de M B Silva
- University of Brasilia, Cell Biology Department, Enzymology Laboratory, Brazil
| | - Tainah C Gomes
- University of Brasilia, Cell Biology Department, Enzymology Laboratory, Brazil
| | - Eliane F Noronha
- University of Brasilia, Cell Biology Department, Enzymology Laboratory, Brazil.
| |
Collapse
|
5
|
Ogunyewo OA, Upadhyay P, Rajacharya GH, Okereke OE, Faas L, Gómez LD, McQueen-Mason SJ, Yazdani SS. Accessory enzymes of hypercellulolytic Penicillium funiculosum facilitate complete saccharification of sugarcane bagasse. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:171. [PMID: 34446097 PMCID: PMC8394629 DOI: 10.1186/s13068-021-02020-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/15/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Sugarcane bagasse (SCB) is an abundant feedstock for second-generation bioethanol production. This complex biomass requires an array of carbohydrate active enzymes (CAZymes), mostly from filamentous fungi, for its deconstruction to monomeric sugars for the production of value-added fuels and chemicals. In this study, we evaluated the repertoire of proteins in the secretome of a catabolite repressor-deficient strain of Penicillium funiculosum, PfMig188, in response to SCB induction and examined their role in the saccharification of SCB. RESULTS A systematic approach was developed for the cultivation of the fungus with the aim of producing and understanding arrays of enzymes tailored for saccharification of SCB. To achieve this, the fungus was grown in media supplemented with different concentrations of pretreated SCB (0-45 g/L). The profile of secreted proteins was characterized by enzyme activity assays and liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 280 proteins were identified in the secretome of PfMig188, 46% of them being clearly identified as CAZymes. Modulation of the cultivation media with SCB up to 15 g/L led to sequential enhancement in the secretion of hemicellulases and cell wall-modifying enzymes, including endo-β-1,3(4)-glucanase (GH16), endo-α-1,3-glucanase (GH71), xylanase (GH30), β-xylosidase (GH5), β-1,3-galactosidase (GH43) and cutinase (CE5). There was ~ 122% and 60% increases in β-xylosidase and cutinase activities, respectively. There was also a 36% increase in activities towards mixed-linked glucans. Induction of these enzymes in the secretome improved the saccharification performance to 98% (~ 20% increase over control), suggesting their synergy with core cellulases in accessing the recalcitrant region of SCB. CONCLUSION Our findings provide an insight into the enzyme system of PfMig188 for degradation of complex biomass such as SCB and highlight the importance of adding SCB to the culture medium to optimize the secretion of enzymes specific for the saccharification of sugarcane bagasse.
Collapse
Affiliation(s)
- Olusola A Ogunyewo
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Pooja Upadhyay
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Girish H Rajacharya
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Omoaruemike E Okereke
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- Biotechnology Advanced Research Centre, Sheda Science and Technology Complex (SHESTCO), Abuja, Nigeria
| | - Laura Faas
- Department of Biology, Centre for Novel Agricultural Products, CNAP, University of York, York, YO10 5DD, UK
| | - Leonardo D Gómez
- Department of Biology, Centre for Novel Agricultural Products, CNAP, University of York, York, YO10 5DD, UK
| | - Simon J McQueen-Mason
- Department of Biology, Centre for Novel Agricultural Products, CNAP, University of York, York, YO10 5DD, UK
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
- DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| |
Collapse
|