1
|
Ji A, Zou D, Ma A, Wei X. Rational design of DAHP synthase and prephenate dehydrogenase for metabolic engineering of Bacillus amyloliquefaciens to produce L-tyrosine. Int J Biol Macromol 2025; 307:142076. [PMID: 40090641 DOI: 10.1016/j.ijbiomac.2025.142076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/02/2025] [Accepted: 03/11/2025] [Indexed: 03/18/2025]
Abstract
The rational design of enzymes represents a critical strategy for achieving efficient and sustainable biocatalysis. In this study, enzyme evolution guided by rational design was utilized to engineer two key enzymes, DAHP synthase (AroA) and prephenate dehydrogenase (TyrA), within the biosynthetic pathway of L-tyrosine. The beneficial mutants AroAR27A/K38A and TyrAI309A/E330V were identified, leading to a 102 % and 105 % increase in L-tyrosine yield, respectively. Molecular dynamics simulations further explained the possible mechanism underlying their improved catalytic efficiency. Co-expression of these two mutant genes resulted in a significant increase in L-tyrosine yield. Additionally, modifications in the branching metabolic pathways, which altered both material and energy flux, further enhanced L-tyrosine production. Ultimately, the L-tyrosine yield (0.14 g/g) from xylose was much higher than that from glucose, and the final L-tyrosine titer (9.39 g/L) and productivity (0.26 g/(L·h)) were achieved through fermentation optimization in shake flasks. This represents the highest reported yield in shake flasks. The strategies described here will contribute to the development of microbial strains for the efficient production of L-tyrosine from sustainable biomass resources.
Collapse
Affiliation(s)
- Anying Ji
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dian Zou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aimin Ma
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuetuan Wei
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
2
|
Wei LF, Wang YX, Li Z, Pan H, Xiao Y, Sun R, Zhao H, An TT. Combination of atmospheric and room temperature plasma and ribosome engineering techniques to enhance the antifungal activity of Bacillus megaterium L2 against Sclerotium rolfsii. PEST MANAGEMENT SCIENCE 2025; 81:1204-1217. [PMID: 39540329 DOI: 10.1002/ps.8519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/30/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Sclerotium rolfsii is an extremely destructive phytopathogenic fungus that causes significant economic losses. Biocontrol strategies utilizing antagonistic microorganisms present a promising alternative for controlling plant pathogens. Bacillus megaterium L2 has been identified as a potential microbial biocontrol agent in our previous study; however, its efficacy in controlling pathogens has yet to meet current demands. This study aims to enhance the antifungal activity of strain L2 against S. rolfsii R-67 through a two-round mutagenesis strategy and to preliminarily investigate the mutagenesis mechanism of the high antifungal activity mutant. RESULTS We obtained mutant Dr-77 with the strongest antifungal activity against R-67, and its cell-free supernatant significantly reduced the infection potential of R-67 to Amorphophallus konjac corms, which may be attributed to the antimicrobial compound phenylacetic acid (PAA), and PAA content in Dr-77 (5.78 mg/mL) was 28.90 times higher than original strain L2. This compound exhibited strong antifungal ability against R-67, with a half maximal effective concentration (EC50) value of 0.475 mg/mL, significantly inhibiting mycelial growth and destroying the ultrastructure of R-67 at EC50 value. Notably, PAA also exhibited broad-spectrum antifungal activity against six phytopathogens at EC50 value. Moreover, genome analysis revealed nine different gene mutations, including those involved in PAA biosynthesis, and the activities of prephenate dehydratase (PheA) and phenylacetaldehyde dehydrogenase (ALDH) in PAA biosynthesis pathway were significantly increased. CONCLUSION These results suggest that the elevated PAA content is a primary factor contributing to the enhanced antifungal activity of Dr-77, and that this mutagenesis strategy offers valuable guidance for the breeding of functional microbial resources. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Long-Feng Wei
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Yong-Xin Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Zhu Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guiyang, China
| | - Hang Pan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Yang Xiao
- Institution of Supervision and Inspection Product Quality of Guizhou Province, Guiyang, China
| | - Ran Sun
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Hao Zhao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| | - Tao-Tao An
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Yu S, Li Y, Shi G, Xu S, Zhang L, Ding Z. Characterization of a novel D-sorbitol dehydrogenase from Faunimonas pinastri A52C2. Appl Microbiol Biotechnol 2025; 109:25. [PMID: 39869196 PMCID: PMC11772468 DOI: 10.1007/s00253-024-13381-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/28/2025]
Abstract
The enzyme D-sorbitol dehydrogenase (SLDH) facilitates the conversion of D-sorbitol to L-sorbose. While current knowledge of this enzyme class predominantly centers on Gluconobacter oxydans, the catalytic properties of enzymes from alternative sources, particularly their substrate specificity and coenzyme dependency, remain ambiguous. In this investigation, we conducted BLASTp analysis and screened out a novel SLDH (Fpsldh) from Faunimonas pinastri A52C2. The SLDH was then identified and characterized. Analysis of the purified enzyme revealed its dependence on NAD+/NADP+ and its specificity for L-sorbose production. Fpsldh demonstrated sustained catalytic activity over temperatures ranging from 27 to 37 ℃, with optimal performance observed at pH 8.0-10.0, and it exhibited no requirement for metal ions for activation. The Km of Fpsldh is 7.51 mM. Furthermore, a Bacillus licheniformis host expressing Fpsldh was engineered. The resultant whole-cell catalyst yielded 13.19 g/L of L-sorbose after 33.6 h of transformation, obviating the need for exogenous cofactors. This study enhances our understanding of the catalytic properties of the SLDH family and introduces a novel method for L-sorbose production, a compound of considerable commercial value. KEY POINTS: •New D-sorbitol dehydrogenase from Faunimonas pinastri A52C2 is characterized. •Fpsldh is not PQQ but NAD+/NADP+-dependent. •Bacillus licheniformis expressing Fpsldh can produce 13.19 g/L L-sorbose within 33.6 h.
Collapse
Affiliation(s)
- Shuangshuang Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
4
|
Hunt BC, Brix V, Vath J, Guterman LB, Taddei SM, Deka N, Learman BS, Brauer AL, Shen S, Qu J, Armbruster CE. Metabolic interplay between Proteus mirabilis and Enterococcus faecalis facilitates polymicrobial biofilm formation and invasive disease. mBio 2024; 15:e0216424. [PMID: 39475232 PMCID: PMC11640290 DOI: 10.1128/mbio.02164-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/09/2024] [Indexed: 11/06/2024] Open
Abstract
Biofilms play an important role in the development and pathogenesis of catheter-associated urinary tract infection (CAUTI). Proteus mirabilis and Enterococcus faecalis are common CAUTI pathogens that persistently co-colonize the catheterized urinary tract and form biofilms with increased biomass and antibiotic resistance. In this study, we uncover the metabolic interplay that drives biofilm enhancement and examine the contribution to CAUTI severity. Through compositional and proteomic biofilm analyses, we determined that the increase in biofilm biomass stems from an increase in the protein fraction of the polymicrobial biofilm. We further observed an enrichment in proteins associated with ornithine and arginine metabolism in polymicrobial biofilms compared with single-species biofilms. We show that arginine/ornithine antiport by E. faecalis promotes arginine biosynthesis and metabolism in P. mirabilis, ultimately driving the increase in polymicrobial biofilm protein content without affecting viability of either species. We further show that disrupting E. faecalis ornithine antiport alters the metabolic profile of polymicrobial biofilms and prevents enhancement, and this defect was complemented by supplementation with exogenous ornithine. In a murine model of CAUTI, ornithine antiport did not contribute to E. faecalis colonization but was required for the increased incidence of urinary stone formation and bacteremia that occurs during polymicrobial CAUTI with P. mirabilis. Thus, disrupting metabolic interplay between common co-colonizing species may represent a viable strategy for reducing risk of bacteremia.IMPORTANCEChronic infections often involve the formation of antibiotic-resistant biofilm communities that include multiple different microbes, which pose a challenge for effective treatment. In the catheterized urinary tract, potential pathogens persistently co-colonize for long periods of time and the interactions between them can lead to more severe disease outcomes. In this study, we identified the metabolite L-ornithine as a key mediator of disease-enhancing interactions between two common and challenging pathogens, Enterococcus faecalis and Proteus mirabilis. Disrupting ornithine-mediated interactions may therefore represent a strategy to prevent polymicrobial biofilm formation and decrease risk of severe disease.
Collapse
Affiliation(s)
- Benjamin C. Hunt
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Vitus Brix
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Joseph Vath
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Lauren Beryl Guterman
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Steven M. Taddei
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Namrata Deka
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Brian S. Learman
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Aimee L. Brauer
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Shichen Shen
- Department of
Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences,
State University of New York at
Buffalo, Buffalo, New
York, USA
| | - Jun Qu
- Department of
Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences,
State University of New York at
Buffalo, Buffalo, New
York, USA
- NYS Center of
Excellence in Bioinformatics and Life
Sciences, Buffalo, New
York, USA
| | - Chelsie E. Armbruster
- Department of
Microbiology and Immunology, Jacobs School of Medicine and Biomedical
Sciences, State University of New York at
Buffalo, Buffalo, New
York, USA
| |
Collapse
|
5
|
Sun X, Bi X, Li G, Cui S, Xu X, Liu Y, Li J, Du G, Lv X, Liu L. Combinatorial metabolic engineering of Bacillus subtilis for menaquinone-7 biosynthesis. Biotechnol Bioeng 2024; 121:3338-3350. [PMID: 38965781 DOI: 10.1002/bit.28800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/07/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Menaquinone-7 (MK-7), a form of vitamin K2, supports bone health and prevents arterial calcification. Microbial fermentation for MK-7 production has attracted widespread attention because of its low cost and short production cycles. However, insufficient substrate supply, unbalanced precursor synthesis, and low catalytic efficiency of key enzymes severely limited the efficiency of MK-7 synthesis. In this study, utilizing Bacillus subtilis BSAT01 (with an initial MK-7 titer of 231.0 mg/L) obtained in our previous study, the glycerol metabolism pathway was first enhanced to increase the 3-deoxy-arabino-heptulonate 7-phosphate (DHAP) supply, which led to an increase in MK-7 titer to 259.7 mg/L. Subsequently, a combination of knockout strategies predicted by the genome-scale metabolic model etiBsu1209 was employed to optimize the central carbon metabolism pathway, and the resulting strain showed an increase in MK-7 production from 259.7 to 318.3 mg/L. Finally, model predictions revealed the methylerythritol phosphate pathway as the major restriction pathway, and the pathway flux was increased by heterologous introduction (Introduction of Dxs derived from Escherichia coli) and fusion expression (End-to-end fusion of two enzymes by a linker peptide), resulting in a strain with a titer of 451.0 mg/L in a shake flask and 474.0 mg/L in a 50-L bioreactor. This study achieved efficient MK-7 synthesis in B. subtilis, laying the foundation for large-scale MK-7 bioproduction.
Collapse
Affiliation(s)
- Xian Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Food Laboratory of Zhongyuan, Jiangnan University, Wuxi, China
| | - Xinyu Bi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Guyue Li
- Richen Bioengineering Co., Ltd., Nantong, China
| | - Shixiu Cui
- Jiaxing Institute of Future Food, Jiaxing, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Jiaxing Institute of Future Food, Jiaxing, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Oyebade AO, Taiwo GA, Idowu M, Sidney T, Queiroz O, Adesogan AT, Vyas D, Ogunade IM. Effects of direct-fed microbial supplement on ruminal and plasma metabolome of early-lactation dairy cows: Untargeted metabolomics approach. J Dairy Sci 2024; 107:2556-2571. [PMID: 37939839 DOI: 10.3168/jds.2023-23876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
We examined the effects of 2 multispecies direct-fed microbial (DFM) supplements on ruminal and plasma metabolome of early-lactation dairy cows using a high-coverage untargeted metabolomics approach. A total of 45 multiparous Holstein cows (41 ± 7 DIM) were enrolled for the 14-d pre-experimental and 91-d experimental period and were a subset from a lactation performance study, which used 114 cows. Cows were blocked using pre-experimental energy-corrected milk yield and randomly assigned within each block to 1 of 3 treatments: (1) corn silage-based diet with no DFM supplement (control; CON), (2) basal diet top-dressed with a mixture of Lactobacillus animalis and Propionibacterium freudenreichii at 3 × 109 cfu/d (PRO-A), or (3) basal diet top-dressed with a mixture of L. animalis, P. freudenreichii, Bacillus subtilis, and Bacillus licheniformis at 11.8 × 109 cfu/d (PRO-B). The basal diet was fed ad libitum daily as a TMR at 0600 and 1200 h for a duration of 91 d. Rumen fluid and blood samples were taken on d -3, 28, 49, 70, and 91 and immediately stored at -80°C. Before analysis, ruminal and plasma samples from d 28, 49, 70, and 91 were composited. An in-depth, untargeted metabolome profile of the composite rumen and plasma samples and the d -3 samples was developed by using a chemical isotope labeling/liquid chromatography-mass spectrometry (LC-MS)-based technique. Differentially abundant metabolites (taking into account fold change [FC] values and false discovery rates [FDR]) were identified with a volcano plot. In the rumen, compared with the CON diet, supplemental PRO-A increased (FC ≥1.2; FDR ≤0.05) the relative concentrations of 9 metabolites, including 2-hydroxy-2,4-pentadienoic acid, glutaric acid, quinolinic acid, and shikimic acid, and PRO-B increased relative concentrations of 16 metabolites, including 2-hydroxy-2,4-pentadienoic acid, glutaric acid, 16-hydroxypalmitic acid, and 2 propionate precursors (succinic and methylsuccinic acids). Relative to PRO-A, supplemental PRO-B increased (FC ≥1.2; FDR ≤0.05) relative rumen concentrations of 3 metabolites, 16-hydroxypalmitic acid, indole-3-carboxylic acid, and 5-aminopentanoic acid, but reduced relative rumen concentrations of 13 metabolites, including carnitine, threonic acid, and shikimic acid. Compared with the CON diet, relative concentrations of 13 plasma metabolites, including myxochelin A and glyceraldehyde, were increased (FC ≥1.2; FDR ≤0.05) by PRO-A supplementation, whereas those of 9 plasma metabolites, including 4-(2-aminophenyl)-2,4-dioxobutanoic acid, N-acetylornithine, and S-norlaudanosolin, were reduced (FC ≤0.83; FDR ≤0.05). Supplemental PRO-B increased (FC ≥1.2; FDR ≤0.05) relative concentrations of 9 plasma metabolites, including trans-o-hydroxybenzylidenepyruvic acid and 3-methylsalicylaldehyde, and reduced relative concentrations of 4 plasma metabolites, including β-ethynylserine and kynurenine. Pathway analysis of the differentially abundant metabolites in both rumen and plasma revealed that these metabolites are involved in AA and fatty acid metabolism and have antimicrobial and immune-stimulating properties. The results of this study demonstrated that dietary supplementation with either PRO-A or PRO-B altered the plasma and ruminal metabolome. Notably, ruminal and plasma metabolites involved in the metabolism of AA and fatty acids and those with immunomodulatory properties were altered by either or both of the 2 microbial additives.
Collapse
Affiliation(s)
- A O Oyebade
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - G A Taiwo
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506
| | - Modoluwamu Idowu
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506
| | - T Sidney
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506
| | - O Queiroz
- Chr. Hansen A/S, Animal Health and Nutrition, DK-2970 Hørsholm, Denmark
| | - A T Adesogan
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - D Vyas
- Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611
| | - I M Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV 26506.
| |
Collapse
|
7
|
Ji A, Bao P, Ma A, Wei X. An Efficient Prephenate Dehydrogenase Gene for the Biosynthesis of L-tyrosine: Gene Mining, Sequence Analysis, and Expression Optimization. Foods 2023; 12:3084. [PMID: 37628083 PMCID: PMC10453860 DOI: 10.3390/foods12163084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
L-tyrosine is a key precursor for synthesis of various functional substances, but the microbial production of L-tyrosine faces huge challenges. The development of new microbial chassis cell and gene resource is especially important for the biosynthesis of L-tyrosine. In this study, the optimal host strain Bacillus amyloliquefaciens HZ-12 was firstly selected by detecting the production capacity of L-tyrosine. Subsequently, the recombinant expression of 15 prephenate dehydrogenase genes led to the discovery of the best gene, Bao-tyrA from B. amyloliquefaciens HZ-12. After the overexpression of Bao-tyrA, the L-tyrosine yield of the recombinant strain HZ/P43-Bao-tyrA reach 411 mg/L, increased by 42% compared with the control strain (HZ/pHY300PLK). Moreover, the nucleic acid sequence and deduced amino acid sequence of the gene Bao-tyrA were analyzed, and their conservative sites and catalytic mechanisms were proposed. Finally, the expression of Bao-tyrA was regulated through a promoter and 5'-UTR sequence to obtain the optimal expression elements. Thereby, the maximum L-tyrosine yield of 475 mg/L was obtained from HZ/P43-UTR3-Bao-tyrA. B. amyloliquefaciens was applied for the first time to produce L-tyrosine, and the optimal prephenate dehydrogenase gene Bao-tyrA and corresponding expression elements were obtained. This study provides new microbial host and gene resource for the construction of efficient L-tyrosine chassis cells, and also lays a solid foundation for the production of various functional tyrosine derivatives.
Collapse
Affiliation(s)
- Anying Ji
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.J.); (P.B.); (A.M.)
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Pengfei Bao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.J.); (P.B.); (A.M.)
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Aimin Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.J.); (P.B.); (A.M.)
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Xuetuan Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (A.J.); (P.B.); (A.M.)
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
8
|
Wang JJ, Zhang WW, Guan ZJ, Thakur K, Hu F, Rizwan Khan M, Zhang JG, Wei ZJ. Exploring the effects of the fermentation method on the quality of Lycium barbarum and Polygonatum cyrtonema compound wine based on LC-MS metabolomics. Food Chem 2023; 428:136770. [PMID: 37421664 DOI: 10.1016/j.foodchem.2023.136770] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
This study aimed to examine the effect of fermentation methods on the quality of Lycium barbarum and Polygonatum cyrtonema compound wine (LPW) by combining non-targeted metabolomic approaches with chemometrics and path profiling to determine the chemical and metabolic properties of LPW. The results demonstrated that SRA had higher leaching rates of total phenols and flavonoids, reaching 4.20 ± 0.10 v/v ethanol concentration. According to LC-MS non-targeting genomics, the metabolic profiles of LPW prepared by different mixtures of fermentation methods (Saccharomyces cerevisiae RW; Debaryomyces hansenii AS2.45) of yeast differed significantly. Amino acids, phenylpropanoids, flavonols, etc., were identified as the differential metabolites between different comparison groups. The pathways of tyrosine metabolism, biosynthesis of phenylpropanoids, and metabolism of 2-oxocarboxylic acids enriched 17 distinct metabolites. SRA stimulated the production of tyrosine and imparted a distinctive saucy aroma to the wine samples, providing a novel research concept for the microbial fermentation-based production of tyrosine.
Collapse
Affiliation(s)
- Jing-Jing Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Wang-Wei Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Zi-Jing Guan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Mohammad Rizwan Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China; School of Biological Science and Engineering, Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
9
|
He H, Yu Q, Ding Z, Zhang L, Shi G, Li Y. Biotechnological and food synthetic biology potential of platform strain: Bacillus licheniformis. Synth Syst Biotechnol 2023; 8:281-291. [PMID: 37090063 PMCID: PMC10119484 DOI: 10.1016/j.synbio.2023.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/01/2023] Open
Abstract
Bacillus licheniformis is one of the most characteristic Gram-positive bacteria. Its unique genetic background and safety characteristics make it have important biologic applications in the food industry, including, the biosynthesis of high value-added bioproducts, probiotic functions, biological treatment of wastes derived from food production, etc. In this review, these recent advances are summarized and presented systematically for the first time. In addition, we highlight synthetic biology strategies as a potential driver of developing this strain for wider and more efficient application in the food industry. Finally, we present the current challenges faced and provide our unique perspective on relevant future research directions. In summary, this review will provide an illuminating and comprehensive perspective that will allow an in-depth understanding of B. licheniformis and promote its more effective development in the food industry.
Collapse
|
10
|
Usai G, Cordara A, Re A, Polli MF, Mannino G, Bertea CM, Fino D, Pirri CF, Menin B. Combining metabolite doping and metabolic engineering to improve 2-phenylethanol production by engineered cyanobacteria. Front Bioeng Biotechnol 2022; 10:1005960. [PMID: 36204466 PMCID: PMC9530348 DOI: 10.3389/fbioe.2022.1005960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
2-Phenylethanol (2-PE) is a rose-scented aromatic compound, with broad application in cosmetic, pharmaceutical, food and beverage industries. Many plants naturally synthesize 2-PE via Shikimate Pathway, but its extraction is expensive and low-yielding. Consequently, most 2-PE derives from chemical synthesis, which employs petroleum as feedstock and generates unwanted by products and health issues. The need for "green" processes and the increasing public demand for natural products are pushing biotechnological production systems as promising alternatives. So far, several microorganisms have been investigated and engineered for 2-PE biosynthesis, but a few studies have focused on autotrophic microorganisms. Among them, the prokaryotic cyanobacteria can represent ideal microbial factories thanks to their ability to photosynthetically convert CO2 into valuable compounds, their minimal nutritional requirements, high photosynthetic rate and the availability of genetic and bioinformatics tools. An engineered strain of Synechococcus elongatus PCC 7942 for 2-PE production, i.e., p120, was previously published elsewhere. The strain p120 expresses four heterologous genes for the complete 2-PE synthesis pathway. Here, we developed a combined approach of metabolite doping and metabolic engineering to improve the 2-PE production kinetics of the Synechococcus elongatus PCC 7942 p120 strain. Firstly, the growth and 2-PE productivity performances of the p120 recombinant strain were analyzed to highlight potential metabolic constraints. By implementing a BG11 medium doped with L-phenylalanine, we covered the metabolic burden to which the p120 strain is strongly subjected, when the 2-PE pathway expression is induced. Additionally, we further boosted the carbon flow into the Shikimate Pathway by overexpressing the native Shikimate Kinase in the Synechococcus elongatus PCC 7942 p120 strain (i.e., 2PE_aroK). The combination of these different approaches led to a 2-PE yield of 300 mg/gDW and a maximum 2-PE titer of 285 mg/L, 2.4-fold higher than that reported in literature for the p120 recombinant strain and, to our knowledge, the highest recorded for photosynthetic microorganisms, in photoautotrophic growth condition. Finally, this work provides the basis for further optimization of the process aimed at increasing 2-PE productivity and concentration, and could offer new insights about the use of cyanobacteria as appealing microbial cell factories for the synthesis of aromatic compounds.
Collapse
Affiliation(s)
- Giulia Usai
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology—DISAT, Politecnico di Torino, Turin, Italy
| | - Alessandro Cordara
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Angela Re
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| | - Maria Francesca Polli
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Agricultural, Forest and Food Sciences—DISAFA, University of Turin, Grugliasco, Italy
| | - Giuseppe Mannino
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Cinzia Margherita Bertea
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Debora Fino
- Department of Applied Science and Technology—DISAT, Politecnico di Torino, Turin, Italy
| | - Candido Fabrizio Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
- Department of Applied Science and Technology—DISAT, Politecnico di Torino, Turin, Italy
| | - Barbara Menin
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, Turin, Italy
| |
Collapse
|
11
|
Wu Z, Li Y, Xu Y, Zhang Y, Tao G, Zhang L, Shi G. Transcriptome Analysis of Bacillus licheniformis for Improving Bacitracin Production. ACS Synth Biol 2022; 11:1325-1335. [PMID: 35175736 DOI: 10.1021/acssynbio.1c00593] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study aims to find the targets that may influence the production of bacitracin based on RNA sequencing in Bacillus licheniformis. Transcriptional profiling revealed that (i) the expression of the bacT gene, encoding a type II thioesterase (TEIIbac), was positively correlated with bacitracin production and (ii) the oxygen uptake exhibited significant influence on precursor synthesis. The verified experiments showed that the overexpression of TEIIbac with an endogenous promoter increased the bacitracin A titer by 37.50%. Furthermore, the increase of oxygen availability through Vitreoscilla hemoglobin (VHb) expression increased the bacitracin A titer by 126.67% under oxygen-restricted conditions. From the transcriptome perspective, the results of this paper demonstrate that TEIIbac and oxygen supply are crucial to bacitracin production. This study also provides insights into the construction of chassis cells for the industrial production of secondary metabolites with a preference for aerobic conditions.
Collapse
Affiliation(s)
- Zhiyong Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Yinbiao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Guanjun Tao
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, P.R. China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
12
|
Xu Y, Li Y, Wu Z, Lu Y, Tao G, Zhang L, Ding Z, Shi G. Combining Precursor-Directed Engineering with Modular Designing: An Effective Strategy for De Novo Biosynthesis of l-DOPA in Bacillus licheniformis. ACS Synth Biol 2022; 11:700-712. [PMID: 35076224 DOI: 10.1021/acssynbio.1c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-Hydroxy-l-tyrosine (l-DOPA) is a promising drug for treating Parkinson's disease. Tyrosine hydroxylase catalyzes the microbial synthesis of l-DOPA, which is hindered by the efficiency of catalysis, the supply of cofactor tetrahydrobiopterin, and the regulation of the pathway. In this study, the modular engineering strategy in Bacillus licheniformis was identified to effectively enhance l-DOPA production. First, the catalytic efficiency of biocatalyst tyrosine hydroxylase from Streptosporangium roseum DSM 43021 (SrTH) was improved by 20.3% by strengthening its affinity toward tetrahydrobiopterin. Second, the tetrahydrobiopterin supply pool was increased by bottleneck gene expression, oxygen transport facilitation, budC (encoding meso-2,3-butanediol dehydrogenase) deletion, and tetrahydrobiopterin regeneration using a native YfkO nitroreductase. The strain 45ABvC successfully produced tetrahydrobiopterin, which was detected as pterin (112.48 mg/L), the oxidation product of tetrahydrobiopterin. Finally, the yield of precursor l-tyrosine reached 148 mg/gDCW, with an increase of 71%, with the deletion of a novel spliced transcript 41sRNA associated with the regulation of the shikimate pathway. The engineered strain 45ABvCS::PD produced 167.14 mg/L (2.41 times of wild-type strain) and 1290 mg/L l-DOPA in a shake flask and a 15 L bioreactor, respectively, using a fermentation strategy on a mixture of carbon sources. This study holds great potential for constructing a microbial source of l-DOPA and its high-value downstream pharmaceuticals.
Collapse
Affiliation(s)
- Yinbiao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Engineering Research Center for Applied Microbiology of Henan Province, School of Life Sciences, Henan University, Kaifeng 475004, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Zhiyong Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Yiming Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Guanjun Tao
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
| |
Collapse
|
13
|
Zhang G, Ren X, Liang X, Wang Y, Feng D, Zhang Y, Xian M, Zou H. Improving the Microbial Production of Amino Acids: From Conventional Approaches to Recent Trends. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0390-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Veldman W, Liberato MV, Souza VP, Almeida VM, Marana SR, Tastan Bishop Ö, Polikarpov I. Differences in Gluco and Galacto Substrate-Binding Interactions in a Dual 6Pβ-Glucosidase/6Pβ-Galactosidase Glycoside Hydrolase 1 Enzyme from Bacillus licheniformis. J Chem Inf Model 2021; 61:4554-4570. [PMID: 34423980 DOI: 10.1021/acs.jcim.1c00413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial glycoside hydrolase 1 (GH1) enzymes with 6-phospho-β-galactosidase and 6-phospho-β-glucosidase activities have the important task of releasing phosphorylated and nonphosphorylated monosaccharides into the cytoplasm. Curiously, dual 6-phospho-β-galactosidase/6-phospho-β-glucosidase (dual-phospho) enzymes have broad specificity and are able to hydrolyze galacto- and gluco-derived substrates. This study investigates the structure and substrate specificity of a GH family 1 enzyme from Bacillus licheniformis, hereafter known as BlBglC. The enzyme structure has been solved, and sequence analysis, molecular dynamics simulations, and binding free energy calculations offered evidence of dual-phospho activity. Both test ligands p-nitrophenyl-β-d-galactoside-6-phosphate (PNP6Pgal) and p-nitrophenyl-β-d-glucoside-6-phosphate (PNP6Pglc) demonstrated strong binding to BlBglC although the pose and interactions of the PNP6Pglc triplicates were slightly more consistent. Interestingly, known specificity-inducing residues, Gln23 and Trp433, bind strongly to the ligand O3 hydroxyl group in the PNP6Pgal-BlBglC complex and to the ligand O4 hydroxyl group in the PNP6Pglc-BlBglC complex. Additionally, the BlBglC-His124 residue is a major contributor of hydrogen bonds to the PNP6Pgal O3 hydroxyl group but does not form any hydrogen bonds with PNP6Pglc. On the other hand, BlBglC residues Tyr173, Tyr301, Gln302, and Thr321 form hydrogen bonds with PNP6Pglc but not PNP6Pgal. These findings provide important details of the broad specificity of dual-phospho activity GH1 enzymes.
Collapse
Affiliation(s)
- Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | | | - Valquiria P Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Vitor M Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Sandro R Marana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil
| |
Collapse
|
15
|
Computational investigations of allostery in aromatic amino acid biosynthetic enzymes. Biochem Soc Trans 2021; 49:415-429. [PMID: 33544132 DOI: 10.1042/bst20200741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Allostery, in which binding of ligands to remote sites causes a functional change in the active sites, is a fascinating phenomenon observed in enzymes. Allostery can occur either with or without significant conformational changes in the enzymes, and the molecular basis of its mechanism can be difficult to decipher using only experimental techniques. Computational tools for analyzing enzyme sequences, structures, and dynamics can provide insights into the allosteric mechanism at the atomic level. Combining computational and experimental methods offers a powerful strategy for the study of enzyme allostery. The aromatic amino acid biosynthesis pathway is essential in microorganisms and plants. Multiple enzymes involved in this pathway are sensitive to feedback regulation by pathway end products and are known to use allostery to control their activities. To date, four enzymes in the aromatic amino acid biosynthesis pathway have been computationally investigated for their allosteric mechanisms, including 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase, anthranilate synthase, chorismate mutase, and tryptophan synthase. Here we review the computational studies and findings on the allosteric mechanisms of these four enzymes. Results from these studies demonstrate the capability of computational tools and encourage future computational investigations of allostery in other enzymes of this pathway.
Collapse
|
16
|
Xu Y, Li Y, Li L, Zhang L, Ding Z, Shi G. Reductase-catalyzed tetrahydrobiopterin regeneration alleviates the anti-competitive inhibition of tyrosine hydroxylation by 7,8-dihydrobiopterin. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01958e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
l-Tyrosine hydroxylation by tyrosine hydroxylase is a significant reaction for preparing many nutraceutical and pharmaceutical chemicals.
Collapse
Affiliation(s)
- Yinbiao Xu
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Youran Li
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Leyun Li
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| |
Collapse
|
17
|
Veldman W, Liberato MV, Almeida VM, Souza VP, Frutuoso MA, Marana SR, Moses V, Tastan Bishop Ö, Polikarpov I. X-ray Structure, Bioinformatics Analysis, and Substrate Specificity of a 6-Phospho-β-glucosidase Glycoside Hydrolase 1 Enzyme from Bacillus licheniformis. J Chem Inf Model 2020; 60:6392-6407. [PMID: 33166469 DOI: 10.1021/acs.jcim.0c00759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In bacteria, mono- and disaccharides are phosphorylated during the uptake processes through the vastly spread transport system phosphoenolpyruvate-dependent phosphotransferase. As an initial step in the phosphorylated disaccharide metabolism pathway, 6-phospho-β-glucosidases and 6-phospho-β-galactosidases play a crucial role by releasing phosphorylated and nonphosphorylated monosaccharides. However, structural determinants for the specificity of these enzymes still need to be clarified. Here, an X-ray structure of a glycoside hydrolase family 1 enzyme from Bacillus licheniformis, hereafter known as BlBglH, was determined at 2.2 Å resolution, and its substrate specificity was investigated. The sequence of BlBglH was compared to the sequences of 58 other GH1 enzymes using sequence alignments, sequence identity calculations, phylogenetic analysis, and motif discovery. Through these various analyses, BlBglH was found to have sequence features characteristic of the 6-phospho-β-glucosidase activity enzymes. Motif and structural observations highlighted the importance of loop L8 in 6-phospho-β-glucosidase activity enzymes. To further affirm enzyme specificity, molecular docking and molecular dynamics simulations were performed using the crystallographic structure of BlBglH. Docking was carried out with a 6-phospho-β-glucosidase enzyme activity positive and negative control ligand, followed by 400 ns of MD simulations. The positive and negative control ligands were PNP6Pglc and PNP6Pgal, respectively. PNP6Pglc maintained favorable interactions within the active site until the end of the MD simulation, while PNP6Pgal exhibited instability. The favorable binding of substrate stabilized the loops that surround the active site. Binding free energy calculations showed that the PNP6Pglc complex had a substantially lower binding energy compared to the PNP6Pgal complex. Altogether, the findings of this study suggest that BlBglH possesses 6-phospho-β-glucosidase enzymatic activity and revealed sequence and structural differences between bacterial GH1 enzymes of various activities.
Collapse
Affiliation(s)
- Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | | | - Vitor M Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Valquiria P Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Maira A Frutuoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Sandro R Marana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, 05508-000 São Paulo, Brazil
| | - Vuyani Moses
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry and Microbiology, Rhodes University, Grahamstown 6140, South Africa
| | - Igor Polikarpov
- São Carlos Institute of Physics, University of São Paulo, São Carlos 13566-590, Brazil
| |
Collapse
|
18
|
Transcriptional Changes in the Xylose Operon in Bacillus licheniformis and Their Use in Fermentation Optimization. Int J Mol Sci 2019; 20:ijms20184615. [PMID: 31540366 PMCID: PMC6769896 DOI: 10.3390/ijms20184615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
The xylose operon is an efficient biological element used for the regulation of gene expression in Bacillus licheniformis. Although the mechanism underlying the xylose-mediated regulation of this operon has been elucidated, the transcriptional changes that occur under various fermentation conditions remain unclear. In this study, the effects of different conditions on xylose operon expression were investigated. Significant upregulation was observed during the transition from the logarithmic phase to the stationary phase (2.5-fold, n = 3, p < 0.01). Glucose suppressed transcription over 168-fold (n = 3, p < 0.01). Meanwhile, the inhibitory effect of glucose hardly strengthened at concentrations from 20 to 180 g/L. Furthermore, the transcription of the xylose operon increased at elevated temperatures (25-42 °C) and was optimal at a neutral pH (pH 6.5-7.0). Based on these findings, relevant fermentation strategies (delaying the induction time, using dextrin as a carbon source, increasing the fermentation temperature, and maintaining a neutral pH) were proposed. Subsequently, these strategies were validated through the use of maltogenic amylase as a reporter protein, as an 8-fold (n = 3, p < 0.01) increase in recombinant enzyme activity compared to that under unoptimized conditions was observed. This work contributes to the development of fermentation optimization and furthers the use of the xylose operon as an efficient expression element.
Collapse
|