1
|
Silva M, Donati S, Dvořák P. Advances in engineering substrate scope of Pseudomonas cell factories. Curr Opin Biotechnol 2025; 92:103270. [PMID: 39978295 DOI: 10.1016/j.copbio.2025.103270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 02/22/2025]
Abstract
Most current industrial bioprocesses use well-established model microorganisms and simple sugar substrates from edible starch or molasses. To broaden and sustain bioprocesses, we need to explore new robust microbial hosts with desirable traits and ideally exploit diverse waste-derived substrates. Pseudomonas species are prime candidates for new generation of industrial biotechnology due to their resilient physiology and adaptable metabolism. However, natural isolates are not always suitable for demanding biotechnological applications. Despite pseudomonads' typically broad substrate range, their catabolism can be further enhanced through metabolic engineering, synthetic biology, and/or laboratory evolution to efficiently degrade, utilize, and valorize alternative waste substrates derived from lignocellulosic residues, synthetic plastics, C1 compounds, or their mixtures.
Collapse
Affiliation(s)
- Miguel Silva
- Department of Experimental Biology (Section of Microbiology), Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Stefano Donati
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pavel Dvořák
- Department of Experimental Biology (Section of Microbiology), Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic.
| |
Collapse
|
2
|
Chen YC, Destouches L, Cook A, Fedorec AJH. Synthetic microbial ecology: engineering habitats for modular consortia. J Appl Microbiol 2024; 135:lxae158. [PMID: 38936824 DOI: 10.1093/jambio/lxae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Microbiomes, the complex networks of micro-organisms and the molecules through which they interact, play a crucial role in health and ecology. Over at least the past two decades, engineering biology has made significant progress, impacting the bio-based industry, health, and environmental sectors; but has only recently begun to explore the engineering of microbial ecosystems. The creation of synthetic microbial communities presents opportunities to help us understand the dynamics of wild ecosystems, learn how to manipulate and interact with existing microbiomes for therapeutic and other purposes, and to create entirely new microbial communities capable of undertaking tasks for industrial biology. Here, we describe how synthetic ecosystems can be constructed and controlled, focusing on how the available methods and interaction mechanisms facilitate the regulation of community composition and output. While experimental decisions are dictated by intended applications, the vast number of tools available suggests great opportunity for researchers to develop a diverse array of novel microbial ecosystems.
Collapse
Affiliation(s)
- Yue Casey Chen
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Louie Destouches
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Alice Cook
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Alex J H Fedorec
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| |
Collapse
|
3
|
Wang S, Liu Y, Guo H, Meng Y, Xiong W, Liu R, Yang C. Establishment of low-cost production platforms of polyhydroxyalkanoate bioplastics from Halomonas cupida J9. Biotechnol Bioeng 2024; 121:2106-2120. [PMID: 38587130 DOI: 10.1002/bit.28694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
Microbial production of polyhydroxyalkanoate (PHA) is greatly restricted by high production cost arising from high-temperature sterilization and expensive carbon sources. In this study, a low-cost PHA production platform was established from Halomonas cupida J9. First, a marker-less genome-editing system was developed in H. cupida J9. Subsequently, H. cupida J9 was engineered to efficiently utilize xylose for PHA biosynthesis by introducing a new xylose metabolism module and blocking xylonate production. The engineered strain J9UΔxylD-P8xylA has the highest PHA yield (2.81 g/L) obtained by Halomonas with xylose as the sole carbon source so far. This is the first report on the production of short- and medium-chain-length (SCL-co-MCL) PHA from xylose by Halomonas. Interestingly, J9UΔxylD-P8xylA was capable of efficiently utilizing glucose and xylose as co-carbon sources for PHA production. Furthermore, fed-batch fermentation of J9UΔxylD-P8xylA coupled to a glucose/xylose co-feeding strategy reached up to 12.57 g/L PHA in a 5-L bioreactor under open and unsterile condition. Utilization of corn straw hydrolysate as the carbon source by J9UΔxylD-P8xylA reached 7.0 g/L cell dry weight (CDW) and 2.45 g/L PHA in an open fermentation. In summary, unsterile production in combination with inexpensive feedstock highlights the potential of the engineered strain for the low-cost production of PHA from lignocellulose-rich agriculture waste.
Collapse
Affiliation(s)
- Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yan Meng
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Weini Xiong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ruihua Liu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
4
|
Hahn T, Alzate MO, Leonhardt S, Tamang P, Zibek S. Current trends in medium-chain-length polyhydroxyalkanoates: Microbial production, purification, and characterization. Eng Life Sci 2024; 24:2300211. [PMID: 38845815 PMCID: PMC11151071 DOI: 10.1002/elsc.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 06/09/2024] Open
Abstract
Polyhydroxyalkanoates (PHAs) have gained interest recently due to their biodegradability and versatility. In particular, the chemical compositions of medium-chain-length (mcl)-PHAs are highly diverse, comprising different monomers containing 6-14 carbon atoms. This review summarizes different feedstocks and fermentation strategies to enhance mcl-PHA production and briefly discusses the downstream processing. This review also provides comprehensive details on analytical tools for determining the composition and properties of mcl-PHA. Moreover, this study provides novel information by statistically analyzing the data collected from several reports on mcl-PHA to determine the optimal fermentation parameters (specific growth rate, PHA productivity, and PHA yield from various structurally related and unrelated substrates), mcl-PHA composition, molecular weight (MW), and thermal and mechanical properties, in addition to other relevant statistical values. The analysis revealed that the median PHA productivity observed in the fed-batch feeding strategy was 0.4 g L-1 h-1, which is eight times higher than that obtained from batch feeding (0.05 g L-1 h-1). Furthermore, 3-hydroxyoctanoate and -decanoate were the primary monomers incorporated into mcl-PHA. The investigation also determined the median glass transition temperature (-43°C) and melting temperature (47°C), which indicated that mcl-PHA is a flexible amorphous polymer at room temperature with a median MW of 104 kDa. However, information on the monomer composition or heterogeneity and the associated physical and mechanical data of mcl-PHAs is inadequate. Based on their mechanical values, the mcl-PHAs can be classified as semi-crystalline polymers (median crystallinity 23%) with rubber-like properties and a median elongation at break of 385%. However, due to the limited mechanical data available for mcl-PHAs with known monomer composition, identifying suitable processing tools and applications to develop mcl-PHAs further is challenging.
Collapse
Affiliation(s)
- Thomas Hahn
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Melissa Ortega Alzate
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
- Department of Chemical EngineeringUniversity of AntioquiaEl Carmen de ViboralColombia
| | - Steven Leonhardt
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Pravesh Tamang
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
| | - Susanne Zibek
- Bioprocess DevelopmentFraunhofer Institute for Interfacial Engineering and Biotechnology IGBStuttgartGermany
- Institute of Interfacial Engineering and Plasma Technology IGVPUniversity of StuttgartStuttgartGermany
| |
Collapse
|
5
|
Liu Y, Xue B, Liu H, Wang S, Su H. Rational construction of synthetic consortia: Key considerations and model-based methods for guiding the development of a novel biosynthesis platform. Biotechnol Adv 2024; 72:108348. [PMID: 38531490 DOI: 10.1016/j.biotechadv.2024.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The rapid development of synthetic biology has significantly improved the capabilities of mono-culture systems in converting different substrates into various value-added bio-chemicals through metabolic engineering. However, overexpression of biosynthetic pathways in recombinant strains can impose a heavy metabolic burden on the host, resulting in imbalanced energy distribution and negatively affecting both cell growth and biosynthesis capacity. Synthetic consortia, consisting of two or more microbial species or strains with complementary functions, have emerged as a promising and efficient platform to alleviate the metabolic burden and increase product yield. However, research on synthetic consortia is still in its infancy, with numerous challenges regarding the design and construction of stable synthetic consortia. This review provides a comprehensive comparison of the advantages and disadvantages of mono-culture systems and synthetic consortia. Key considerations for engineering synthetic consortia based on recent advances are summarized, and simulation and computational tools for guiding the advancement of synthetic consortia are discussed. Moreover, further development of more efficient and cost-effective synthetic consortia with emerging technologies such as artificial intelligence and machine learning is highlighted.
Collapse
Affiliation(s)
- Yu Liu
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Boyuan Xue
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hao Liu
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
6
|
Xu G, Zhang X, Xiao W, Shi J, Xu Z. Production of L-serine and its derivative L-cysteine from renewable feedstocks using Corynebacterium glutamicum: advances and perspectives. Crit Rev Biotechnol 2024; 44:448-461. [PMID: 36944486 DOI: 10.1080/07388551.2023.2170863] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/05/2023] [Indexed: 03/23/2023]
Abstract
L-serine and its derivative L-cysteine have broad industrial applications, and their direct fermentative production from renewable biomass is gaining increasing attention. Corynebacterium glutamicum is an extensively studied and well-established industrial microorganism, which is a predominant microbial host for producing amino acids. In this review, updated information on the genetics and molecular mechanisms underlying L-serine and L-cysteine production using C. glutamicum is presented, including their synthesis and degradation pathways, and other intracellular processes related to their production, as well as the mechanisms underlying substrate import and product export are also analyzed. Furthermore, metabolic strategies for strain improvement are systematically discussed, and conclusions and future perspectives for bio-based L-serine and L-cysteine production using C. glutamicum are presented. This review can provide a thorough understanding of L-serine and L-cysteine metabolic pathways to facilitate metabolic engineering modifications of C. glutamicum and development of more efficient industrial fermentation processes for L-serine and L-cysteine production.
Collapse
Affiliation(s)
- Guoqiang Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
| | - Xiaomei Zhang
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Jiangnan University, Wuxi, China
| | - Wenhan Xiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
| | - Jinsong Shi
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
- Laboratory of Pharmaceutical Engineering, School of Life Science and Health Engineering, Jiangnan University, Jiangnan University, Wuxi, China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, China
| |
Collapse
|
7
|
Liu H, Chen Y, Wang S, Liu Y, Zhao W, Huo K, Guo H, Xiong W, Wang S, Yang C, Liu R. Metabolic engineering of genome-streamlined strain Pseudomonas putida KTU-U27 for medium-chain-length polyhydroxyalkanoate production from xylose and cellobiose. Int J Biol Macromol 2023; 253:126732. [PMID: 37678685 DOI: 10.1016/j.ijbiomac.2023.126732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Bio-based plastics polyhydroxyalkanoates (PHAs) are considered as a good substitutive to traditional fossil-based plastics because PHAs outcompete chemical plastics in several important properties, such as biodegradability, biocompatibility, and renewability. However, the industrial production of PHA (especially medium-chain-length PHA, mcl-PHA) is greatly restricted by the cost of carbon sources. Currently, xylose and cellobiose derived from lignocellulose are potential substrates for mcl-PHA production. In this study, Pseudomonas putida KTU-U27, a genome-streamlined strain derived from a mcl-PHA producer P. putida KT2440, was used as the optimal chassis for the construction of microbial cell factories with the capacity to efficiently produce mcl-PHA from xylose and cellobiose by introducing the xylose and cellobiose metabolism modules and enhancing the transport of xylose and cellobiose. The lag phases of the xylose- and cellobiose-grown engineered strains were almost completely eliminated and the xylose- and cellobiose-utilizing performance was greatly improved via adaptive laboratory evolution. In shake-flask fermentation, the engineered strain 27A-P13-xylABE-Ptac-tt and 27A-P13-bglC-P13-gts had a mcl-PHA content of 41.67 wt% and 45.18 wt%, respectively, and were able to efficiently utilize xylose or cellobiose as the sole carbon source for cell growth. Herein, microbial production of mcl-PHA using xylose as the sole carbon source has been demonstrated for the first time. Meanwhile, the highest yield of mcl-PHA produced from cellobiose has been obtained in this study. Interestingly, the engineered strains derived from genome-reduced P. putida strains showed higher xylose- and cellobiose-utilizing performance and higher PHA yield than those derived from P. putida KT2440. This study highlights enormous potential of the engineered strains as promising platforms for low-cost production of mcl-PHA from xylose- and cellobiose-rich substrates.
Collapse
Affiliation(s)
- Honglu Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yaping Chen
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wanwan Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Kaiyue Huo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weini Xiong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Ruihua Liu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
8
|
Devadarshini D, Mohapatra S, Pati S, Maity S, Rath CC, Jena PK, Samantaray D. Evaluation of PHAs production by mixed bacterial culture under submerged fermentation. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Qin R, Zhu Y, Ai M, Jia X. Reconstruction and optimization of a Pseudomonas putida-Escherichia coli microbial consortium for mcl-PHA production from lignocellulosic biomass. Front Bioeng Biotechnol 2022; 10:1023325. [PMID: 36338139 PMCID: PMC9626825 DOI: 10.3389/fbioe.2022.1023325] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
The demand for non-petroleum-based, especially biodegradable plastics has been on the rise in the last decades. Medium-chain-length polyhydroxyalkanoate (mcl-PHA) is a biopolymer composed of 6–14 carbon atoms produced from renewable feedstocks and has become the focus of research. In recent years, researchers aimed to overcome the disadvantages of single strains, and artificial microbial consortia have been developed into efficient platforms. In this work, we reconstructed the previously developed microbial consortium composed of engineered Pseudomonas putida KT∆ABZF (p2-a-J) and Escherichia coli ∆4D (ACP-SCLAC). The maximum titer of mcl-PHA reached 3.98 g/L using 10 g/L glucose, 5 g/L octanoic acid as substrates by the engineered P. putida KT∆ABZF (p2-a-J). On the other hand, the maximum synthesis capacity of the engineered E. coli ∆4D (ACP-SCLAC) was enhanced to 3.38 g/L acetic acid and 0.67 g/L free fatty acids (FFAs) using 10 g/L xylose as substrate. Based on the concept of “nutrient supply-detoxification,” the engineered E. coli ∆4D (ACP-SCLAC) provided nutrient for the engineered P. putida KT∆ABZF (p2-a-J) and it acted to detoxify the substrates. Through this functional division and rational design of the metabolic pathways, the engineered P. putida-E. coli microbial consortium could produce 1.30 g/L of mcl-PHA from 10 g/L glucose and xylose. Finally, the consortium produced 1.02 g/L of mcl-PHA using lignocellulosic hydrolysate containing 10.50 g/L glucose and 10.21 g/L xylose as the substrate. The consortium developed in this study has good potential for mcl-PHA production and provides a valuable reference for the production of high-value biological products using inexpensive carbon sources.
Collapse
Affiliation(s)
- Ruolin Qin
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yinzhuang Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mingmei Ai
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- *Correspondence: Xiaoqiang Jia,
| |
Collapse
|
10
|
Akdemir H, Liu Y, Zhuang L, Zhang H, Koffas MAG. Utilization of microbial cocultures for converting mixed substrates to valuable bioproducts. Curr Opin Microbiol 2022; 68:102157. [DOI: 10.1016/j.mib.2022.102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022]
|
11
|
Rafieenia R, Atkinson E, Ledesma-Amaro R. Division of labor for substrate utilization in natural and synthetic microbial communities. Curr Opin Biotechnol 2022; 75:102706. [DOI: 10.1016/j.copbio.2022.102706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 01/30/2023]
|
12
|
Zhu Y, Ai M, Jia X. Optimization of a Two-Species Microbial Consortium for Improved Mcl-PHA Production From Glucose-Xylose Mixtures. Front Bioeng Biotechnol 2022; 9:794331. [PMID: 35083203 PMCID: PMC8784772 DOI: 10.3389/fbioe.2021.794331] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) have attracted much attention as a good substitute for petroleum-based plastics, especially mcl-PHA due to their superior physical and mechanical properties with broader applications. Artificial microbial consortia can solve the problems of low metabolic capacity of single engineered strains and low conversion efficiency of natural consortia while expanding the scope of substrate utilization. Therefore, the use of artificial microbial consortia is considered a promising method for the production of mcl-PHA. In this work, we designed and constructed a microbial consortium composed of engineered Escherichia coli MG1655 and Pseudomonas putida KT2440 based on the "nutrition supply-detoxification" concept, which improved mcl-PHA production from glucose-xylose mixtures. An engineered E. coli that preferentially uses xylose was engineered with an enhanced ability to secrete acetic acid and free fatty acids (FFAs), producing 6.44 g/L acetic acid and 2.51 g/L FFAs with 20 g/L xylose as substrate. The mcl-PHA producing strain of P. putida in the microbial consortium has been engineered to enhance its ability to convert acetic acid and FFAs into mcl-PHA, producing 0.75 g/L mcl-PHA with mixed substrates consisting of glucose, acetic acid, and octanoate, while also reducing the growth inhibition of E. coli by acetic acid. The further developed artificial microbial consortium finally produced 1.32 g/L of mcl-PHA from 20 g/L of a glucose-xylose mixture (1:1) after substrate competition control and process optimization. The substrate utilization and product synthesis functions were successfully divided into the two strains in the constructed artificial microbial consortium, and a mutually beneficial symbiosis of "nutrition supply-detoxification" with a relatively high mcl-PHA titer was achieved, enabling the efficient accumulation of mcl-PHA. The consortium developed in this study is a potential platform for mcl-PHA production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Yinzhuang Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mingmei Ai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| |
Collapse
|
13
|
Cheng HH, Whang LM. Resource recovery from lignocellulosic wastes via biological technologies: Advancements and prospects. BIORESOURCE TECHNOLOGY 2022; 343:126097. [PMID: 34626758 DOI: 10.1016/j.biortech.2021.126097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulosic wastes were recently considered as biomass resources, however, its conversion to valuable products is still immature although researchers have put lots of effort into this issue. This article reviews the key challenges of the biorefinery utilizing lignocellulosic materials and recent developments to conquer those obstacles. Available biological techniques and processes, from the pretreatments of cellulosic materials to the valorization processes, were emphasized. Biological pretreatments, including hydrolysis using microbial consortia, fungi, enzymes, engineered bacterial/fungal strains, and co-culture systems, could enhance the release of reducing sugar. Resources recovery, including biogases, ethanol, butanol, PHA, etc., from lignocellulosic materials were also discussed, while the influences of composition of lignocellulosic materials and pretreatment options, applications of co-culture system, and integrated treatments with other wastes, were described. In the review, co-culture system and metabolic engineering are emphasized as the promising biological technologies, while perspectives are provided for their future developments.
Collapse
Affiliation(s)
- Hai-Hsuan Cheng
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Liang-Ming Whang
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan; Sustainable Environment Research Laboratory (SERL), National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan.
| |
Collapse
|
14
|
Liao YL, Niu FX, Liu JZ. Recent Progress in Microbial Biosynthesis by Coculture Engineering. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Wu J, Wei X, Guo P, He A, Xu J, Jin M, Zhang Y, Wu H. Efficient poly(3-hydroxybutyrate-co-lactate) production from corn stover hydrolysate by metabolically engineered Escherichia coli. BIORESOURCE TECHNOLOGY 2021; 341:125873. [PMID: 34523584 DOI: 10.1016/j.biortech.2021.125873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Poly(3-hydroxybutyrate-co-lactate)[P(3HB-co-LA)], is a biodegradable and biocompatible bioplastic, and the monomeric composition of the copolymer plays an important role in affecting its mechanical properties. Corn stover hydrolysate (CSH), the waste by-product in agriculture, has been considered as an important carbon source for value-added biochemical production. Therefore, the effect of CSH on P(3HB-co-LA) biosynthesis was investigated in this study. Taking CSH as the carbon source, the lactate (LA) fraction in the copolymer reached 7.1 mol% by the engineered stain. The results of shake flask fermentation demonstrated that reducing the activity of electron transport system resulted in a higher LA fraction. Furthermore, we replaced the promoter of the key gene pctth with ldhA gene promoter, so that the expression of pctth gene could be dynamically modulated as well as the lactic acid content changed. This study suggests that CSH is a promising carbon source for the production of biodegradable P(3HB-co-LA).
Collapse
Affiliation(s)
- Ju Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiangju Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Pengye Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian 223300, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, Huaian 223300, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Yanjun Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, China; Key Laboratory of Bio-based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
16
|
The power of two: An artificial microbial consortium for the conversion of inulin into Polyhydroxyalkanoates. Int J Biol Macromol 2021; 189:494-502. [PMID: 34428488 DOI: 10.1016/j.ijbiomac.2021.08.123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 11/21/2022]
Abstract
One of the major issues for the microbial production of polyhydroxyalkanoates (PHA) is to secure renewable, non-food biomass feedstocks to feed the fermentation process. Inulin, a polydisperse fructan that accumulates as reserve polysaccharide in the roots of several low-requirement crops, has the potential to face this challenge. In this work, a "substrate facilitator" microbial consortium was designed to address PHA production using inulin as feedstock. A microbial collection of Bacillus species was screened for efficient inulinase producer and the genome of the selected strain, RHF15, identified as Bacillus gibsonii, was analysed unravelling its wide catabolic potential. RHF15 was co-cultured with Cupriavidus necator, an established PHA producer, lacking the ability to metabolize inulin. A Central Composite Rotary Design (CCRD) was applied to optimise PHA synthesis from inulin by the designed artificial microbial consortium, assessing the impact of species inoculum ratio and inulin and N-source concentrations. In the optimized conditions, a maximum of 1.9 g L-1 of Polyhydroxybutyrate (PHB), corresponding to ~80% (gpolymer/gCDW) polymer content was achieved. The investigated approach represents an effective process optimization method, potentially applicable to the production of PHA from other complex C- sources.
Collapse
|
17
|
Ai M, Zhu Y, Jia X. Recent advances in constructing artificial microbial consortia for the production of medium-chain-length polyhydroxyalkanoates. World J Microbiol Biotechnol 2021; 37:2. [PMID: 33392870 DOI: 10.1007/s11274-020-02986-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/20/2020] [Indexed: 11/29/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are a class of high-molecular-weight polyesters made from hydroxy fatty acid monomers. PHAs produced by microorganisms have diverse structures, variable physical properties, and good biodegradability. They exhibit similar physical properties to petroleum-based plastics but are much more environmentally friendly. Medium-chain-length polyhydroxyalkanoates (mcl-PHAs), in particular, have attracted much interest because of their low crystallinity, low glass transition temperature, low tensile strength, high elongation at break, and customizable structure. Nevertheless, high production costs have hindered their practical application. The use of genetically modified organisms can reduce production costs by expanding the scope of substrate utilization, improving the conversion efficiency of substrate to product, and increasing the yield of mcl-PHAs. The yield of mcl-PHAs produced by a pure culture of an engineered microorganism was not high enough because of the limitations of the metabolic capacity of a single microorganism. The construction of artificial microbial consortia and the optimization of microbial co-cultivation have been studied. This type of approach avoids the addition of precursor substances and helps synthesize mcl-PHAs more efficiently. In this paper, we reviewed the design and construction principles and optimized control strategies for artificial microbial consortia that produce mcl-PHAs. We described the metabolic advantages of co-cultivating artificial microbial consortia using low-value substrates and discussed future perspectives on the production of mcl-PHAs using artificial microbial consortia.
Collapse
Affiliation(s)
- Mingmei Ai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yinzhuang Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China.
| |
Collapse
|